方程的根与函数的零点说课稿

合集下载

《方程的根与函数的零点》一等奖说课稿

《方程的根与函数的零点》一等奖说课稿

《方程的根与函数的零点》一等奖说课稿《《方程的根与函数的零点》一等奖说课稿》这是优秀的说课稿文章,希望可以对您的学习工作中带来帮助!1、《方程的根与函数的零点》一等奖说课稿各位评委老师,各位同事,下午好!我是来自,今天我说课的题目是《方程的根与函数的零点》第一课时,选自人教版《普通高中课程标准实验教科书》A版必修1第三章第一节。

下面我将从教材分析、教学目标分析、重难点分析、教法与学法分析、教学过程设计五个方面来进行阐述。

【教材分析】函数是中学数学的核心概念,核心的原因之一就在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础。

因此本节内容具有承前启后的作用,地位至关重要.【教学目标分析】根据本节课的教学内容以及新课标对本节课的教学要求,结合以上对教材以及学情的分析,我制定以下教学目标:知识与技能目标:理解方程的根与函数零点之间的关系,学会函数零点存在的判定方法,理解利用函数单调性判断函数零点的个数。

过程与方法目标:经历“类比——归纳——应用”的过程,培养学生分析问题探究问题的能力,感悟由具体到抽象的研究方法,培养学生的归纳概括能力。

能力与情感目标:培养学生自主探究,合作交流的能力,激发学生的学习兴趣并培养学生严谨的.科学态度。

【重难点分析】教学重点:判定函数零点的存在及其个数的方法。

教学难点:探究发现函数零点的存在性,及利用函数的图像和性质判别函数零点的个数。

【教法分析和学法指导】结合本节课的教学内容和学生的认知水平:在教法上,我借助多媒体和几何画板软件,采用“启发—探究—讨论”的教学模式。

充分发挥教师的主导作用,引导、启发、充分调动学生学习的主动性,让学生真正成为教学活动的主体。

方程的根与函数的零点说课课件

方程的根与函数的零点说课课件

学生可以积极参与数学建模和数学竞 赛等活动,运用所学知识解决实际问 题,提高数学应用能力和创新能力。
学生可以尝试探索方程的根与函数的 零点与其加 深对数学整体性的理解。
THANKS FOR WATCHING
感谢您的观看
本节课采用说课的方式进行,通过讲解、演示和讨论等多种方式,使学生能够深入 理解方程的根与函数的零点的关系,并能够运用所学知识解决实际问题。
在本节课的学习过程中,学生不仅能够掌握数学基础知识,还能够培养数学思维能 力和解决问题的能力,为后续的学习打下坚实的基础。
对未来学习的展望
在未来的学习中,学生可以进一步深 入学习方程的根与函数的零点的应用, 了解其在数学、物理、工程等领域的 应用。
详细描述
在工程问题中,系统的稳定性、最优解、控制系统的调节等现象可以通过建立数学模型 来描述。这些模型中的方程的根或函数的零点往往对应着工程中的系统稳定性、最优控 制等实际问题。例如,电路中的电压和电流可以通过求解电路方程的根来找到稳定状态。
05 总结与展望
本节课的总结
方程的根与函数的零点是数学中的重要概念,通过本节课的学习,学生能够理解并 掌握方程的根和函数的零点的定义、性质和求解方法。
03 方程的根与函数零点的求 解方法
一元二次方程的求解方法
01
02
03
公式法
根据一元二次方程的求根 公式,可以直接求解方程 的根。
因式分解法
通过因式分解将一元二次 方程转化为两个一次方程, 从而求解根。
配方法
通过配方将一元二次方程 转化为一个完全平方,从 而求解根。
函数零点的迭代求解方法
迭代公式
函数的零点的定义与性质
定义
函数的零点是指函数值为零的点的横 坐标。

方程的根与函数的零点讲稿

方程的根与函数的零点讲稿

方程的根与函数的零点讲课人:一、教学目标1.知识与技能目标:①理解函数零点的概念;②领会函数零点与相应方程的关系, 掌握零点的存在条件;③掌握函数在某个区间上存在零点的判定方法。

