2019年全国自考高等数学复习资料
全国2019年4月高等教育(工本)自学考试试卷、详细答案及考点分析
x
2
,则幂级数变为
n1
1 2n
tn
,其系数为
an
1 2n
an1
1 2n1
故
1
lim an1 a n
n
lim
n
2n1 1
1 2
2n
所 以
R
1
2
,此时幂级数
n1
1 2n
tn
半径为
2,收敛域为
2,2 , 从 而 原 幂 级 数
n1
1 2n
x
2n
半径为
2,收敛域
0,4 .当
x
0
,幂级数变为交错级数
第一部分 选择题
一、单项选择题:本大题共 5 小题,每小题 3 分,共 15 分。在每小题列出的四个备选项中 只有一项是最符合题目要求的,请将其选出。
1. 在空间间直角坐标系中,点 2,1,6 关于原点的对称点的坐标是
A. 2,1,6
B. 2,1,6
C. 2,1,6
D. 2,1,6
解:使用空间间直角坐标系中对称点的关系。若点 Px, y, z 关于原点对称,则 x,y,z 变
d
d
2 sin
f
r2
rdr ,
0
0
D
所以选 D. 考核知识点:二重积分的计算(综合应用); 考核要求:熟练掌握计算二重积分的极坐标变换法.
4. 以 y cos 4x 为特解的微分方程是
A. y 16 y 0
B. y 16 y 0
C. y 16 y 0
D. y 16 y 0
解:使用代入法。由于 y cos 4x 是微分方程的特解,因此代入微分方程中必使等号成立。
为其相反数,则对称点为 P1 x, y,z ,所以点 2,1,6 关于原点的对称点的坐标是 2,1,6 ,选 B.
2019年10月自考《高等数学(一)》真题及答案00020
全国2019年10月高等教育自学考试高等数学(一)试题一、单项选择题(本大题共10小题,每小题3分,共 30分)1. 下列函数为奇函数的是( )。
A. 2x sin x B. 2x cos xC. xsinxD. xcosx【正确答案】 D【答案解析】 已知奇函数满足()()f x f x =--,因为D 选项中令()cos f x x x =,有()cos f x x x -=-,满足奇函数条件,故选择D 。
参见教材P31。
【知 识 点】 函数的奇偶性。
2. 当0,0x y >>时,下列等式成立的是( )。
A.()ln ln ln xy x y = B. ()ln ln ln x y x y +=+C. ()ln ln ln xy x y =+D. ln ln ln x x y y= 【正确答案】 C【答案解析】 因为对数函数有log ()log log a a a xy x y =+的性质,故选C 。
参见教材P38。
【知 识 点】 对数函数。
3. 3342lim 2n n n n→∞+=+( )。
A. 1B. 2C. 3D. 4【正确答案】 B【答案解析】 3223421224lim lim lim 226112n n n n n n n n n n→∞→∞→∞+===++。
参见教材P96。
【知 识 点】 洛必达法则。
4. 10()020x e x f x x a x a x ⎧-≠⎪===⎨⎪=⎩,已知函数在点处连续,则 , ( )。
A. 0 B. 12C. 1D. 2【正确答案】 B【答案解析】 因为函数在0x =处连续,则有0lim ()x f x a →=,带入可得00011lim ()lim lim 222x x x x e x f x x x →→→-===,解得12a =,故选B 。
参见教材P63。
【知 识 点】 函数的连续性。
5. ()221,1y x x =-曲线在点处的切线方程为( )。
全国高等数学工专自考试题及答案解析.doc
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯精品自学考试资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯全国 2019 年 7 月高等教育自学考试高等数学(工专)试题课程代码: 00022一、单项选择题(本大题共30 小题, 1— 20 每小题 1 分, 21— 30 每小题 2 分,共 40 分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
(一)(每小题 1 分,共 20 分)1.函数y x 2 4x 3 的定义域是()A. , 3B. ,C. ,1 , 3,D.( 1, 3)2.函数 y=xsinx+cos2x+1 是()A. 奇函数B. 偶函数C.周期函数D.非奇非偶函数3.数列有界是数列收敛的()A. 充分条件B. 必要条件C.充分必要条件D.无关条件4. lim(1 n) 3()n 3 5n 2 1nA.01C.16B. D.5 55.曲线 y=sinx 在点, 3 处的法线斜率是()3 23 1 2D. -2 A. B. C.32 26.设 y=arcsinx+arccosx, 则 y′ =()A.02C.2 2B.x 2 x 2D.1 1 1 x 27.函数 f(x)=x 2+1 在0,1 上使拉格朗日中值定理结论成立的 c 是()A.11 1D.-1B. C.2 218.曲线 ye x2()A. 仅有垂直渐近线B. 仅有水平渐近线C.既有垂直渐近线又有水平渐近线D.无渐近线9.一条处处具有切线的连续曲线 y=f (x) 的上凹与下凹部分的分界点称为曲线的()A. 驻点B. 极大值点C.拐点D.极小值点10. ( 1+2x ) 3的原函数是( )A. 1(1 2x )4 B. (1 2x )48C. 1 (1 2x )4D. 6(1 2x )2411. 1()x 2 dx4A. arcsinxB. xCarcsin22C. ln xx 24D. ln xx 2 4 C12. 广义积分xe x 2 dx()1A.1B.12e2eC.eD.+∞13.2cos 3 xdx ()2A.2B.2C.44333D.314. 设物体以速度 v=t 2作直线运动, v 的单位为米 / 秒,物体从静止开始经过时间 T ( T>0 )秒后所走的路程为( )A.Tt 2米B. Tt 2 米C. T 3米D. T 3米23215. 直线x1y 2 z3位于平面()21A.x=1 内B.y=2 内C.z=3 内D.x-1=z-3 内16. 设函数 f (x,y)=(x 2-y 2)+arctg(xy 2),则 f x (1,0)()A.2B.1C.0D.-117. 函数 z 2x 2 y 2 在点( 0, 0)()2A. 取得最小值 2B. 取得最大值 2C.不取得极值D. 无法判断是否取极值18.区域(σ)为:x 2+y 2 -2x ≤ 0,二重积分x 2y 2 d 在极坐标下可化为累次积分 ()( )A.21 2d d B.22 cos2d d0 0C.22 cos2d dD.2cos2d d0 0219.级数1()n(nn11)A. 收敛B. 发散C.绝对收敛D. 无法判断敛散性20.微分方程 y2y 5y0 的通解为()A.y=C 1e x +C 2e -2xB.y=e -2x (C 1 cosx+C 2sinx)C.y=e x (C 1cos2x+C 2sin2x)D.y=e 2x (C 1cosx+C 2sinx)(二)(每小题 2 分,共 20 分)21.设 f (x )x 1)x,则 x=2 为 f (x) 的(2A. 可去间断点B. 连续点C.跳跃间断点D. 无穷间断点22.函数 y1 x 5 1x 3 单调减少的区间是()53A.