激光原理第二章习题答案

合集下载

激光原理第二章答案

激光原理第二章答案

第二章开放式光腔与高斯光束1.证明如图所示傍轴光线进入平面介质界面的光线变换矩阵为1 21 0ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。

证明:设入射光线坐标参数为11,rθ,出射光线坐标参数为22,rθ,根据几何关系可知211122,sin sinr rηθηθ==傍轴光线sinθθ则1122ηθηθ=,写成矩阵形式2121121 0r rθθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证2.证明光线通过图所示厚度为d的平行平面介质的光线变换矩阵为1210 1dηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。

证明:设入射光线坐标参数为11,rθ,出射光线坐标参数为22,rθ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d,最后经界面2折射后出射。

根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 010 00 1r rdθθηηηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦化简后21211210 1dr rθθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。

、3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,则有~12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。

解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- [对平凹共轴球面镜腔有12,0R R =∞>。

激光原理第二章习题答案

激光原理第二章习题答案

2.1 证明:如图2.1所示,当光线从折射率1η的介质,向折射率为2η的介质折射时,在曲率半径R 的球面分界面上,折射光线所经受的变换矩阵为⎥⎥⎦⎤⎢⎢⎣⎡-2121201ηηηηηR 其中,当球面相对于入射光线凹(凸)面时,R 取正(负)值。

证明:由图可知 11201θ⋅+⋅=x x 又)()(222111θηθη-=-RxR x 21121122x R ηηηθθηη-∴=+ ⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡∴11212122201θηηηηηθx Rx ∴变换矩阵为⎥⎥⎦⎤⎢⎢⎣⎡-2121201ηηηηηR 2.2 试求半径R=4cm,折射率η=1.5的玻璃球的焦距和主面的位置1h 和2h 。

解:变换矩阵⎥⎥⎦⎤⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=2112121221210110101n n R n n n l n n R n n n M 把11=n ,5.12=n ,cm R R 421=-=,cm l 8=代入,可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡⨯-⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--=3531316355.1145.115.10110815.145.1101M )(12f h A -=, f C 1-=, )(11f h D -= 求得 mm f 30-= mm h 201= mm h 202=2.3 焦距1f =5cm 和2f =-10c=m 的两个透镜相距5cm 。

第一个透镜前表面和第二个透镜后表面为参考平面的系统,其等效焦距为多少?焦点和主平面位置在何处?距1f 前表面20cm 处放置高为10cm 的物体,能在2f 后多远地方成像?像高为多少? 解:(1)2110101010********1131101011110552A B L M CD f f ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦)(12f h A -=, f C 1-=, )(11f h D -=,求得cm f 5-= cm h 5.21= cm h 52-=第一个透镜前表面与前主面的距离为2.5cm ,第二个透镜后表面与后主面的距离为-5cm,前主面离焦点的距离为-5cm ,) (2)21201011===l x θ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡45252110235150235150111122θθθx x D C B A xcm l cm x 2,5.222-==(距2f 后表面-2cm )2.4 一块折射率为η,厚度为d 的介质放在空气中,其两界面分别为曲率半径等于R 的凹球面和平面,光线入射到凹球面上。

激光原理第二章答案

激光原理第二章答案

第二章 开放式光腔与高斯光束1. 证明121 00 ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。

证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,根据几何关系可知211122, sin sin r r ηθηθ== 傍轴光线sin θθ则1122ηθηθ=,写成矩阵形式2121121 00 r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证 2. 1210 1d ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。

证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d ,最后经界面2折射后出射。

根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 01 0 0 0 1r r d θθηηηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 化简后2121121 0 1d r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。

3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下列图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。

解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。

则1221,1Lg g R ==-,再根据稳定性条件 1201g g <<可得22011LR R L <-<>⇒。

激光原理周炳坤-第2章习题答案

激光原理周炳坤-第2章习题答案

第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时: 故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123211221101011000000d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。

激光原理第二章答案解析

激光原理第二章答案解析

第二章 开放式光腔与高斯光束1. 证明如图2.1所示傍轴光线进入平面介质界面的光线变换矩阵为121 00 ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。