2.过程与方法目标让学生经历探究函数零点与方程根的联系和函数在某区间存在零点的判别方法, 使学生领悟方程与函数的区别与联系, 进一步体会数形结合方法。

3.情感态度价值观目标通过探究过程逐步形成用函数处理问题的意识。

二、教学重点与难点重点: 函数的零点与方程的根之间的联系, 函数零点在某区间存在性的判定方法;难点: 函数在某区间存在零点的判别方法。

三、教学模式: 探究式。

123函数图象图象与x 轴交点1) 函数零点的概念:2) 对于函数 , 把使 的实数x 叫做函数 的零点。

函数零点的意义:代数意义: 相应方程 的根;3) 几何意义: 函数图象与x 轴交点的横坐标根据函数零点的概念有:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x轴有交点⇔函数)(x f y =有零点。

i.① 根据函数零点的概念及意义, 让学生总结出函数零点的求法:ii. 代数意义→代数法; iii. 几何意义→几何法。

② 由之前的问题的探究总结出二次函数 零点, 在老师的引导下,完成下列表格:方程的根 函数图象与x 轴交点函数零点0>∆0=∆0<∆认真理解并体会一元二次方程和相应的二次函数的图象与x 轴的交点的横坐标的关系, 由此加强对函数零点概念的理解;根据以上的学习完成关于二次函数零点与相应方程的根的表格。

函数零点存在性的探究下图是某城市一天的某几段时刻的气温变化图, 其余时刻的记录丢失:① 跟同学讨论以下问题:② 让学生根据给出的部分图象, 将没有记录的时刻的气温大致变化情况并将图象补充完整。

③ 问: 是否有哪位同学在画图的过程中使得图象不经过x 轴?④ 问: 气温函数图象可能经过x 轴的区间有哪些? 1. 计算区间的两端对应时刻的气温值的乘积的结果又有什么特点?再观察二次函数 的图象, 我们发现在区间[-2,1]与在老师的引导下结合函数的图象, 思考、讨论、总结归纳得出函数的零点存在的条件, 并进行交流、评析。

方程的根与函数的零点说课稿

方程的根与函数的零点说课稿

必修一《3.1.1方程的根与函数的零点》说课稿一、教材分析《方程的根与函数的零点》是人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节的第一课时,主要内容是函数零点的概念、函数零点与相应方程根的关系,函数零点存在性定理,是一节概念课.本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础.因此本节内容具有承前启后的作用,地位至关重要.二、教学目标1、知识与技能(1)通过观察二次函数的图像,准确判断一元二次方程根的存在性及根的个数,描述函数的零点与方程的根的关系.(2)理解并会用函数在某个区间上存在零点的判定方法.2、情感、态度与价值观在函数与方程的联系中体验数形结合思想与转化思想的意义与价值,发展学生对变量数学的认识,体会函数知识的核心作用.3、重点、难点重点:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.难点:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点.三、学情分析高一学生已经学习了函数的概念,对初等函数的性质、图象已经有了一个比较系统的认识与理解.特别是对一元二次方程和二次函数在初中的学习中已是一个重点,对这块内容已经有了很深的理解,所以对本节内容刚开始的引入有了很好的铺垫作用,但针对高一学生,刚进人高中不久,学生的动手,动脑能力,以及观察,归纳能力都还没有很全面的基础上,在本节课的学习上还是会遇到较多的困难,所以我在本节课的教学过程中,从学生已有的经验出发,环环紧扣提出问题引起学生对结论追求的愿望,将学生置于主动参与的地位.四、教法与学法在教法上,本次课采用以导学案教学,体现以学生为主体的教学方法。

在教学手段上,我一是采取多媒体课件、几何画板相结合,它既便于学生直观,节约时间,又能利用情境营造课堂氛围,引发学生的兴趣。

高中数学必修1《方程的根与函数的零点》说课稿

高中数学必修1《方程的根与函数的零点》说课稿

方程的根与函数的零点一、教材地位和作用本节课是一般中学试验教科书人教A版必修1第三章第一单元第一节,是后继学习二分法的理论打算。

学生通过了解函数零点与方程根的联系,从而把求方程根的问题转化为求函数零点的问题。

作为函数应用的第一课时,就是要让学生相识到函数与其他数学学问的联系,让学生用函数的图象这个“形”来探讨方程的根这个“数”,深刻体会“以形助数”的思想方法二、学情分析(1)学问基础:学生已经娴熟驾驭一次、二次方程的求解方法,驾驭了一些基本初等函数图象的画法,并能从图象中获得肯定信息,这是学习本节课的学问基础。

(2)心理打算:公式法求解高次、超越方程的思维受挫是学生学习本节课的内在动机。

三、教学目标1、学问与技能:结合详细的二次函数图象,推断二次方程根的存在性,从而了解函数的零点与方程根的联系,形成函数零点的概念及零点存在的判定方法。

2、过程与方法:在应用函数探讨方程的过程中,体会函数与方程思想,数形结合思想以及化归思想;把从特殊函数零点存在的判定方法上升到一般函数,体现了从特殊到一般的探讨方法。