[-1 , 1]B. ( -1, 0)C.( 0,1)D. ( 1, +∞)23.cos 3x sin xdx =( )A.1 c os 4 x C B.1 cos 4 x4 1 4 1C.cos 4 x CD.cos 4 x 4dy4()24.设 y 5+2y-x=0 ,则dxA. 5y 42B.125y 4C.1D.15y425y41325.设 f (x )x 1, x1,则 lim f (x ) ()2 x 2, x 1x 1A. 不存在B.-1C.0f (x 0 h)f (x 0 )(26.如果函数 f (x) 在点 x 0 可导,则 lim hhA. f (x 0 )B.f(x 0 )C.不存在27.曲线2x 2 3y 2 z 2 16x22y 2z2在 xoy 坐标平面上的投影方程为(12x 2 z 2 0x 2 z 2 A.B.0 xyx 2 y 2 4x 2 y 2 C.D.zxD.1 )D. f ( x 0 ))4428.用待定系数法求方程 y 3y 2y e 5x 的特解时,应设特解()A. y ae 5xB. y axe 5 xC. yax 2 e 5xD. y (ax b)e 5 x29.函数 f (x)1的麦克劳林级数为()1 2xA.2n x n , x 2B.( 2) n x n , x1n 0n2 C.2n x n , x 1D.2 n x n , x1 n 1n2dyy 2)30.微分方程y 4 是(dx xA. 一阶线性齐次方程B. 一阶线性非齐次方程C.二阶微分方程D.四阶非齐次微分方程二、计算题(本大题共7 小题,每小题 6 分,共 42 分)1 x3 x31.求 limx2 1 .x 1432.求xdx .1 x 4x a cost d 2 y33. 设y,求dy与dx2.b sin t dx34. 求 lim ln sin x 2 .x ( 2x )235. dysin x 的通解和满足初始条件y|x=0=1 的特解 .求微分方程dx36. 求x2 d ,其中区域(σ)由xy=1,y=x,x=2 所围成 .( )y37.将函数f (x ) 1x展开成 (x-3) 的幂级数 .三、应用和证明题(本大题共 3 小题,每小题 6 分,共 18 分)38. 设函数 f (x)=alnx+bx 2+x 在 x1=1 和 x2=2 都取得极值,试求出a, b 的值 ,并问此时 f (x) 在x1与 x2处取得极大值还是极小值?39. 一曲边梯形由 y=x 2-1, x 轴和直线 x=-1 ,x 1所围成 ,求此曲边梯形的面积 A. 240. 设 f (x , y)=x 4+y 4+4x 2y2验证: (1)f (tx , ty)=t 4f(x , y);(2) xf x yf y4f (x , y).5。
全国2019年4月高等教育(工专)自学考试试题、详细答案及考点分析
5.
矩阵 A
5 6
6 7
的逆矩阵是
A.
7 6
6
5
B.
7
6
6 5
C.
7 6
6 5
D.
7 6
6 5
解:矩阵
A
5 6
6 7
,其
A
5 6
6 35 36 1 0 ,因此 7
2 答案整理:郭慧敏 广州大学松田学院
加。故函数 f x ex x 1的单调减少区间是 ,0 .
考核知识点:函数单调性的判断(简单应用);
考核要求:会确定函数的单调区间和判别函数在给定区间上的单调性.
312
11. 行列式 3 5 1
.
332
解:使用行列式的性质计算,可得
lim
x1
f
x
lim
x1
1 x2 1
故选 C.
考核知识点:无穷小量及其性质和无穷大量(简单应用);
考核要求:会判断比较简单的变量是否为无穷小量或无穷大量.
1 答案整理:郭慧敏 广州大学松田学院
2019 年 4 月 高等数学(工专)
3. 对于级数
n 1 n ,其前 n 项和 sn
橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。
一、单项选择题:本大题共 5 小题,每小题 3 分,共 15 分。在每小题列出的四个备选项中
只有一个是最符合题目要求的,请将其选出。
1.
设
f
x
ln1
cos x,
x,
x0 x0
,则
10月全国高等数学(二)自考试题及答案解析
1全国2019年10月高等教育自学考试高等数学(二)试题课程代码:00021第一部分 选择题(共40分)一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.若必有A T =A ,矩阵A 为( )A.正交矩阵B.对称矩阵C.可逆矩阵D.三角形2.若A ,B 均为n 阶方阵,且AB=0,则( )A.A=0或B=0B.A+B=0C.|A|=0或|B|=0D.|A|+|B|=03.设A 为m ⨯n 矩阵,秩为r ,C 为n 阶可逆矩阵,矩阵B=AC ,秩(B)=r 1,则() A.r 1>r 2 B.r<r 1C.r=r 1D.r 1与C 有关4.)1,1,1(),0,1,1(),3,1,2(),3,2,1(4321=α-=α=α=α,则( )A.1α线性相关B.21,αα线性相关C.线性相关321,,αααD.线性相关421,,ααα5.n 个未知量的齐次线性方程组的方程个数m>n ,则对该方程组正确的( )A.有唯一解B.有无穷多解C.无解D.有解6.若矩阵A 与B 是合同的,则它们也是( )A.相似B.相等C.等价D.满秩7.实二次型f(x 1,…,x n )=x T Ax 为正定的充要条件是( )A.f 的秩为nB.f 的正惯性指数为nC.f 的正惯性指数等于f 的秩D.f 的负惯性指数为n8.实二次型f(x 1,x 2,x 3)的秩为3,符号差为-1,则f 的标准形可能为( )A.332221y y y -+-B.332221y y 2y +-2 C.332221y y 2y -+ D.21y -9.当根据样本观察值画出的频率直方图为一矩形(即各“条形”高相同)时,则( )A.这组数据的极差为零B.这组数据的平均偏差为零C.这组数据的方差为零D.这组数据的极差、方差都不一定为零10.将一枚均匀硬币反复抛掷10次,已知前三次抛掷中恰出现了一次正面,则第二次出现正面的概率为( ) A.31 B.21 C.41D.103 11.设随机变量ηζ和的密度函数分别为⎩⎨⎧≤≤=ζ其它,01x 0,x 3)x (p 2 ⎩⎨⎧≤>=-η0y ,00y ,e 3)y (p y 3,若ηζ和不相关,E(ζη)=( ) A. 41 B.21 C.43 D.1 12.设离散型随机变量ζ的分布列为( )A.32B.31C.0D.32- 13.设随机变量ζ的密度函数p(x)=⎩⎨⎧π∈其他,0],0[x ,ASinx ,则常数A=( ) A.41 B.21 C.1D.214.设随机变量ζ的概率密度为p(x)=⎪⎩⎪⎨⎧<<-其他,a x a ,a 21,其中a>0,要使P{ζ>1}=31,则a=( )3A.1B.2C.3D.415.设ζ的分布函数为F(x)=A++∞<<∞-πx x arctan 1,则常数A=( ) A.21B.1C.2D.π 16.设总体X~N(2,σμ),X 1,X 2是总容量为2的样本,2,σμ为未知参数,下列样本函数不是统计量的是( )A.X 1+X 2B.22221X X 4X ++C.2221X X +D.μ+1X17.设θˆ是未知参数θ的一个估计量,若E(θˆ)=θ,则θˆ是θ的( ) A.极大似然估计B.矩估计C.无偏估计D.有偏估计18.