证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,根据几何关系可知211122, sin sin r r ηθηθ== 傍轴光线sin θθ则1122ηθηθ=,写成矩阵形式2121121 00 r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证 2. 证明光线通过图2.2所示厚度为d 的平行平面介质的光线变换矩阵为1210 1d ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。

证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d ,最后经界面2折射后出射。

根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 01 0 0 0 1r r d θθηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 化简后2121121 0 1d r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。

3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。

解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。

激光原理第二章答案

激光原理第二章答案

第二章 开放式光腔与高斯光束1. 证明如图2.1 所示傍轴光线进入平面介质界面的光线变换矩阵为r 2 r 1,1sin 1 2 sin 2 傍轴光线 sin 则 1 1 2 2 , 写成矩阵形式2. 证明光线通过图 2.2 所示厚度为 d 的平行平面介质的光线变换矩阵为 12 d0 1证明 :设入射光线坐标参数为 r 1, 1,出射光线坐标参数为 r 2, 2 ,入射光线首先经界面1折射,然后在介质 2中自由传播横向距离 d ,最后经界面 2 折射后出射 。

根据 1题的结论和自由传播的光线变换矩阵可得3.试利用往返矩阵证明共焦腔为稳定腔 , 即任意傍轴光线在其中可以往返无限多次 ,而且 两次往返即自行闭合证:设光线在球面镜腔内的往返情况如下图所示证明 : 设入射光线坐标参数为r 1, 1, 出射光线坐标参数为 r 22 ,根据几何关系可知学习帮手r 221d2r 11得证。

r 2 2其往返矩阵为于是光线在腔内往返任意多次均不会溢出腔外 , 所以共焦腔为稳定腔4.试求平凹 、双凹 、凹凸共轴球面镜腔的稳定性条件解: 共轴球面腔稳定性条件 0 g 1g 2 1其中 g 1 1 1 L ,g 2 1 L1 21R 1 2R 2对平凹共轴球面镜腔有 R 1,R 2 0。

则 g 1 1,g 2 1 L, 再根据稳定性条件R2L0 g 1g 2 1可得 0 1 1 R 2 L 。

1 2R22对凹凸共轴球面镜腔有 , R 1 0,R 2 0则 g 1 1L对 双 凹 共 轴 球 面 腔 有 , R 1 0,R 2 0 则 g 11 R L ,g 2R 11R2 , 根 据 稳 定 性 条 件 TA CR 1101由于是共焦腔 , 则有将上式代入计算得往返矩R1 R 2LT01 01T nT r 1T L T r 2T Ln1n 10n011n 100101可以看出 ,光线在腔内往返两次的变换矩阵为单位阵 ,所以光线两次往返即自行闭合 1L 1L 1R 1 L 或R 1R 2R 2 LR20, 根据稳定性条件R2,g 20 g 1g 2 1 可得 00 R 1 L0 R 2 L 。

激光原理陈钰清浙江大学第二版第二章习题答案

激光原理陈钰清浙江大学第二版第二章习题答案

第二章开放式光腔与高斯光束习题1试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且 两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下图所示:可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

3.激光器的谐振腔由一面曲率半径为 1m 的凸面镜和曲率半径为 2m 的凹面镜组成,工作 物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。

解:设两腔镜 M j 和M 2的曲率半径分别为 R 和R 2, R i=T m,R 2=2m其往返矩阵为:"A f 1 0、 A "1 0、<1B 3 11 =1 22C D ” 1 ■ --1 0 1 ―1 0 1 ,V R 1 丿R 2 丿J f2LL12L(1-_ )R2R 22 2 2L2L 2L 2L4 + - (1)] -[ (1- )(1-)]R 1 1 R 2一R 1 飞 ) 由于是共焦腔,往返矩阵变为r-1一1丿若光线在腔内往返两次,有T 2丿10)10(1)2 2工作物质长I = 0.5m ,折射率n =1.52 根据稳定条件判据:其中解:2I 2 2f 2 IB、y 1 0" z A 1 0)A1 I )1 1 2I )1=(1 1[1P D>.0 1丿「7 1 7 .0 1屮—— 1\ f 丿223I - 21甘2 由(1)解出 2m 〉L 、1m由(2)得 所以得到:L =L'+0.5x(1 -丄)=『 + 0.171.522.17m>L A1.17m4.图2.1所示三镜环形腔,已知I ,试画出其等效透镜序列图,并求球面镜的曲率半径在什么范围内该腔是稳定腔。