3、情感看法价值观:在求解方程根的“山穷水尽”,到探讨函数零点的“柳暗花明”,学生了解数学的发展史,感受探究的乐趣。

四、教学重点、难点与关键(1)重点:零点存在定理的发觉。

(2)难点:零点存在定理的发觉与精确理解。

(3)关键:引导学生运用函数的观点探讨方程的根。

五、教法与学法(一)教法设计:本节课借鉴发觉教学法,强调老师学生双主体,采纳“创设问题情境——师生共同探究——形成概念结论——应用巩固提高”的教学模式,使学生在获得学问的同时,能够驾驭方法、提升实力(二)学法指导:让学生在自主探究中,学会发觉问题并解决问题,逐步形成敢于发觉、敢于质疑的科学看法。

六、教学过程七、教学设计的几点说明3、设计理念本节课借鉴发觉教学法,强调老师学生双主体,采纳“创设问题情境——师生共同探究——形成概念结论——应用巩固提高”的教学模式,老师真正担当学习情境的创设者,学生探究中的引导者,学生学习中的合作者;而学生则成为新学问的探究者、发觉者、建构者,使学生在获得学问的同时,能够驾驭学习数学的思维方法、提升进一步学习新学问的实力。

方程的根与函数的零点

方程的根与函数的零点

《方程的根与函数的零点》说课稿一、教材分析1.地位与作用本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时主要内容是函数零点概念、函数零点与相对应方程根的关系,函数零点存有性定理,是一节概念课。

新教材新增了二分法,也因而设置了本节课,所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存有性定理是二分法的必备知识。

从研究方法来说,零点概念的形成和零点存有定理的发现,符合从特殊到一般的理解规律,有利于培养学生的概括归纳水平,也为数形结合思想提供了广阔的平台,2.教学重点基于上述分析,确定本节的教学重点是:了解函数零点的概念掌握函数零点存有性定理。

二、学情分析1.学生具备必要的知识与心理基础通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图的水平,这为本节课利用函数图象,判断方程根的存有性提供了一定的知识基础。

2.学生缺乏函数与方程联系的观点高一学生在函数的学习中,将函数孤立起来,理解不到函数在高中中的核心地们,例如:一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数图象,函数与方程相联系的观点的建立,函数应用意识的初步树立就成了本节课必须承载的任务3.零点定理的矛盾零点存有性定理的获得与应用,必须让学生从一定量的具体实例中操作感知,通过更多的举例来验证。

定理只为零点的存有提供充分非必要条件,所以定理的逆命题,否命题都不成立,在函数连续性,简单逻辑用语来学习的情况下,学生对定理的理解不够深入,这就要求教师引导学生体验各种成立与不成立情况,从正面、反面、侧面等不同的角度审视定理的条件与适用范围。

4.数学难点基于上述分析,确定本节教学难点:对零点存有的定理的准确理解。

三、目标分析依据新课标中心的内容与要求,以及学生实践情况。

指定数学目标如下:1 . 知识与技能目标①. 了解函数零点的概念:能够结合具体方程(如:二次方程)说明方程的根,函数的零点,函数图象与X轴的交点三者关系。

方程的根与函数的零点说课稿

方程的根与函数的零点说课稿

3.2 过程与方法目标: 1、经历“探索—归纳—应用”的过程,感悟由具体到抽象的研究方
法,培养归纳概括能力.
2、初步.3 情感、态度和价值观目标:
1、体会函数与方程的“形”与“数”、“动”与“静”、“整体” 与“局部”的内在联系.
1.2 教学重点
基于上述分析,确定本节的教学重点是:了解函数零点概念, 掌握函数零点存在性定理
学情分析
说课目录
2.1 学生已具备必要的理解基础.
通过基本初等函数的学习,学生对函数图像和性质已有了深刻的 了解,具备了必要的基础知识储备。 方程是初中数学的重要内容,用函数知识研究方程,扩充方程的 种类是学生乐于接受的,因而学生具备一定的心理与情感基础. 2.2 学生缺乏函数与方程联系的观点.
2、体验规律发现的快乐.
过程分析
说课目录
情境引入
趣味研究:爬行的蚂蚁
课堂探索
巧妙设计探究性问题,层层递进,完 成本节课的教学重点和难点。
课堂小结,作业
创设情境,感知概念
说课目录
一张纸上有一只蚂蚁想由A点到B点,下列哪幅图蚂蚁的爬行路 线可能和直线a有交点?想一想:A、B有怎样的关系时A、B间的 一条连续不断的曲线与x轴一定有交点?
设计意图:通过对定理中条件的改变,将几种容易产生的误解 正面给出,在第一时间纠正,从而促进对定理本身的准确 理解。
说课目录 练习: (1)已知函数f (x)的图象是连续不断的,有如下的x, f(x)对应值表:
x
1
2
f(x) 23 9
34 -7 11
567 -5 -12 -26
那么函数在区间[1,6]上的零点至少有
三、判定零点的存在性: 1、函数是连续的. 2、f(a)f(b)<0. 3、至少有一个零点.