设总体X 为参数为λ的动态分布,今测得X 的样本观测值为0.1,0.2,0.3,0.4,则参数λ的矩估计值λˆ为( ) A.0.2B.0.25C.1D.419.作假设检验时,在以下哪种情形下,采用Z -检验法( )A.对单个正态总体,已知总体方差,检验假设00:H μ=μB.对单个正态总体,未知总体方差,检验假设00:H μ=μC.对单个正态总体,已知总体均值,检验假设2020:H σ=σD.对两个正态总体,检验假设22210:H σ=σ20.一元线性回归分析中F=)2n /(Q U -的值较小,则说明x 与y 之间( ) A.有显著的线性相关关系B.没有显著的线性相关关系4C.不相关D.线性相关关系不可判定第二部分 非选择题(共60分)二、简答题(本大题共4小题,每小题4分,共16分)21.设33A ⨯的行列式|A|=2,试问能确定出|A -1|AA *的具体结果吗?为什么?若能得出结果,结果是什么?22.)4,2,0,3(=β能否由)1,1,1,0(),3,1,7,2(),2,0,4,1(321--=α=α=α线性表示?为什么?23.全年级120名学生中有男生(以A 表示)100人,来自北京的(以B 表示)40人,这40人中有男生30人,试写出P(A)、P(B)、P(B|A ),和P(B |A )24.设随机变量N ~ζ(5,5),η在[0,π]上均匀分布,相关系数21=ρζη,求(1))2(E η-ζ;(2))2(D η-ζ三、计算题(本大题共4小题,每小题5分,共20分)25.A=⎪⎪⎪⎭⎫ ⎝⎛----111222111能否相似于对角阵?为什么?26.加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是2%,3%,5%,3%,假定各道工序是互不影响的,求加工出来的零件的次品率。
19自考高数试题及答案
19自考高数试题及答案一、选择题(每题4分,共20分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B2. 计算极限lim(x→0) [sin(x)/x] 的值是多少?A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是微分方程 y'' - 2y' + y = 0 的通解?A. y = e^xB. y = e^(-x)C. y = cos(x)D. y = sin(x)答案:C4. 计算定积分∫(0 to π) sin(x)dx 的值。
A. 0B. πC. 2D. -2答案:A5. 以下哪个选项是二阶偏导数∂²z/∂x∂y 的正确表示?A. ∂²z/∂y∂xB. ∂²z/∂x²C. ∂²z/∂y²D. ∂²z/∂x∂y = ∂²z/∂y∂x答案:D二、填空题(每题4分,共20分)1. 设函数 f(x) = x^3 - 6x^2 + 11x - 6,求 f'(x) = _______。
答案:3x^2 - 12x + 112. 计算行列式 | 1 2 3 | 的值。
| 4 5 6 | = _______。
| 7 8 9 |答案:03. 已知函数 y = ln(x),求 y' = _______。
答案:1/x4. 计算二重积分∬D (x^2 + y^2) dA,其中 D 是由x^2 + y^2 ≤ 1 所定义的圆盘区域。
答案:π5. 已知函数 z = x^2y + y^2x,求∂z/∂x = _______。
答案:2xy + y^2三、解答题(每题10分,共60分)1. 求函数 f(x) = x^3 - 3x^2 + 4 在 x = 1 处的一阶导数和二阶导数。
答案:一阶导数 f'(1) = 1 - 6 + 4 = -1;二阶导数 f''(1) = 3 -6 = -3。
2019年全国自考高等数学复习资料
2019年全国自考高等数学复习资料第一章函数1.一元二次方程未知量x满足的形如的方程为一元二次方程,称为此方程的判别式。
由可知:当Δ>0时,方程有两个不同的实根;当Δ=0时,方程有一个二重实根;当Δ<0时,方程有一对共轭虚根根与系数之间的关系(韦达定理):若记一元二次方程的两个根分别为,则有。
一元二次函数的图形——xOy平面上的一条抛物线——依据,当a>0时,抛物线的开口朝上;当a<0时,抛物线的开口朝下;抛物线的对称轴为垂直于x轴的直线,顶点坐标为。
2.数列(1)等差数列设是一个数列,若对所有的n都成立,则称为等差数列,d称为公差。
根据等差数列的定义,等差数列的通项为,前n项和为,且其通项满足。
最后一个式子说明:在等差数列中,任何一项都是其前后“对称”位置上的两项的算术平均值,这时又称为的等差中项。
(2)等比数列设是一个数列,且,若对所有的n都成立,则称是等比数列,q称为公比。
根据等比数列的定义,等比数列的通项为,前n项和为,且其通项满足。
最后一个式子说明:在等比数列中,任何一项的绝对值都是其前后“对称”位置的两项的几何平均值,这时。
3.函数的定义4.(1)(2)函数的性质5.周期函数设函数f(x)的定义域为R,若存在正数T>0,是的对任意的都有,则称f(x)是一个周期函数,T称为函数f(x)的周期。
一般说的周期指的是最小正周期。
6.指数函数函数称为以a为底的指数函数,常用的以无理数e为底的指数函数。
指数函数的基本运算规则:。
7.反函数的概念8.对数函数9.复合函数10.常见的六类函数,即常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数,称为基本初等函数。
11.成本函数一般地,总成本C可分为两部分,分别是固定成本和可变成本。
是一个与产品数量无关的常数,与产品的数量q有关,是q的函数,记作。
所以总成本。
平均成本指的是总成本与产品数量之比,记作。
常见的成本函数模型是:(1)线性成本函数:,其中c是单位产品的可变成本。
自考2019年10月高数一真题及答案(201910)
xcosx ,全国2019年10月高等教育自学考试高等数学(一)试题一、单项选择题(本大题共10小题,每小题3分,共30分)1. 下列函数为奇函数的是()。
A. x sin 2xB. x cos 2xC. xsinxD. xcosx【正确答案】D【答案解析】 已知奇函数满足f(x)二_f(_x),因为D 选项中令f(x)有f(—x) xcosx ,满足奇函数条件,故选择 D 。
参见教材P31。
【知 识 点】 函数的奇偶性。
2. 当x 0,y0时,下列等式成立的是()。
A. ln (xy )= In xgn yB. ln x y = ln x ln yC. ln xy = ln x ln y.x e — 14. 已知函数f(x) = « 2x ,x 在点x=0处连续,则a=()、a, x = 0A. 0C. 1D. 2【正确答案】B【答案解析】 因为函数在x = 0处连续,则有lim f(x)二a ,带入可得x ln x D. ln y ln y 【正确答案】 【答案解析】 材P3& 【知识点】C 因为对数函数有log a (xy) = log a X • log a y 的性质,故选C 对数函数。
参见教 4n 3 +2 3. lim 3 -------- n—「'2n n A. 1 B. 2C. 3D. 4 【正确答案】【答案解析】 【知识点】 3 2..4n 2 12n .. 24n 小 lim 3 lim 2 lim 2。
n —齐:2 n 3 n n —&6 n 21 n —&12n 参见教材P96洛必达法则。
e — 1 x 1 il i m f (x)=四—=〔四厂=2,解得a = ?,故选B。
