基础工程第4章 桩基础
基础工程-桩基础-(史上最全面)
2、 下列桩基应进行变形验算:
1)、桩端持力层为软弱土的一,二级桩基以及 桩端持力层为粘土,粉土或存在软弱下卧层 一级建筑桩基,应验算沉降并考虑上部结构 与基础共同作用.沉降不超过建筑沉降允许 值;
2)、受水平荷载较大或对水平变位要求严格 的一级建筑桩基应验算水平位移。
第四章 桩基础
本章教学目标: 1 了解桩基础的使用,熟悉桩基础的设计内容、
设计原则、分类及成桩效应; 2 了解桩基础单桩传递机理,熟悉掌握桩基础
竖向承载力的确定,熟悉群桩效应; 3 了解单桩沉降计算,熟悉群桩沉降计算及减
小桩负摩阻力的措施。 4 掌握桩基础承台设计,熟悉桩基础设计步骤
及施工图绘制。
4.1概述
桩基按极限状态设计法设计,应满足承载 能力极限状态和正常使用极限状态的要求。
建筑桩基分三个安全等级。 桩基设计应进行下列计算和验算:
1、所有桩基础都应进行承载能力计算,计算内容包括:
1)、按使用功能,受力特征进行 竖向(压.拔)和水平承载 力计算,不宜超过承载力特征值。 某些条件下群桩基 础宜考虑桩.土、承台共同作用;
3、 下列桩基应进行桩身和承台抗裂和 裂缝宽度验算:
根据使用条件要求混凝土不得出现裂 缝的桩基应进行抗裂验算;使用上需 限制裂缝宽度的桩基应进行裂缝宽度 验算。
4、建于软土上的一、二级建筑桩基施 工 过程和使用期间必须进行沉降观
测直到 稳定。
4.1.4 桩基设计内容
桩基设计包括下列基本内容: 1、桩的类型及几何尺寸的选择; 2、单桩竖向(和水平向)承载力的
载的桩基。 桩基应用:以有百年历史,承载力高、稳 定性好,沉降均匀的特点,在不良土上修 建建筑,普遍应用的基础形式。
4 桩基础(第4节 单桩承载力确定)
1.一般预制桩及其中小直径灌注桩
Quk=Qቤተ መጻሕፍቲ ባይዱk Qpk u
q
sik li
q pk Ap
qsik和qpk按表取值
21
桩侧极限摩阻力标准值
22
桩侧极限端阻力标准值
23
4.4 单桩竖向承载力的确定
4.4.3按设计规范经验公式确定
2.大直径灌注桩 要考虑尺寸效应,无粘性土孔壁松弛
Qu k Qsk Qgsk Qgpk
u qsjk l j u si qsik l gi p q pk Ap
土层名称 淤泥 淤泥质土 1.2~1.3 黏性土 粉土 1.4~1.8 2.2~2.5 粉砂 细砂 中砂 粗砂 砾砂 2.0~2.5 3.0~3.5 砾石 卵石 2.4~3.0 3.2~4.0 全风化岩 强风化岩 1.4~1.8 2.0~2.4
18
3.极限荷载和轴间容许 承载力的确定
(1)P-S曲线明显转折点法 在由静载试验绘制的P-S 曲线上,以曲线出现明显下 弯转折点所对应的作用荷载 作为极限荷载。 P-S曲线的转折点不明显 ,此时极限荷载就难以确定 ,需借助其他方法辅助判定 ,例如用对数坐标绘制 logP-logS曲线,可能使转折 点显得明确些。
4.4 单桩竖向承载力的确定
单桩竖向承载力特征值: 单桩在轴向荷载作用下,地基土和桩本身 的强度和稳定性均能得到保证,变形也在容许 范围之内所容许承受的最大荷载,它是以单桩 轴向极限承载力(极限桩侧摩阻力与极限桩底阻 力之和)考虑必要的安全度后求得的。 确定方法有多种 ,考虑地基土具有多变性 、复杂性和地域性,几种方法作综合考虑和分 析,合理地确定。
19
3.极限荷载和轴间容许 承载力的确定
桩基础1
原由
桩侧和桩端阻力的大 小以及它们分担荷载 的比例有很大差异