图示环形腔为非共轴球面镜腔。

在这种情况下,对于在由光轴组成 的平面内传输的子午光线,式(2.2.7)中的f =(Rcos8)/2,对于在与此垂直的平面内传输的弧矢光线,f=R/(2cos0), 0为光轴与球面镜法线的夹角。

激光原理周炳坤-第2章习题答案

激光原理周炳坤-第2章习题答案

第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时: 故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123211221101011000000d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。

激光与原理习题解答第二章

激光与原理习题解答第二章

激光原理第二章习题答案1.估算2C O 气体在室温(300K)下的多普勒线宽D ν∆和碰撞线宽系数α。

并讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。

解:2C O 气体在室温(300K)下的多普勒线宽D ν∆为11822770693103007.16107.161010.61044 0.05310H zD T M νν---⨯⎛⎫⎛⎫∆=⨯=⨯⨯⨯ ⎪ ⎪⨯⎝⎭⎝⎭=⨯ 2C O 气体的碰撞线宽系数α为实验测得,其值为49K H z/Pa α≈2C O 气体的碰撞线宽与气压p 的关系近似为L p να∆=当L D νν∆=∆时,其气压为930.053101081.6Pa 4910Dp να∆⨯===⨯所以,当气压小于1081.6P a 的时候以多普勒加宽为主,当气压高于1081.6P a 的时候,变为以均匀加宽为主。

2.考虑某二能级工作物质,2E 能级自发辐射寿命为s τ,无辐射跃迁寿命为τ。

假定在t=0时刻能级2E 上的原子数密度为2(0)n ,工作物质的体积为V ,自发辐射光的频率为ν,求:(1)自发辐射光功率随时间t 的变化规律;(2)能级2E 上的原子在其衰减过程中发出的自发辐射光子数;(3)自发辐射光子数与初始时刻能级2E 上的粒子数之比2η,2η称为量子产额。

解:(1) 在现在的情况下有可以解得:11()22()(0)stn t n eττ-+=可以看出,t 时刻单位时间内由于自发辐射而减小的能级之上的粒子数密度为2/s n τ,这就是t 时刻自发辐射的光子数密度,所以t 时刻自发辐射的光功率为:222()()sdn t n n dtττ=-+(2) 在t dt →时间内自发辐射的光子数为:所以(3) 量子产额为:3.根据红宝石的跃迁几率数据:7151332312121310.510,310,0.310,S s A sA s S S ---=⨯=⨯=⨯=估算13W 等于多少时红宝石对694.3n m λ=的光是透明的。

激光原理习题答案第二章

激光原理习题答案第二章

第二章 开放式光腔与高斯光束习题1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,有12R R L ==往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

3.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。

解:设两腔镜1M 和2M 的曲率半径分别为1R 和2R ,121m,2m R R =-=122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭1001T -⎛⎫= ⎪-⎝⎭21001T ⎛⎫= ⎪⎝⎭工作物质长0.5m l =,折射率 1.52η=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=101100110100110112011c n b n a R D C B A T⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-101100110100110112012a nb nc R⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++--++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++--++=1)(2211)(2212211n bc a R R nb c a n bc a R R nb c a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++---+-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-----+-=1)52.15.05.0(222252.15.05.011)52.15.05.0(121252.15.05.01L L L L⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡+-=L L L L 171.11171.01658.022171.01⎥⎦⎤⎢⎣⎡-++-----=)171.1)(658.02()171.0(22342.1)171.2)(171.0(171.1L L L L L L L要达到稳定腔的条件,必须是()1211<+<-D A ,按照这个条件,得到腔的几何长度为: 2.17m 1.17m L >>,单位是米。