参见教材P63。
【知识点】函数的连续性。
5. 曲线y=2x2-x在点1,1处的切线方程为()。
A. y = 3x - 2B. y = 3x -4C. y =2x -2D. y = 2x - 4【正确答案】A【答案解析】因为函数在一点处的导数值即为函数在该点处的切线斜率。
4月全国高等数学(工专)自考试题及答案解析
1全国2019年4月高等教育自学考试高等数学(工专)试题课程代码:00022一、单项选择题(本大题共30小题,1-20每小题1分,21-30每小题2分,共40分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
(一)(每小题1分,共20分) 1.函数xx)x (f -+=11 的定义域是( ) A .(-∞,+∞) B .(0,+∞) C .(-1,1)D .[)11,-2.函数3x )x (f =,则=+)y x (f ( ) A .)y (f )x (f B .)x (f 2 C .)x (fD .)y (f3.函数|x |)x (f -=2是( ) A .偶函数B .非奇非偶函数C .奇函数D .周期函数4.=→x x x 1sin lim 20( )A .1B .∞C .0D .不存在 5.曲线y =sin x 在点(π,0)处的法线斜率为( ) A .-1B .1C .0D .26.设x )x(f =1,则=')x (f ( )A .1B .21xC .-21x D .2x7.设⎪⎩⎪⎨⎧-==ty t x 122,则=dy dx ( )2A .tB .-1C .-t1D .-t8.函数x x y -=sin 在[0,2π]上( ) A .单调减少 B .单调增加 C .无界D .没有最大值 9.曲线y=x 4( ) A .的拐点为(0,0)B .有两个拐点C .有一个拐点D .没有拐点10.曲线x xy ln 2=的垂直渐近线是( )A .x =0B .x =1C .y =0D .y =111.=⎰)dx )x(f (d 1( ) A .dx )x (fB .dx )x (f x 21-C .dx )x(f x112-D .dx )x(f 112.=⎰dx x x 2( )A .C x +2992B .C x +2772C .2992xD .2772x13.广义积分⎰+∞22ln )x (x dx( ) A .发散 B .收敛于1C .收敛于2ln 1D .的敛散性不能判定14.过点(2,-1,2)且与直线211z y x =-=垂直的平面方程为( ) A .072=-+-z y x B .02=+-z y x C .032=+-+z y xD .0922=-+-z y x15.设)y x (e )y ,x (f x +=arctg ,则='),(f y 10( ) A .0B .13216.区域(σ)由抛物线2x y =与直线x y =围成,函数)y ,x (f 在(σ)上连续,二重积分⎰⎰)(d )y ,x (f σσ化为累次积分应为( ) A .⎰⎰102xx dydx )y ,x (f B .⎰⎰102x x dydx )y ,x (fC .⎰⎰101dydx )y ,x (fD .⎰⎰xx dydx )y ,x (f 2117.空间区域(V )由抛物面22y x z +=与平面z =1围成,三重积分⎰⎰⎰++)V (dV )z y x(222可化为累次积分( ) A .⎰⎰⎰+πρθρρ20101222d dzd )z (B .⎰⎰⎰+πρθρρρ20101222d dzd )z ( C .⎰⎰⎰+πθρρρ20101022d dzd )z (D .⎰⎰⎰+πρθρρρ20101222d dzd )z (18.微分方程023=+'-''y y y 的通解为( ) A .x x e C e C y 221+= B .x x e C e C y 221+=- C .x x e C e C y -+=221D .x x e C e C y --+=22119.级数∑∞=++-111n n nn )(( ) A .绝对收敛 B .发散C .收敛D .的部分和S n 无界20.幂级数∑∞=-01n n nnx )(的收敛半径为( )A .R =0B .R =1C .R =2D .R =+∞(二)(每小题2分,共20分)21.=⎥⎦⎤⎢⎣⎡+-++⨯+⨯+⨯+∞→)n )(n (15451161111161611lim n Λ( ) A .1 B .6145422.设⎪⎩⎪⎨⎧>-=<=010001x ,x ,,x ,)x (f ,则x =0为)x (f 的( )A .连续点B .无穷间断点C .可去间断点D .跳跃间断点23.设)x (y +=1ln ,则=)(y )(09( ) A .8!B .-9!C .-8!D .9!24.⎰=-dx x 112( ) A .|x |1ln 2-B .C |x |+-1ln 2C .|x x |11ln 21-+D .C |x x |++-11ln 2125.=⎰→2x sin lim x tdt x ( )A .∞B .0C .21D .126.直线521221+=-+=-z y x 与平面034=-+z y x 的关系是( ) A .直线与平面垂直B .直线在平面上C .直线与平面无公共点D .直线与平面相交于一点27.设y x z 2=,则=dz ( ) A .xdy x dx x y y y ln 22212+•- B .dy x dx x y y y 21222+•- C .dy x dx x y y 222+D .dy x dx x y y 22+28.设区域(σ)为42π≤22y x +≤2π,则⎰⎰++)(d yx y x σσ2222cos =( )A .0B .π2C .-π2D .π3529.微分方程xy y dx dy +=62是( ) A .一阶线性齐次方程 B .一阶线性非齐次方程 C .二阶线性微分方程D .六阶线性微分方程30.级数∑∞=12sinn nπ( )A .发散B .的部分和n S 无界C .是交错级数D .收敛二、计算题(本大题共7小题,每小题6分,共42分)31.求2301cos lim /x x x -+→. 32.设⎪⎩⎪⎨⎧=≠=0001sin 2x x ,xx )x (f , ,求)x (f '. 33.求) (022>++⎰a dx xa x a .34.计算⎰1xarctgxdx .35.求方程 011=+-+xydy y xdx满足10=)(y 的特解. 36.计算⎰⎰)(d xy σσ3,其中(σ)是由直线x y ,y ==2及y 轴围成的三角区域.37.判别级数∑∞=12n nn n!n 的敛散性.三、应用和证明题(本大题共3小题,每小题6分,共18分) 38.求心形线)a ()cos (a 01>-= θρ所围成的平面图形的面积. 39.求函数y x y xy x )y ,x (f --+-=22的极值. 40.证明:当x >0时,e x >1+x .。
2019年4月自考高等数学(工本)考前试题和答案00023
2019年4月自考《高等数学(工本)》考前试题和答案00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
第1题【正确答案】 A【你的答案】本题分数3分第2题【正确答案】 B【你的答案】本题分数3分第3题曲线x=2cosθ,y=2sinθ,z=θ,(-∞<θ<+∞)在点P(2,0,2π)处的法平面方程为()A. y+2z-π=0B. 2y+z-2π=0C. y+z-2π=0D. 2y+2z-π=0【正确答案】 B【你的答案】本题分数3分第4题【正确答案】 D【你的答案】本题分数3分第5题【正确答案】 A二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