(二)按使用功能分类 • 当上部结构完工后,承台下部的桩不但要承受上部结 当上部结构完工后, 构传递下来的竖向荷载, 构传递下来的竖向荷载,还担负着由于风和震动作用 引起的水平和力矩,保证建筑物的安全稳定。 引起的水平和力矩,保证建筑物的安全稳定。
(五)按桩径大小分类
(1)小桩:d≤250mm; )小桩: ; (2)中等直径桩:250mm<d<800mm )中等直径桩: < < (3)大直径桩: d≥800mm )大直径桩:
三、桩的施工工艺简介
(一)预制桩 在工厂(或者现场)预制成桩以后再运至现场, 在工厂(或者现场)预制成桩以后再运至现场,在设计桩 位处以沉桩机械沉至地基土中设计深度的施工方法的桩 (1)钢筋混凝土桩 1、预制桩种类 (2)预应力钢筋混凝土桩 (3)钢桩 (1)锤击式 2、预制桩的施工工艺 (2)静压式 (3)振动式
第四章 桩基础
4.1 概述 4.2 桩基础的类型 4.3 桩的承载力 4.4 桩基础设计
第一节 概述
桩基础 桩基) (桩基) 桩体 低桩承台 连接桩顶 的承台
当承台底面 低于地下地 面以下时 当承台底面 高于地面时
相应基础
低承台桩基础
高桩承台
相应基础
高承台桩基础
低承台桩基础
高承台桩基础
一、桩基设计原则
(2)粘性土中单桩竖向承载力:
对于超固结、非灵敏性土(CD)
' ' Qu = u p ∑ σ Vi K si tan φai li + σ Vb ( N q − 1) Ab
桩的竖向承载力——按抗剪强度指标
(3)无粘性土中单桩竖向承载力:
《基础工程》教案(四1——单桩承载力)
黏性土
1 软塑 0.75 I L 1 可塑、硬塑 0 I L 0.75 坚硬 I L 0
中密 密实 中密 密实 中密 密实 中密 密实 中密 密实 中密 密实
黑龙江工程学院
粉土 粉砂、细砂 中砂 粗砂、砾砂 圆砾、角砾 碎石、卵石 漂石、块石
本表采用。
基础工程
第四章 桩基础 之单桩承载力
表 4-2 修正系数 值
hd
桩端土情况 透水性土 不透水性土
4~20 0.70 0.65
20~25 0.70~0.85 0.65~0.72
>25 0.85 0.72
注: h 为桩的埋置深度,取值同式(4-4); d 为桩的设计直径。
表 4-3 清底系数 m0 值
黑龙江工程学院
23
基础工程
第四章 桩基础 之单桩承载力
②
S n 1 2 ,且24h未稳定 Sn
黑龙江工程学院
13
基础工程
第四章 桩基础 之单桩承载力
3、极限荷载和轴向容许承载力的确定 直接计算法 曲线分析法
黑龙江工程学院
14
基础工程
第四章 桩基础 之单桩承载力
①直接计算法——P-S曲线明显转折
破坏荷载
极限荷载 P j 容许荷载
黑龙江工程学院
4
基础工程
第四章 桩基础 之单桩承载力
单桩承载力之单桩轴向容许承载力的确定
计算目的: 1、确定桩长 2、验算桩长
黑龙江工程学院
5
基础工程
第四章 桩基础 之单桩承载力
4.1.1 单桩工作机理
(一) 荷载传递与土对桩的支承力 1、桩顶轴向位移(沉降)=桩身弹性压缩+桩底土层压缩 桩身弹性压缩桩与侧土的相对位移
桩基础设计计算
第四章桩基础的设计和计算桩基础具有承载力高、稳定性好、沉降变形小、抗震能力强,以及能适应各种复杂地质条件的显著优点,是桥梁工程的常用基础结构。
在受到上部结构传来的荷载作用时,桩基础通过承台将其分配给各桩,再由桩传递给周围的岩土层。
当为低承台桩基础时,承台同时也将部分荷载传递给承台周边的土体。
由于桩基础的埋置深度更大,与岩土层的接触界面和相互作用关系更为复杂,所以桩基础的设计计算远比浅基础繁琐和困难。