激光原理第二章答案

激光原理第二章答案

第二章 开放式光腔与高斯光束1. 证明121 00 ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。

证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,根据几何关系可知211122, sin sin r r ηθηθ== 傍轴光线sin θθ则1122ηθηθ=,写成矩阵形式2121121 00 r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证 2. 1210 1d ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。

证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d ,最后经界面2折射后出射。

根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 01 0 0 0 1r r d θθηηηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 化简后2121121 0 1d r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。

3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下列图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。

解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。

则1221,1Lg g R ==-,再根据稳定性条件 1201g g <<可得22011LR R L <-<>⇒。

激光原理第二章作业的答案

激光原理第二章作业的答案
Ws1=0.295mm Ws2=0.591mm Q=0.0014rad=0.0782度
3. 设稳定球面腔的腔长L=16cm,两镜面曲率半径为R1=20cm,R2=- 32cm,波长λ=10-4cm,试求:(1)最小光斑尺寸ω0和最小光斑位置; (2)镜面上光斑尺寸ω01、ω02;(3)ω0和ω01、ω02分别与共焦腔 (R1=R2=L)相应值之比。
2g1g2 2
g1g2(g1g2 1) 1
(L R1)(L R2)
3.472
往 返 (M a (M 1)2 a1 ) 2a1 21M 120.917
单 程 11往 返 1M 10.712
7.设虚共焦非稳定腔的腔长L=0.25m,凸球面镜M2的 直径和曲率半径分别为2a2=3cm和R2=-1m ,若 保持镜M2尺寸不变,并从镜M2单端输出,试问:凹 面镜M1尺寸应选择多大?此时腔的往返放大率为多 大?
z1 = -17.4545cm
g1=1-L/R1=0.2 g2 = 1-L/R2=1.5 L λ带入公式
z2 =-1.4545cm f = 6.6656cm
w0 = 0.0146 cm
w1 = 0.0408 cm
w2 = 0.0149 cm
L= 160cm w0 = 0.01596cm w1 = w2 =sqrt(2)w0=0.02257cm
L = R 1 -R 2 0.2 5 22
R 1 = 1 .5 m
M =m 2=
R1 R2
1 .5
2 a1 m 2 * 2 a 2 4 .5 cm
8.考虑一虚共焦非稳定腔,工作波长λ= 1.06um,腔长L=0.3m,有效菲涅耳数Nef =0.5,往返损耗率δ=0.5,试求单端输出
时,镜M1和M2半径和曲率半径。