第1题图中空白处答案应为:___【正确答案】【你的答案】修改分数本题分数2分你的得分___第2题图中空白处答案应为:【正确答案】 2x+y-4=0【你的答案】本题分数2分修改分数你的得分___第3题图中空白处答案应为:【正确答案】【你的答案】修改分数本题分数2分你的得分第4题图中空白处答案应为:___【正确答案】 -20π【你的答案】本题分数2分修改分数你的得分第5题图中空白处应填的答案为:_______【正确答案】本题考查直线与平面的关系。
【你的答案】三、计算题(本大题共12小题,每小题5分,共60分)第1题【正确答案】【你的答案】本题分数5分你的得分修改分数第2题【正确答案】【你的答案】本题分数5分你的得分修改分数第3题【正确答案】【你的答案】本题分数5分你的得分修改分数第4题求由方程 xcosy+ycosz+zcosx=0所确定的函数z=f(x,y)的全微分.【正确答案】【你的答案】本题分数5分你的得分修改分数第5题【正确答案】【你的答案】本题分数5分你的得分修改分数第6题【正确答案】【你的答案】本题分数5分你的得分修改分数第7题【正确答案】【你的答案】本题分数5分你的得分修改分数第8题【正确答案】【你的答案】本题分数5分你的得分修改分数第9题【正确答案】【你的答案】本题分数5分你的得分修改分数第10题【正确答案】【你的答案】修改分数本题分数5分你的得分第11题【正确答案】【你的答案】修改分数本题分数5分你的得分第12题【正确答案】【你的答案】四、综合题(本大题共3小题,每小题5分,共15分)第1题【正确答案】【你的答案】本题分数5分你的得分修改分数第2题【正确答案】【你的答案】本题分数5分你的得分修改分数第3题一质量为m的物体由高塔落下,下落时所受空气阻力与速度成正比,比例系数为k>0.已知下落的初速为零,求物体下落过程中速度和时间的函数关系.【正确答案】【你的答案】。
10月全国高等数学(工本)自考试题及答案解析
1全国2019年10月高等教育自学考试高等数学(工本)试题课程代码:00023第一部分 选择题(共40分)一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设函数f(x -2)=x 2+1,则f(x+1)=( ) A.x 2+2x+2 B.x 2-2x+2 C.x 2+6x+10 D.x 2-6x+102.=⎪⎭⎫ ⎝⎛-+∞→2x x x 11lim ( )A.e 2B.21eC.e -2D.21e -3.当0x →时,22x 1x 1+--与αx 是同阶无穷小量,则常数α=( )A.21 B.1 C.2D.44.函数f(x)=1x )1x (x 22+-的间断点的个数为( )A.0B.1C.3D.45.曲线y=x 2+x -2在点(47,23)处的切线方程为( )A.16x -4y -17=0B.16x+4y -31=0C.2x-8y+11=0D.2x+8y -17=0 6.设函数y=lnsecx ,则y ''=( )A.-secx ·tgxB.xsec 1 C.-sec 2x D.sec 2x7.当a<x<b 时,有0)x (f ,0)x (f <''<',则在区间(a,b )内,函数y=f(x)的图形沿x 轴正向是( )A.下降且为上凹的B.上升且为下凹的C.上升且为上凹的D.下降且为下凹的28.设函数f(x)=e -x ,则='⎰dx x )x (ln f ( ) A.C x1+-B.C x 1+ C.-lnx+CD.lnx+C 9.设⎰⎰==2122211xdx ln I ,xdx ln I ,I 1与I 2相比,有关系式( )A.I 1>I 2B.I 1<I 2C.I 1=I 2D.I 1与I 2不能比较大小10.设函数F(x)=dt t 32x2⎰+,则=')1(F ( )A.27-B.72-C.2D.-211.广义积分⎰>1p)0p (dx x1收敛,则( )A.p=1B.p<1C.p ≥1D.p>112.方程x 2+y 2=7在空间直角坐标系中表示的图形是( ) A.圆 B.抛物面 C.圆柱面 D.直线 13.设有直线L 1:18z 25y 11x +=--=-与L 2:⎩⎨⎧=+=-3z y 26y x ,则L 1与L 2的夹角为( ) A. 6πB.4πC.3πD.2π 14.设函数z=y x ,则=∂∂∂yx z2( ) A.xy x -1lnx B.y x -1(x+lny) C.y x -1(xlny+1) D.y x ln 2x15.若函数f(x,y)在(x 0,y 0)的某邻域内连续,则函数f(x 0,y) ( ) A.在y 0点连续 B.在y 0点可导 C.在y 0点可微 D.在y 0点取得极值16.设区域B :x 2+y 2≤a 2,积分路线C 是B 的负向边界,则⎰=-Cxdy ydx ( )3A.2a 2πB.2a 2π-C.2a π-D.2a π 17.微分方程dy-2xdx=0的解为( ) A.y=2x B.y=-x 2 C.y=-2xD.y=x 218.用待定系数法求微分方程2x y 2y 3y =+'+''的一个特解时,应设特解的形式=y ( ) A.ax 2 B.ax 2+bx+c C.x(ax 2+bx+c)D.x 2(ax 2+bx+c)19.0a lim n n =∞→是无穷级数∑∞=1n na收敛的( ) A.充分而非必要条件B.必要而非充分条件C.充分必要条件D.既非充分也非必要条件20.幂级数∑∞=1n 32nx 的收敛域为( ) A. [-1,1] B.(-1,1) C.(-1,1]D. [-1,1)第二部分 非选择题(共60分)二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
四川自考2019-高等数学(一)复习题
高等数学(一)复习题1.极限3312lim 1x x x x →++=( ) A .1B .32C .xD .1x e +2. 极限222lim 1x x x x →∞++=( ) A.1B.0C.4D.23.无穷级数02()5n n ∞=∑ =()A.0.5B.5/3C.1D.24.函数22(,)23f x y x x y =+++的极小值为( )A. 1B. 2C. 3D. 05. 设2+siny 2x z e =+,则y z =( )A .2+cosy x eB .sin y y +C .cos yD .2x e 6. 2321lim 1x x x →∞++为() A.0B.1C.4D. 37.下列函数中在定义域上是单调递增函数的为( )A 、2sin y x =B 、41y x =+C 、2y x =D 、y x = 8.曲线262y x x =++在点(0,2)的斜率为( )A .2B .3C .4D .6 3030x x f x x x ⎧≠⎪=⎨⎪=⎩sin ,(),9.设x =0为( )A 、可去间断点B 、跳跃间断点C 、无穷间断点D 、连续点10.无穷限反常积分22d k x x +∞⎰=________. 11. 函数41(-1)(1)y x x =+的无穷间断点的是________. 12. 函数22(,)1-2-2f x y x y =的最大值是 ________.13.函数4sin x(1)x y x =+的可去间断点的是_________. 