新人教高中数学必修1 方程的根与函数的零点 说课稿

新人教高中数学必修1  方程的根与函数的零点  说课稿

方程的根与函数的零点各位老师,大家好!我是第xx组xx号考生,很高兴能够站在这里参加面试,我叫某某,毕业于某某大学某某专业,性格比较开朗,随和,能关心周围的人和事,和亲人朋友能够和睦相处,对生活充满信心,在某某公司从事某某一职,对教师这一职业非常崇敬。

我今天说课的题目是《方程的根与函数的零点》,下面,我将从教材分析、教学目标、教学重难点、教学方法、学习方法、教学过程和板书设计等方面进行说课。

一、教材分析本节内容是选自新人教A版高中数学必修1第3章第1节第1部分的内容。

函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

因此本节内容具有承前启后的作用,地位重要。

二、教学目标根据上述对教材的分析,我确定本节课的教学目标为:1、知识与技能目标:理解方程的根与函数零点之间的关系,学会函数零点存在的判定方法,理解利用函数单调性判断函数零点的个数的方法。

2、过程与方法目标:经历“类比——归纳——应用”的过程,培养学生分析问题探究问题的能力,感悟由具体到抽象的研究方法,培养学生的归纳概括能力。

3、情感、态度与价值观目标:培养学生自主探究,合作交流的能力,激发学生的学习兴趣并培养学生严谨的科学态度。

[设计意图]:教学目标的设计,要简洁明了,具有较强的可操作性,容易检测目标的达成度,同时也要体现出新课标下对素质教育的要求。

三、重点与难点根据本节课的知识要求和教学目标,本节课的教学重点是:零点的概念及存在性的判定;教学难点是:零点的确定。

[设计意图]:首先通过教学目标和难重点的展示,让学生明确本节课的任务及精髓,带着目标去学习,才能达到事半功倍的效果。

四、教学方法新课程标准倡导以学生为主体进行探究性学习,教师应成为学生学习的引导者、组织者和合作者,基于这一教学理念和本节课的教学目标,我采用如下的教学方法:(1)在教师指导下的引导发现教学法:通过这样的教法可以充分调动学生学习的主动性、积极性,使课堂气氛更加活跃,同时培养了学生自主学习,动手探究的能力。

《方程的根与函数的零点》 说课稿

《方程的根与函数的零点》 说课稿

《方程的根与函数的零点》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《方程的根与函数的零点》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析本节课选自人教版高中数学必修1 第三章《函数的应用》的第一节。

函数与方程是中学数学的重要内容,既是函数知识的应用,也是今后学习高等数学的基础。

方程的根与函数的零点的关系体现了函数与方程的相互转化,蕴含了数形结合的思想方法,为后续学习二分法求方程的近似解奠定了基础。

二、学情分析学生已经学习了函数的概念、性质以及基本初等函数,具备了一定的函数知识和运算能力。

但对于函数与方程的联系,学生的认识还比较模糊,需要通过本节课的学习,建立起函数与方程之间的桥梁,加深对函数概念的理解。

三、教学目标1、知识与技能目标理解函数零点的概念,掌握函数零点与方程根的关系。

会判断函数零点的存在性。

能结合函数图象,利用函数零点解决方程根的问题。

2、过程与方法目标通过对函数零点概念的探究,培养学生观察、分析、归纳的能力。

通过对函数零点存在性的探究,体会从特殊到一般、从具体到抽象的思维方法。

3、情感态度与价值观目标让学生在探究过程中体验成功的喜悦,激发学生学习数学的兴趣。

培养学生严谨的治学态度和勇于探索的精神。

四、教学重难点1、教学重点函数零点的概念。

函数零点与方程根的关系。

函数零点存在性定理。

2、教学难点对函数零点存在性定理的理解和应用。

五、教法与学法1、教法启发式教学法:通过设置问题,引导学生思考,启发学生的思维。

探究式教学法:让学生通过自主探究、合作交流,发现问题、解决问题。

2、学法自主学习法:学生通过自主阅读教材,理解基本概念。

合作学习法:学生通过小组合作,探究函数零点的存在性定理。

六、教学过程1、导入新课通过多媒体展示一元二次方程 x² 2x 3 = 0,让学生求解方程的根。

然后提出问题:方程的根与函数有什么关系?从而引出本节课的课题——方程的根与函数的零点。

方程的根与函数的零点(说课稿)