本章主要依据《铁路桥涵地基和基础设计规范》TB 10002.5-2005(以下简称《铁路桥涵地基规范》)的相关规定介绍铁路桥涵桩基础的设计与计算。
第一节桩基础的设计原则设计桩基础时,应先根据荷载、地质及水文等条件,初步拟定承台的位置和尺寸、桩的类型、直径、长度、桩数以及桩的排列形式等,然后经过反复试算和比较将其确定下来。
在上述设计过程中,设计者必须注意遵守相关设计规范的基本原则和具体规定,因此,在讨论设计计算方法之前,先将桩基础的设计原则介绍如下。
一、承台座板底面高程的确定低承台桩基和高承台桩基在计算原理及方法上没有根本的不同,但将影响到施工难易程度和桩的受力大小,故在拟定承台座板底面高程时,应根据荷载的大小、施工条件及河流的地质、水文、通航、流冰等情况加以决定。
一般对于常年有水且水位较高,施工时不易排水或河床冲刷深度较大的河流,为方便施工,多采用高承台桩基。
若河流不通航无流冰时,甚至可以把承台座板底面设置在施工水位之上,使施工更加方便。
但若河流航运繁忙或有流冰时,应将承台座板适当放低或在承台四周安设伸至通航或流冰水位以下一定深度的钢筋混凝土围板,以避免船只、排筏或流冰直接撞击桩身。
对于有强烈流冰的河流,则应将承台底面置于最低流冰层底面以下且不少于0.25m处。
低承台桩基的稳定性较好,但水中施工难度较大,故多用于季节性河流或冲刷深度较小的河流。
若承台位于冻胀性土中时,承台座板底面应置于冻结线以下不少于0.25m处。
地基基础讲义基础工程桩基础部分
原因:施工不当、桩身材料问题、地下水位变化等
处理方法:加固桩基、更换桩身材料、降低地下水位等
桩基不均匀沉降:采用桩基加固措施,如压力注浆、扩大桩基等
桩基承载力不足:采用补桩、扩大基桩或增加桩基配筋等措施
桩基侧移:采用桩基加固或纠偏措施,如桩基托换、桩基静压等
桩基质量缺陷:采用补强、加固或返工重做等措施
静载试验法:通过加载重物检测桩基础承载力的方法
动力检测法:利用振动原理检测桩基础的完整性和承载力的方法
声波透射法:通过声波传播特性检测桩内是否存在缺陷的方法
钻芯法:通过钻取桩身芯样检测桩基础的混凝土强度和桩身质量的方法
桩身完整性:采用低应变法或声波透射法检测,要求桩身完整、无缺陷
承载力:根据静载试验或高应变法检测,要求达到设计要求的承载力
在城市改造和桥梁工程中,桩基础可以减小对周围环境的影响
适用于各种类型的建筑物,如高层建筑、工业厂房、公路桥梁等
特别适用于地质条件复杂、软弱土层较厚的情况
PART THREE
添加标题
添加标题
添加标题
添加标题
优化设计方案:根据地质勘察资料、荷载要求等因素,优化桩基设计方案,选择合适的桩型、桩径和桩长。
确定单桩承载力特征值
确定桩型与桩径
确定桩的长度与桩数
确定桩身混凝土强度等级
PART Байду номын сангаасOUR
预制桩施工:通过打桩机将预制的桩体打入地下,适用于硬土层和岩层。
树根桩施工:采用小直径钻孔,插入钢筋笼并浇筑混凝土,适用于已有建筑物加固和改造。
锚杆桩施工:将锚杆一端固定在岩层或土层中,另一端与桩体连接,适用于边坡加固和隧道支护。
桩基础由一组或多组桩组成,每根桩通过桩身和桩帽连接在一起
基础工程-赵明华-第四章-桩基础-3
负摩阻计算:经验公式
qsni
n
' i
(一般)
qsni cu
(软土或中等强度粘土)
qsni Ni / 5 3 (砂土)
n— 负摩阻力系数(0.15~0.5),见表4-4; i'— 桩周第iห้องสมุดไป่ตู้土平均竖向有效上覆压力;
cu— 土的不排水抗剪强度,kPa; Ni— 桩周第i层土经杆长修正后的平均标准贯入试验击数