14.曲线2y x =在点(1,1)处的斜率为 .15. 微分方程0x y e '-=的通解为___________.16.33cos x xdx -=⎰ __________. 17.不定积分2x e dx ⎰=. _________.18.22cos x x dx =⎰ __________.19. 22{(,)|3}D x y x y =+≤,则Dkdxdy =⎰⎰________.20. 已知40()cos d xf x t t =⎰,则()f x '=________.2()f x dx x c =+⎰,则f ()x = __________.21.设2sin x z e x y y =++,则z x∂=∂ __________.z y ∂=∂ __________.(1,0)|z y ∂=∂ _________. 22. 已知函数()f x 在点0x x =处连续,且0()=1f x ,则0x lim f =x →(x) ________. 23. (1)20cos lim x x e x x x -→-+= _________.(2)0sin lim 2x ax x→= _________. (3)求极限2256lim 2x x x x →-+-_________. 24.已知某商品的成本函数为2()102=+q C q ,则6=q 时的边际成本__________. ;收益函数为250.05=-TR Q Q ,则10=Q 时的边际收益是_______. 25. 22sin 1aa x x dx x -=+⎰ __________. 212x dx -=⎰_______. 403x dx -⎰=_______.26. 21xy z ye x =++,求偏导数z y∂=∂_____________;z x ∂=∂__________. dz =________.27. 设222z x y =+,则11zy∂=∂(,)| ________. 28. (1)求极限201cos lim→-x x x (2)求极限30sin lim x x x x →- 29. 求11ln e xdx ⎰30. 设函数()y y x =是由方程21xy e x +=所确定的隐函数,求dy dx. 31.设221x y x e =++,求(0)y ''.32. 设某厂生产q 吨产品的成本函数为C (q )=2000+10q ,该产品的需求函数为p=800- q ,其中p 为产品的价格.(1) 求该产品的利润函数L (q );(2)问生产多少吨该产品时,可获最大利润?最大利润是多少?。
1月全国高等数学(工本)自考试题及答案解析
1全国2019年1月高等教育自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.点x 0的ε邻区是( ) A.[)ε+ε00x ,-xB.[x 0-ε,x 0+ε]C.(-ε,ε)D.(x 0-ε,x 0+ε) 2.当x →0时,下列无穷小量与x 为等价无穷小的是( ) A.sin 2x B.ln(1+2x) C.xsinx1D.x 1x 1--+3.设函数⎪⎩⎪⎨⎧<+≥+=1231122x ,x x ,x a)x (f 为连续函数,则常数a=( )A.0B.1C.2D.104.x=0是函数f(x)=xxsin 的( ) A.跳跃间断点 B.振荡间断点 C.可去间断点 D.无穷间断点 5.设x 0为f(x)的极值点,则下列命题正确的是( ) A.0)x (f 0='B.0)x (f 0≠'C.不存在或)x (f 0)x (f 00'='D.)x (f 0'不存在6.设y=f(x 2),其中f(u)为二阶可导函数,则y ''=( ) A.)x (f 2''B.)x (f x 422''C.)x (f x 4)x (f 2222''+'D.)x (f x 42''7.曲线y=lnx 的与直线y=x 平行的切线方程为( ) A.x-y=0 B.x-y-1=0 C.x-y+1=0 D.x-y+2=0 8.不定积分⎰=+dx )1x 5(7( )2A.C )1x 5(3518++ B.C )1x 5(818++ C.C )1x 5(4018++D.C )1x 5(356++9.设⎰==+1a ,2dx )a x 2(则常数( )A.-1B.0C.21D.110.设函数f(x)=⎰=-'+-x)2(f ,dt )2t )(1t (则( )A.0B.1C.2D.-111.设函数f(x)在[a,b]上连续,则函数f(x)在[a,b]上的平均值为( )A.)]b (f )a (f [21+ B.⎰abdx )x (fC.⎰a b dx )x (f 21 D.⎰-ab dx )x (f ab 112.点(-1,2,-3)到yoz 坐标面的距离为( ) A.1 B.2C.3D.1413.设平面p 1:x+y+z=0和平面p 2:8x-7y-z+3=0,则平面p 1和平面p 2的关系是( ) A.平面p 1和平面p 2平行,但平面p 1和平面p 2不重合 B.平面p 1和平面p 2垂直C.平面p 1和平面p 2相交,但平面p 1和平面p 2不垂直D.平面p 1和平面p 2重合14.设函数z=ln(x 2-y 2)+arctg(xy),则=∂∂)0,1(x z ( )A.2B.1C.42π+D.41π+15.设函数f(x,y)=3x 2+2xy-y 2, 则dz|(1,-1)=( ) A.(6x+2y)dx+(2x-2y)dy B.4dx+4dy C.8dx D.(6x-2y)dx+(2x-2y)dy16.由不等式z ≤6-x 2-y 2,z ≥22y x +及x 2+y 2≤1所表示的空间区域的体积为( ) A.⎰⎰⎰π-ρρθ201r 6r dz d d 2B.⎰⎰⎰π-ρρθ202r 6r dz d d 2C.⎰⎰⎰π-ρρθ201r 60dz d d 2D.⎰⎰⎰π-ρρθ202r 60dz d d 2317.微分方程3xy )y (y )y (432=+'''+'的阶数是( ) A.1 B.2 C.3 D.418.以y=C 1cosx+C 2sinx 为通解的微分方程为( ) A.0y y ='-'' B.0y y ='+'' C.0y y =+'' D.0y y =-'' 19.设正项级数∑∞=1n na收敛,则下列级数中一定收敛的是( )A.∑∞=1n na 1B.∑∞=1n n aC.∑∞=+1n n)1a( D.∑∞=-1n n na )1(20.设幂级数∑∞=-1n n n )3x(c在x=0处收敛,则该幂级数在x=5处一定( )A.绝对收敛B.条件收敛C.发散D.敛散性不能确定 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确的答案。
19自考高数试题及答案