方程的根与函数的零点(说课稿)

6、布置作业,独立探究
作业:课本P88
1(4)、2(2)(3)
分层布置作业,帮助学生 进一步掌握知识,利用 探究拓展学生自主发展空间
课后探究:
1. 在同一坐标系下作下列函数图象,你发现了什么?
(1) y e x 3, (2) y e , (3) y x 3
x x
四、板书设计
三、过程分析
创设情境, 感知概念 综合训练, 学以致用 层层递进, 得出结论 小结反思, 培养能力 利用图像, 探究定理 布置作业, 独立探究
1.创设情境,提出问题
设计意图:用情境激发学生的探究兴趣。
2、层层递进,得出结论
问题1:求下列方程的根 (1)3x 6 0 (2) x 5 x 6 0
二、目标重难点分析
3.重点、难点分析
本节课的重点是了解函数零点的概念、掌握函数零点存在
性定理。难点是对零点存在性定理的准确的理解。 这样确定重难点,既能落实“双基”,又凸现了掌 握知识的三个层次:识记、理解和运用.而零点存在性 定理的获得与应用,必须从一定量的具体案例中操作感 知,所以既是重点又是难点。
3.情感、态度与价值观
体会函数与方程的形与数、动与静、整体与局部 的内在联系
目标分析: 这样的教学目标体现了基础知识的 落实、基本技能的形成,也正符合课程标准的要求; 其次因为数学教学的最终目的是通过思想方法的渗 透以及思维品质的锻炼,从而让学生在能力上得到 发展,所以这一教学目标的设定是合理的。
通过学生归纳引出概念:对于y=f(x)我们把 f(x)=0的实数叫做函数的零点(零点不是点 是实数)
3、利用图像,探究定理
数学实例探究:
通过归纳得出 零点定理!
2 观察二次函数 f ( x) x 2x 3 的图象:

关于方程的根与函数的零点说课稿

关于方程的根与函数的零点说课稿

关于方程的根与函数的零点说课稿关于方程的根与函数的零点说课稿作为一无名无私奉献的教育工作者,编写说课稿是必不可少的,说课稿有助于顺利而有效地开展教学活动。

说课稿应该怎么写才好呢?下面是小编精心整理的方程的根与函数的零点说课稿,仅供参考,大家一起来看看吧。

一、教材分析本节课选自人教版高中数学必修一第三章第一节。

是在学生学习了基本初等函数的图象和性质的基础上,引入函数零点的概念,研究函数零点与相应方程根的关系,函数零点存在的条件,及零点个数的判断方法。

为后面学习“用二分法求方程的近似解”奠定基础。

二、学情分析高中学生有丰富的想象力,乐于探索,不满足于知识的灌输,自主学习和探索新知的习惯已初步形成,有初步的数形结合的意识,但本节课对思想方法的要求较高,而学生数学探究的能力不足,因此需要教师在方法上加强指导。

三、教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能体会方程的根与函数零点之间的关系,学会函数零点存在的判定方法,会利用函数单调性判断函数零点的个数。

(二)过程与方法通过观察、思考、分析、猜想、验证的过程,体验从特殊到一般及函数与方程的思想方法,提升抽象和概括能力。

(三)情感态度与价值观通过学习,学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,逐步养成勇于提问,善于探索的思维品质。

四、教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。

根据授课内容可以确定本节课的教学重点是:对函数零点概念的理解;函数零点存在性的判定。

教学难点是:探究并发现零点存在性定理及其应用。

五、教学方法新课程标准指出,教无定法,贵在得法,教师是学生学习活动的组织者、引导者和合作者,是师生关系中平等的首席,根据这一教学理念,我主要采用启发诱导式的教学方式,鼓励学生交流,并让学生运用已学知识大胆创新。