激光原理(陈钰清)第二章习题答案2

激光原理(陈钰清)第二章习题答案2

2.6 对 于 图 2.2 所 示 的 腔 , 忽 略 像 散 对 稳 定 性 影 响 。 证 明 : 当 R1 2 L1, R2 2 L2时,该腔是非稳定;仅当 R1 R2 时,该腔是临 界腔
知识点一:一些光学元件的传播矩阵 P48 图2.2
2.6 对 于 图 2.2 所 示 的 腔 , 忽 略 像 散 对 稳 定 性 影 响 。 证 明 : 当 R1 2 L1, R2 2 L2时,该腔是非稳定;仅当 R1 R2 时,该腔是临 界腔
1 (A+D) 1时,序列是稳定的 2
P49 (2-4-17)
2.14 腔内有其它元件的两镜腔中,除两个反射镜外的其余部分的变 换矩阵为 ,腔镜曲率半径为 R1 , R2 ,证明:稳定性条件为
0 g1 g 2 1
其中 = D B R1 ; g 2 A B R2
2A 2B 2 A B C( ) AB B D ( ) x R2 R2 x2 1 2 A C - 2 A )(D - 2 B ) C - 2 A )B C - 2 A )(D - 2 B ) D - 2 B )1 ( ( ( ( R1 R1 R2 R1 R1 R2
R R (1) 1 2 L1 ,2 2 L2 时,
1 1 1 L L L2 L1 L2 ( A D) 1 L( ) (1 ) 1 2 2 L1 2 L2 L1 2 L2 2 L1 L 1 L ( 2 1 ) 1 2 L1 L2
所以该腔是非稳定腔
g1 g 2 1 R2 >0 g1 g 2 <1 (1)当L< (2)当L= (3)当L>
2 R2 n0 时,0<g1 g 2 <1,该腔稳定 n0 1 2 R2 n0 时,g1 g 2 =0,该腔为临界腔 n0 1 2 R2 n0 时,g1 g 2 0,该腔不稳定 n0 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
2.32 试证明虚共焦非稳定腔关系式
成立
2.33 设激活介质的横向尺寸为 ,虚共焦非稳定腔镜面半径为 (凹面镜)和 (凸面镜),而单程放大率为 和 当
(1) ; (2) ;
(3) ; (4)
2.34考虑图2.8所示的非稳定谐振腔。反射镜 的反射率 =0.98, 的反射率 =0.95。
(1)试求出共轭像点 和 的位置,并在光学谐振腔图上把它们标出;(2)试画出光学谐振腔内的场变化,指出来自光束限制器的波阵面。(3)通过空腔的单程平均损耗为什么?(4)这个激光器所需要的增益是多少?
ห้องสมุดไป่ตู้解:
2.29设虚共焦非稳定腔的腔长L=0.25m,凸球面镜 的直径和曲率半径分别为2 =3cm和 =-1m,若保持镜 尺寸不变,并从镜 单端输出,试问:凹面镜 尺寸应选择多大?此时腔的往返放大率为多大?
解:
2.30 证明无论对共焦非稳定腔或共焦稳定腔,其往返放大率为
2.31 考虑如图2.7所示虚共焦非稳定腔或共焦稳定腔。(1)此腔是单端输出还是双端输出?(2)试求平均功率损耗和维持激光器振荡所需的功率增益。
2.25设光学谐振腔两镜面曲率半径 =-1m, =1.5m,试问:腔长L在什么范围内变化时该腔为稳定腔。
解:
2.26设对称稳定球面腔的腔长L=50cm,试求基模远场发散角θ。若保持镜面曲率半径R不变,而改变L,试问:L多大时基模远场发射角达到极小值,λ=0.6328um,R=113cm。
解:
2.28设对称双凸非稳定腔的腔长L=1m,腔镜曲率半径R=-5m,试求单程和往返功率损耗率。
解:
2.21腔长L=75cm的氦氖平凹腔激光器,波长λ=0.6328 m,腔镜曲率半径R=1m,试求凹面镜上光斑尺寸,并计算该腔基模远场发散角θ。
解:
2.22设稳定球面腔的腔长L=16cm,两镜面曲率半径为 =20cm, =-32cm,波长λ= cm,试求:(1)最小光斑尺寸 和最小光斑位置;(2)镜面上光斑尺寸 、 ;(3) 和 、 分别与共焦腔( = =L)相应值之比。
2.19某共焦腔氦氖激光器,波长λ=0.6328 m,若镜面上基模光斑尺寸为0.5mm,试求共焦腔的腔长,若腔长保持不变,而波长λ=3.39 m,问:此时镜面上光斑尺寸多大?
解:
2.20考虑一台氩离子激光器,其对称稳定球面腔的腔长L=1m,波长λ= 0.5145μm,腔镜曲率半径R=4m,试计算基模光斑尺寸和镜面上的光斑尺寸。
图2.8
解:
(1)轭像点 和 的位置分别为 ,由球面镜成像公式
解得:
2.35考虑一虚共焦非稳定腔,工作波长λ=1.06um,腔长L=0.3m,有效菲涅耳数 =0.5,往返损耗率δ=0.5,试求单端输出时,镜 和 半径和曲率半径。
解:
当 为输出时,由N的定义知N= 所以 =0.39875mm, = =0.39875mm当 为输出时,由N的定义知N= 所以 =0.39875mm
相关文档
最新文档