19自考高数试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是周期函数?A. y = sin(x)B. y = e^xC. y = |x|D. y = cos(x)答案:B2. 函数f(x) = x^2 + 3x + 2在区间(-∞,-2)上的单调性是:A. 单调递增B. 单调递减C. 不确定D. 先减后增答案:B3. 通过曲线y = x^3 - 2x + 1的点(1,0)的切线斜率为:A. -1B. 0C. 1D. 2答案:C4. 以下哪个级数是收敛的?A. ∑(1/n^2)B. ∑(1/n)C. ∑((-1)^n)/nD. ∑(1^n)答案:A5. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Ce^(2x)D. y = Ce^(-2x)答案:A6. 以下哪个积分是发散的?A. ∫(1/x)dx (从1到+∞)B. ∫(x^2)dx (从0到1)C. ∫(sin(x)/x)dx (从0到π)D. ∫(e^(-x))dx (从0到+∞)答案:A7. 函数f(x) = ln(x^2)的值域是:A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:D8. 设f(x)在[a, b]上连续,且∫[a, b] f(x)dx = 3,则3∫[a, b]f(x)dx的值为:A. 6B. 9C. 3D. 无法确定答案:B9. 以下哪个函数是奇函数?A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)答案:C10. 二阶常系数线性微分方程y'' - 5y' + 6y = 0的特征方程为:A. r^2 - 5r + 6 = 0B. r^2 + 5r + 6 = 0C. r^2 - 6r + 5 = 0D. r^2 + 6r + 5 = 0答案:A二、填空题(每题4分,共20分)11. 极限lim (x→0) [x - sin(x)] / [x^3] 的值是 _______。
全国2019年10月高等教育(工本)自学考试试题、详细答案及考点分析
全国2019年10月高等教育自学考试高等数学(工本)试题、详细答案及考点分析课程代码:00023请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题:本大题共5小题,每小题3分,共15分。
在每小题列出的四个备选项中只有一个是最符合题目要求的,请将其选出。
1.在空间直角坐标系中,点()2,0,0-在A .x 轴上B .y 轴上C .z 轴上D .oxy 平面上解:使用空间直角坐标系坐标轴、坐标面特征进行讨论。
x 轴上点的坐标为()0,0,a ,y 轴上点的坐标为()0,,0b ,z 轴上点的坐标为()c ,0,0,oxy 平面上点的坐标为()0,,b a ,oyz 平面上点的坐标为()c b ,,0,oxz 平面上点的坐标为()c a ,0,,故选C.考核知识点:空间直角坐标系(识记);考核要求:知道空间直角坐标系的定义及相关的概念.2.函数()y x y x f +=,在点()0,0处A .连续B .间断C .偏导数存在D .可微解:使用多元函数连续性方法进行求解。
由于()0,00lim 00f y x y x ==+→→因此函数()y x y x f +=,在点()0,0处连续,选A.考核知识点:二元函数的极限与连续(识记);考核要求:知道二元函数连续的概念.3.已知ydy x ydx x sin sin cos cos -是某个函数()y x u ,的全微分,则()=y x u ,A .xy cos sin B .yx sin sin C .yx cos sin -D .yx cos sin 解:对各项使用全微分法进行求解。
对A ,B ,C ,D 选项进行全微分,可得A :()()xdy y ydx x x y d y x du cos cos sin sin cos sin ,+-==B :()()xdy y ydx x y x d y x du sin cos sin cos sin sin ,+==C :()()ydy x ydx x y x d y x du sin sin cos cos cos sin ,+-=-=D :()()ydy x ydx x y x d y x du sin sin cos cos cos sin ,-==故选D.考核知识点:全微分(领会);考核要求:会求函数的全微分.4.下列微分方程中,属于一阶线性非齐次微分方程的是A .()dx y x ydy +=3B .()dx y x xdy 32+=C .19sin =-y x dx dyD .92=+xy dxdy解:使用微分方程的基本概念进行选择。
2019年10月全国自考高等数学工本00023真题试题(含详解)
2019年10月全国自考高等数学工本00023真题试题(含详解)2019年10月全国自考高等数学(工本)00023试题及其详解一、单项选择题:本大题共5小题。
每小题3分。
共l5分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.在空间直角坐标系中,点(0,0,2)-在A.x 轴上B.y 轴上C.z 轴上D.Oxy 平面上解:答案是C2.函数(,)f x y =(0,0)处A.连续B.间断C.偏导数存在D.可微解:答案是B.3.已知cos cos sin sin x ydx x ydy -是某个函数(,)u x y 的全微分,则(,)u x y =A. sin cos y xB. sin sin x yC. sin cos x y -D. sin cos x y 解:D 选项,d(sinxcosy)=cosxcosydx-sinxsinydy.答案是D.4.下列微分方程中,属于一阶线性非齐次微分方程的是A.3()ydy x y dx =+B.2(2)xdy x y dx =+C.sin 19dy x y dx -=D.29dy xy dx += 解:B 选项,对2(2)xdy x y dx =+变形,得2dy y x dx x-=.答案是B. 5.下列无穷级数中,绝对收敛的无穷级数是 A. 11(1)3n n n -∞=-∑ B. 1(1)2n n n ∞=-∑ C. 1(1)n n n ∞=-∑ D. 1(1)21n n n n ∞=-+∑ 解:答案是A.二、填空题:本大题共5空,每空2分,共10分。
6.与向量{2,0,α=同方向的单位向量是 .解:{1=,0,222αα=.答案是22. 7.设函数22(,)f x y x y x y +-=+,则(,)f x y = .解:令u=x+y,v=x-y,则2222(,).222u v u v u v f u v +-+=+= ? ? 所以(,)f x y =222x y +.答案是222x y +.8.设积分区域22:9D x y +≤,则二重积分22()D f x y dxdy +??在极坐标下的二次积分为 .解:答案是23200()d f r rdr πθ??. 9.微分方程(1)612y x y y '''+-+=的特解*y = .解:简化微分方程,令0y ''=,则(1)612x y y '-+=,解得y=6611121dx dx x x e e C x ---+??-???=6661161212(1)1(1)dx dx x x e e C x C x x ---+=-+????--???=62(1)C x +-. 因为0y ''=,所以C=0.故取特解*y =2.答案是2. 10.设函数()f x 是周期为2π的周期函数,傅里叶级数为11(1)sin 2n n nx n π-∞=-+∑,,则()f x 的傅里叶系数0a = .解:0a =π.答案是π.三、计算题:本大题共l2小题,每小题5分,共60分。
10月全国高等数学(工专)自考试题及答案解析
1全国2019年10月高等教育自学考试高等数学(工专)试题课程代码:00022一、项选择题(本大题共30小题,1—20每小题1分,21—30每小题2分,共40分。