在学法的指导上,我始终将学生放在主体地位上,使学习的主要内容不是由教师灌输给学生,而是以问题的形式呈现出来,由学生自己去思考讨论,然后内化为自己的一部分。

方程的根与函数的零点说课稿

方程的根与函数的零点说课稿

方程的根与函数的零点说课稿我说课的内容是《方程的根和函数的零点》,下面我将从教材、学情、教学目标、教学方法与手段、教学过程、板书设计和教学反思等几个方面来阐述我对这节课的分析和设计。

一、教学内容分析本节课选自《普通高中课程标准实验教课书数学I必修本(A版)》的第三章第一课时3.1.1方程的根与函数的的零点。

函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。

在现实生活中,函数与方程都有着十分重要的应用,再加上函数与方程思想还是中学数学重要数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。

就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。

总之,本节课有重要的数学思想“特殊到一般的归纳思想” “方程与函数”和“数形结合”的思想,教好本节课可以为学生学习中学数学打下一个良好的基础。

二学生学习情况分析作为一个农村中学,中低等程度的学生占大多数,程度较高学生占少数。

学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。

再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,这也为我们归纳函数的零点与方程的根联系提供了知识基础。

三设计思想教学理念:培养学生学习数学的兴趣,学会严密思考,并从中找到乐趣教学原则:注重各个层面的学生教学方法:启发诱导式四、教学目标以二次函数的图象与对应的一元二次方程的关系为突破口,探究方程的根与函数的零点的关系,发现并掌握在某区间上图象连续的函数存在零点的判定方法;学会在某区间上图象连续的函数存在零点的判定方法。

方程的根与函数的零点教案(精选6篇)

方程的根与函数的零点教案(精选6篇)

方程的根与函数的零点教案方程的根与函数的零点教案(精选6篇)作为一名为他人授业解惑的教育工作者,就不得不需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

教案应该怎么写呢?下面是小编整理的方程的根与函数的零点教案,仅供参考,欢迎大家阅读。

方程的根与函数的零点教案篇1学习目标1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2. 掌握零点存在的判定定理.学习过程一、课前准备(预习教材P86~ P88,找出疑惑之处)复习1:一元二次方程 +bx+c=0 (a 0)的解法.判别式 = .当 0,方程有两根,为 ;当 0,方程有一根,为 ;当 0,方程无实根.复习2:方程 +bx+c=0 (a 0)的根与二次函数y=ax +bx+c (a 0)的图象之间有什么关系?判别式一元二次方程二次函数图象二、新课导学学习探究探究任务一:函数零点与方程的根的关系问题:① 方程的解为,函数的图象与x轴有个交点,坐标为 .② 方程的解为,函数的图象与x轴有个交点,坐标为 .③ 方程的解为,函数的图象与x轴有个交点,坐标为 .根据以上结论,可以得到:一元二次方程的根就是相应二次函数的图象与x轴交点的 .你能将结论进一步推广到吗?新知:对于函数,我们把使的实数x叫做函数的零点(zero point).反思:函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系?试试:(1)函数的零点为 ;(2)函数的零点为 .小结:方程有实数根函数的图象与x轴有交点函数有零点.探究任务二:零点存在性定理问题:① 作出的图象,求的值,观察和的符号② 观察下面函数的图象,在区间上零点; 0;在区间上零点; 0;在区间上零点; 0.新知:如果函数在区间上的图象是连续不断的一条曲线,并且有0,那么,函数在区间内有零点,即存在,使得,这个c也就是方程的根.讨论:零点个数一定是一个吗? 逆定理成立吗?试结合图形来分析.典型例题例1求函数的零点的个数.变式:求函数的零点所在区间.小结:函数零点的求法.① 代数法:求方程的实数根;② 几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.动手试试练1. 求下列函数的零点:练2. 求函数的零点所在的大致区间.三、总结提升学习小结①零点概念;②零点、与x轴交点、方程的根的关系;③零点存在性定理知识拓展图象连续的函数的零点的性质:(1)函数的图象是连续的,当它通过零点时(非偶次零点),函数值变号.推论:函数在区间上的图象是连续的,且,那么函数在区间上至少有一个零点.(2)相邻两个零点之间的函数值保持同号.学习评价自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差当堂检测(时量:5分钟满分:10分)计分:1. 函数的零点个数为().A. 1B. 2C. 3D. 42.若函数在上连续,且有 .则函数在上().A. 一定没有零点B. 至少有一个零点C. 只有一个零点D. 零点情况不确定3. 函数的零点所在区间为().A. B. C. D.4. 函数的零点为 .5. 若函数为定义域是R的奇函数,且在上有一个零点.则的零点个数为 .课后作业1. 求函数的零点所在的大致区间,并画出它的大致图象.2. 已知函数 .(1)为何值时,函数的图象与轴有两个零点;(2)若函数至少有一个零点在原点右侧,求值.方程的根与函数的零点教案篇2教学目标:1、能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。