在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内) (一)(每小题1分,共20分)1.函数y=xcos2x+32x x 1x++是( ) A. 奇函数B.偶函数C. 非奇非偶函数D. 有界函数2. 函数y=2cos(2x+4π)的周期是( ) A. 2πB. πC.2π D. 03.设数列a n ,b n 及c n 满足:对任意的n,a n n n c b ≤≤,且2a lim n n =∞→,0)a c (lim n n n =-∞→,则=∞→n n b lim ( ) A. 0 B. 1 C.2 D. -24. =-+-→xx 1x 2x lim 321x ( )A.21B. 0C. 1D. ∞5. 在抛物线y=x 2上点M 的切线的倾角为4π,则点M 的坐标为( ) A. (41,21)B. (1,1)C. (21,41)D. (-1,1)6. 设y=tgx+secx, 则dy=( ) A. sec 2x+secxtgx B. (sec 2x+secxtgx)dxC. (sec 2x+tg 2x)dxD. sec 2 x+tg 2x7. f(x)在点x 0可导是f(x)在点x 0连续的( ) A. 充分条件B. 必要条件C.充分必要条件D. 无关条件8. 函数y=2x 1+单调减少的区间是( ) A. (-+∞∞,) B. (-∞,-2) C. (+∞---∞,2(),2,)D. (-2,+∞)29. 曲线y=e x1-1的水平渐近线方程为( ) A. x=1B. y=1C.x=0D. y=010. ⎰=xdx 3sin ( )A.C x 3cos 31+ B. -C x 3cos 31+C. –cos3x+CD. cos3x+C11. 设⎰+=Φ2x sin 2dt t 11)x (,则=Φ')x (( )A.xsin 112+B.xsin 1xcos 2+ C. x sin 1xcos 2+-D. xsin 112+-12. 函数5x 5e 的一个原函数为( ) A. e 5xB. 5e 5xC.x 5e 51D. –e 5x13.=⎰ππ-223xdx cos x ( )A.π32B.34 C. 0 D.32 14. 下列广义积分收敛的是( )A. ⎰+∞1xdxB.⎰-22)x 1(dxC.⎰+∞+1dx x11D.⎰-a22xa dx (a>0)15. 下列集合可作为一条有向直线在空间直角坐标系中的方向角γβα,,的是( ) A. 45ο,45ο,60ο B. 45ο,60ο,60ο C. 30ο,45ο,60οD. 45ο,60ο,90ο16. 设函数f(x,y)=xy+xy,则)1,1(f x '=( ) A. 0B. 1C. –1D. 217. 设函数u=ln(x 2+y 2+z 2),则du|(1,1,1)=( )A. )dz dy dx (31++B. )dz dy dx (32++C. dz dy dx ++D.)dz dy dx (34++ 18.dy xy dx 11⎰⎰=( )3A. 0B.41 C.21 D. 119. 级数∑∞=+1n n 1n( ) A. 收敛 B. 绝对收敛 C. 的敛散性无法判断D. 发散20. 微分方程20y y 3y =+'+''的通解为( ) A. y=C 1e -2x+C 2e -3xB. y=e -x+C 22xe-C. y=C 1e -x +C22x e -D. y=e -x +e 2x(二)(每小题2分,共20分) 21. =π∞→xsinx lim x ( ) A. 1 B. π C. 不存在 D. 022. 设f(x)=⎩⎨⎧>-≤-1x ,x 31x ,1x 则x=1为f(x)的( )A. 连续点B. 无穷间断点C. 跳跃间断点D. 可去间断点23. 设3x 2+4y 2-1=0,则=dxdy( )A. x 3y 4B. y 4x 3C. -y4x3 D. -x3y 4 24. 如果f(x 0)=0且f '(x 0)存在,则=-→0x x x x )x (f lim 0( ) A. f '(x 0)B. 0C. 不存在D. ∞25. 设F(x)是f(x)的一个原函数,则⎰=-dx )x 21(f ( ) A. F(1-2x)+C B.C )x 21(F 21+- C. –F(1-2x)+CD. -C )x 21(F 21+-26. 下列平面中过点(3,-1,5)且与直线0z 1y 2x =-=平行的平面为( ) A. z-5=0 B. x-3=0 C. y+1=0D.11y 23x -+=- 27. 设函数z=x 2+y 2-2x-4y,则( )4A. 在点(1,2)处取最大值5B. 在点(1,2)处取最小值-5C. 在点(0,0)处取最大值0D. 在点(0,0)处取最小值028. 设区域(σ)为:10y ,0x ,4y x 22≥≥≤+≤,则=σ+⎰⎰σ+d yx e22y x 22( )A. )e e (22-πB. )e e (2-πC. )e e (22-πD. )e e (42-π29. 用待定系数法求方程5y 2y ='+''的特解时,应设( ) A. a y =B. 2ax y =C. ax y =D. bx ax y 2+=30. 级数∑∞=+1n )n 11ln(( )A. 收敛B. 绝对收敛C. 不一定发散D. 发散二、计算题(每小题6分,共42分)31. 求0x lim →[x 1)x 1ln(1-+].32. 设⎩⎨⎧+==)t 1ln(y arctgt x 2,求dx dy与22dx y d . 33. 求xx 1x 3x lim ⎪⎭⎫⎝⎛++∞→.34. 求⎰+dx )x 1(x4.35. 求方程22x1y 1dx dy--=的通解. 36. 求⎰⎰σ+σ)(y x d e ,其中区域(σ)由y=lnx,y=0,x=e 所围成.37. 求幂级数∑∞=--1n n1n nx )1(的收敛区间(不考虑端点). 三、应用和证明题(每小题6分,共18分)38.求由y=x ,y=0,x=4围成的平面图形绕y 轴旋转而成的旋转体的体积.39.制作一个上、下均有底的圆柱形容器,要求容积为定值V. 问底半径r 为多大时,容器的表面积最小?并求此最小面积.540. 证明:⎰⎰ππ=22n n,xdx cos xdx sin 其中n 为正整数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国自考高等数学复习资料第一章函数
1.一元二次方程
未知量x满足的形如的方程为一元二次方程,称为此方程的判别式。
由可知:当Δ>0时,方程有两个不同的实根
;当Δ=0时,方程有一个二重实根;当Δ<0时,方程有一对共轭虚根
根与系数之间的关系(韦达定理):
若记一元二次方程的两个根分别为,则有。
一元二次函数
的图形——xOy平面上的一条抛物线——依据
,当a>0时,抛物线的开口朝上;当a<0时,抛物线的开口朝下;抛物线的对称轴为垂直于x轴的直线,顶点坐标为。
2.数列
(1)等差数列
设是一个数列,若对所有的n都成立,则称为等差数列,d称为公差。
根据等差数列的定义,等差数列的通项为,前n项和为,且
其通项满足。
最后一个式子说明:在等差数列中,任何一项都是其前后“对称”位置上的两项的算术平均值,这时又称为的等差中项。
(2)等比数列
设是一个数列,且,若对所有的n都成立,则称是等比数列,q称为公比。
根据等比数列的定义,等比数列的通项为,前n项和为,且其通项满足。
最后一个式子说明:在等比数列中,任何一项的绝对值都是其前后“对称”位置的两项的几何平均值,这时。
3.函数的定义
4.(1)
(2)函数的性质。