方程的根与函数的零点说课稿

方程的根与函数的零点说课稿

3.1.1 方程的根与函数的零点我今天说课的课题是方程的根与函数的零点,下面我从教材的分析、教法和学法、教学过程三个方面进行说课,首先我们来进行教材分析。

一、教材分析1、教材地位和作用方程的根与函数的零点是高中数学人教版必修1第三章第一节的内容,函数作为高中的重点知识有着广泛应用,与其他数学内容有着有机联系,本节课是在学生学习了基本初等函数及其相关性质,利用函数图象和性质来判断方程的根和函数的零点的判定方法,为后续学习奠定基础。

2、教学目标根据新课标标准要求及结合学生已有的认知结构,我确定本节课的教学目标为:(1)知识目标理解并掌握方程的根与相应函数零点的关系,理解零点存在条件,并能确定具体函数存在零点的区间.(2)能力目标:培养学生自主发现、探究实践的能力,体验从特殊到一般的学习方法;(3)情感目标:在函数与方程的联系中体验数形结合思想与转化思想的意义与价值,3、教学重点与难点本节课的教学重点是:函数的零点与方程的根之间的联系,零点存在的判定条件及应用.难点:探究发现函数零点的存在性.二、教学与学法本节课我采用情境教学法和自主探究法,并充分利用多媒体辅助教学.通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、自主探究来达到对知识的发现和学习。

学生已经学习了几种基本初等函数的图像和性质,具有一定的分析和识图能力,所以我在学法上采用主动学习法。

教师带领学生创设疑问,通过合作交流、共同探索来寻求解决问题的方法.三、教学过程整个教学的流程分为创设情境,引入新课;发现问题,探求新知;深化研究,揭示定理;示例练习,加深理解;巩固新知,反馈调控;归纳小结,布置作业6大块:1、创设情境,引入新课:用多媒体动画演示:一枚炮弹从地面发射后,炮弹的高度随时间变化的函数关系式为h=20t-5t2,问炮弹经过多少秒回到地面?教师引导学生炮弹回到地面即高度h=0,学生列出方程20t-5t2=0的根,得t=4秒。

2023年《方程的根与函数的零点》说课稿范文(精选3篇)

2023年《方程的根与函数的零点》说课稿范文(精选3篇)

2023年《方程的根与函数的零点》说课稿范文(精选3篇)《方程的根与函数的零点》说课稿1一、本课数学内容的本质、地位、作用分析普通高中课标教材必修1共安排了三章内容,第一章是《集合与函数的概念》,第二章是《基本初等函数(Ⅰ)》,第三章是《函数的应用》。

第三章编排了两块内容,第一部分是函数与方程,第二部分是函数模型及其应用。

本节课方程的根与函数的零点,正是在这种建立和运用函数模型的大背景下展开的。

本节课的主要教学内容是函数零点的定义和函数零点存在的判定依据,这两者显然是为下节“用二分法求方程近似解”这一“函数的应用”服务的,同时也为后续学习的算法埋下伏笔。

由此可见,它起着承上启下的作用,与整章、整册综合成一个整体,学好本节意义重大。

函数在数学中占据着不可替代的核心地位,根本原因之一在于函数与其他知识具有广泛的联系,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机地联系在一起。

方程本身就是函数的一部分,用函数的观点来研究方程,就是将局部放入整体中研究,进而对整体和局部都有一个更深层次的理解,并学会用联系的观点解决问题,为后面函数与不等式和数列等其他知识的'联系奠定基础。

二、教学目标分析本节内容包含三大知识点:一、函数零点的定义;二、方程的根与函数零点的等价关系;三、零点存在性定理。

结合本节课引入三大知识点的方法,设定本节课的知识与技能目标如下:1.结合方程根的几何意义,理解函数零点的定义;2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.本节课是学生在学习了函数的性质,具备了初步的数形结合知识的基础上,通过对特殊函数图象的分析进行展开的,是培养学生“化归与转化思想”,“数形结合思想”,“函数与方程思想”的优质载体。

结合本节课教学主线的设计,设定本节课的过程与方法目标如下:1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力。

最新方程的根与函数零点的说课稿范文

最新方程的根与函数零点的说课稿范文

方程的根与函数零点的说课稿最新方程的根与函数零点的说课稿范文作为一位无私奉献的人民教师,总不可避免地需要编写说课稿,通过说课稿可以很好地改正讲课缺点。

我们应该怎么写说课稿呢?以下是小编为大家整理的最新方程的根与函数零点的说课稿范文,欢迎大家分享。

一、说教材:1、教材分析:本节课对“方程的根与函数零点”的认识,是从初中一次、二次函数与其相应的方程关系的具体学习,过渡到了高中一般方程与其相应函数关系的抽象研究,其学习的平台是学生已经掌握了函数的概念、函数的性质以及基本初等函数等相关知识。

对本节课的研究,不仅为“用二分法求方程的近似解”这一“函数的应用”做好准备,而且揭示了方程与函数之间的本质联系,这种联系正是中学数学重要的思想方法之一——“函数与方程思想”的理论基础,起到了承前起后的作用。

2、教学目标:⑴知识与技能目标:①了解函数零点的概念:能够结合具体方程(如二次方程),说明方程的根、函数的零点、函数图象与x轴的交点三者的关系;②理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;了解函数零点可能不止一个;③能利用函数图象和性质判断某些函数的零点个数。

⑵过程与方法目标:①经历“类比—归纳—应用”的过程,感悟由具体到抽象的研究方法,培养归纳概括能力。

②初步体会函数方程思想,能将方程求解问题转化为函数零点问题。

⑶情感、态度和价值观目标:体会函数与方程的“形”与“数”、“动”与“静”、“整体”与“局部”的内在联系。

3、教学重点与教学难点:⑴教学重点:了解函数零点概念,掌握函数零点存在性定理。

⑵教学难点:对零点存在性定理的准确理解。

二、说教法:新课标倡导积极主动、勇于探索的学习方式,本节课在概念的形成和深化、定理的概括和应用方面,都给予自主探究、辨析实践、动手画图及交流讨论的机会。

教师主要起引导作用,充分信任学生、依靠学生。

只有充分激活了学生的思维,这节课的各环节才能顺利推进,内容才会丰富充实,方法才会异彩纷呈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《方程的根与函数的零点》说课稿
1 教材分析
1.1 地位与作用
本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课.
新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识.之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础.
从研究方法而言,零点概念的形成和零点存在性定理的发现,符合从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台.
1.2 教学重点
基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理.
2 学情分析
2.1 学生具备必要的知识与心理基础.
通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础.方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础.
2.2学生缺乏函数与方程联系的观点.
高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位.
例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成了本节课必须承载的任务.
2.3直观体验与准确理解定理的矛盾.
从方程根的角度理解函数零点,学生并不会觉得困难.而用函数来确定方程根的个数和大致范围,则需要适应.换言之,零点存在性定理的获得与应用,必须让学生从一定量的具体案例中操作感知,通过更多的举例来验证.
问题2:一元二次方程的根与相应的二次函数的图象之间有怎样的关系?
学生讨论,得出结论:一元二次方程的根就是函数图象与x轴交点的横坐标.
理条件时依然可能有零点.
意图:通过对定理中条件的改变,将几种容易产生的误解正面给出,在第一时间加以纠正,从而促进对定理本身的准确理解.
9、练习:
(1)已知函数f(x)的图象是连续不断的,有如下的x,f(x)对应值表:
x 1 2 3 4 5 6 7
f(x) 23 9 -7 11 -5 -12 -26
那么函数在区间[1,6]上的零点至少有(C )
A.5个B.4个C.3个D.2个
(2)方程–x3– 3x+ 5=0的零点所在的大致区间为()
A.(– 2,0)B.(0,1)C.(0,1)D.(1,2)
意图:一方面促进对定理的活用,另一方面为突破后面的例题铺设台阶.
(五)综合应用,拓展思维.
10、例题讲解
例2:求函数f(x)=ln x+2x-6的零点的个数,并确定零点所在的区间[n,n+1](n∈Z).
解法1(借助计算工具):用计算器或计算机作出x、f(x)的对应值表和图象.
x 1 2 3 4 5 6 7 8 9
f(x) -4.0 -1.3 1.1 3.4 5.67.89.912.114.2
由表或图象可知,f(2)<0,f(3)>0,则f(2)f(3)<0,这说明函数f(x)在区间(2,3)内有零点.问题6:如何说明零点的唯一性?
又由于函数f(x)在(0,+∞)内单调递增,所以它仅有一个零点.
解法2(估算):估计f(x)在各整数处的函数值的正负,可得如下表格:
x 1 2 3 4
f(x) --++
结合函数的单调性,f(x)在区间(2,3)内有唯一的零点.。

相关文档
最新文档