Q
o
s
o
Q
Z
s
4.2 竖向荷载下单桩的工作性能
四、单桩的破坏模式
刺入破坏
桩入土深度较大而桩 周土强度均匀,荷载主要 由桩测摩阻力承受,桩端 阻力可忽略不计。 Q-s曲 线可能为缓变型或陡变型。 承载力以桩侧阻力为主, 由桩顶容许沉降量控制设 计。
Q o
s
Q o
s Z
4.2 竖向荷载下单桩的工作性能
4.1 概 述
五、桩基设计原则
所有桩基均应进行承载能力计算
桩基竖向承载力(抗压、抗拔及负摩阻)、水平承载力计算 桩端平面以下软弱下卧层验算 桩基抗震承载力计算 桩身结构设计(预制桩吊运和沉桩强度验算、桩身压屈验算、
钢管桩局部压屈验算、岸坡桩稳定性验算等) 桩基尚应进行变形验算 桩端平面以下存在软弱土层、体型复杂且荷载分布显著不均
中性点的位置取决于桩-土 间的相对位移,并与桩端阻 所占荷载比例有关,通常可 取中性点深度ln与桩周变形土
层下限深度l0之比为b,则 ln = b l0。一般b =0.5~1.0(基 岩上的桩b 取1.0)
Ⅰ
桩侧土下
沉曲线 摩阻力分
桩下沉 布曲线 Ⅱ 曲线
桩底下沉
有负摩阻力时的荷载传递
基础工程-第4章 桩基础-
桩顶荷载一般包括轴向力、水平力和力矩,为简化 起见,在研究桩的受力性能及计算桩的承载力时,对 竖向受力情况单独进行研究。
4.3.1 桩的荷载传递
竖向荷载施加于桩顶时,桩身的上部 首先受到压缩而发生相对于土的向下位 移,于是桩周土在桩侧界面上产生向上 的摩阻力;荷载沿桩身向下传递的过程 就是不断克服这种摩阻力并通过它向土 中扩散的过程 。 如果桩侧摩阻力不足以抵抗竖向荷载, 一部分竖向荷载将传递到桩底,桩底持 力层也将产生压缩变形,故桩底土也会 对桩端产生阻力。
4.4 单桩竖向承载力的确定
单桩的承载力: 是指单桩在竖向荷载作用下,不丧失稳定性、不产生过 大变形时的承载能力。 单桩的竖向承载力主要取决于两方面: 一是地基土对桩的支承能力; 二是桩身的材料强度。 一般情况下,桩的承载力由地基土的支承能力所控制, 材料强度往往不能充分发挥,只有对端承桩、超长桩以及 桩身质量有缺陷的桩,桩身材料强度才起控制作用。
(1)静载荷试验装置及其方法:
试验装置主要由加荷稳压、提供反力和沉降观测三部分组成。
主梁
千斤顶 百分表 次梁 锚筋 锚桩
基准柱
试验时加载方式通常 有慢速维持荷载法、快 速维持荷载法、等贯入 速率法、等时间间隔加 载法以及循环加载法。 锚桩桁架法 工程中最常用的是慢速维持荷载法,即逐级加载,每级 加载值为单桩承载力特征值的1/8-1/5,当每级荷载下桩顶 沉降量小于0.1mm/h时,则认为已趋于稳定。然后施加下 一级荷载直到试桩破坏,再分级卸载到零。
4.3 竖向荷载下单桩的工作性能
本节重点: 竖向荷载作用下单桩的工作性能。
本节难点: 单桩的破坏模式已及单桩承载力的确定。
4.3 竖向荷载下单桩的工作性能
单桩工作性能的研究是单桩承载力分析理论的基础, 通过桩土相互作用分析,了解桩土间的传力途径和单 桩承载力的构成及其发展过程,以及单桩的破坏机理 等,对正确评价单桩承载力设计值具有一定的指导意 义。
第四章桩基础三
验资料时可按表4.4-2取值;
21
x0 a—桩顶(承台)的水平位移允许值,当以位移控
制时,可取 =10mm(对水平位移敏感的结构物 取 =6mm);当以桩身强度控制(低配筋率灌注 桩)时,可近似按前述式(4.4.2-9)确定;
Bc— ' 承台受侧向土抗力一边的计算宽度;
Bc— 承台宽度;
hc— 承台高度;
终止试验的条件:
当桩身折断或水平位移超过30~40mm(软土取 40mm)或水平位移达到设计要求的水平位移允许 值时,可终止试验。
6
3.单桩水平临界荷载和极限荷载的确定
根据试验数据可绘制荷载一时间一位移H t Y曲0 线(图 6-12)和荷载一位移梯度 H 曲Y0线H(图6-13),据此
可综合确定单桩水平临界荷载 与极限H荷cr 载 。
5
桩的水平变形系数 (1/m): mb0
EI
(4.4.2-2)
m --桩侧土水平抗力系数的比例系数
(MNm/ 4 ),该系数为地面以下2(d+1) m深度内各土 层的综合值;宜通过单桩水平静载试验确定,当桩 顶自由且水平力作用位置位于地面处,计算公式 为:
13
m
(
H cr xcr
x
b0 (EI )2
r— 桩顶约束效应系数(桩顶嵌入承台长度50~
100mm时),按表4.4-3取值;
l— 承台侧向土抗力效应系数(承台侧面回填土为
松散状态时取 )0;
— b
l
承台底摩阻效应系数;
sa / d— 沿水平荷载方向的距径比;
n,1 n—2 分别为沿水平荷载方向与垂直水平荷载方
向每排桩中的桩数;
m— 承台侧面土水平抗力系数的比例系数,当无试
桩基础
五、按桩径大小分类:
1、小直径桩。d≤250mm,多用于基础加固的数根桩或静压 锚杆托换桩及复合桩基础。 2、中等直径桩。 250< d<800mm 3、大直径桩。d≥800mm。
六、按承台位置分类
高承台桩 低承台桩
单桩基础
群桩基础
• 基桩
复合基桩
七、质量检验 • • • • 开挖检查 抽芯法 声波检测法 动测法
2、灌注桩。 在现场开孔,灌注成型。材料使用混凝土或钢筋混凝土。 a.优点: 1)不需预先制作和运输。适用于当地无砼预制厂和交通不便 的地区。 2)可根据桩身内力大小,分段配筋或不配筋以节约钢材。 3)可做成大直径灌注桩提高承载力。 4)无如预制桩打桩时的振动和噪音。 b.缺点:易造成缩颈。
c.据开孔方法和所用机具不同,可分为:
4.3 单桩轴向荷载的传递
1. 桩身轴力和截面位移 2. 桩侧负摩阻力和桩端阻力 3. 端承型桩和摩擦型桩
4. 桩侧负摩阻力
一.桩身轴力和截面位移
• 长度为L的竖直单桩在桩顶轴向力N0=Q作用下,于桩身任一深 度Z处横截面上所引起的轴力Nz将使截面下桩身压缩、桩端下 沉δl ,致使该截面向下位移了δz。由于桩顶轴力Q沿桩身向下通 过桩侧摩阻力逐步传给桩周土,因此轴力Nz就随深度递减。桩 底轴力Nl,即桩端轴力Qp = Nl,而桩侧总阻力Qs=Q- Qp。桩身 截面位移δz应为桩顶位移δ0 =s与Z深度范围内的桩身压缩量之 差。
第4章 桩基础及其他深基础
4.1. 概述 4.2. 桩的类型 4.3. 单桩轴向荷载的传递 4.4. 单桩竖向承载力的确定 4.5. 群桩效应 4.6. 桩基承载力和沉降验算 4.7. 桩的水平承载力与位移 4.8. 桩基础设计
基础工程第四章桩基础(1)
方法1. 静载荷试验(实图) 静载荷试验是评价单桩
承载力诸法中可靠性较高的 一种方法。
缺点: 时间长;费用高。 广东最大可加载3000t。
主梁
次梁
加压
千斤顶 沉降 观测点
试验桩
(a)
锚桩 (4根)
重物
支墩
千斤顶 加压
沉降 观测点
试验桩
(b)
图4-11 单桩静载荷试验的加荷装置
(a)锚桩横梁反力装置;(b)压重平台反力装置
甲级、丙级以外的建筑;
丙级 场地和地基条件简单、荷载分布均匀的七层及七层以的一般建筑 。
功能重要、荷载大、重心高、风载和地震作用效应大 荷载和刚场度地分、布环极境为条不件均特,殊对差异沉降适应能力差
第4章 桩基础
(三)桩基计算规定 1、应根据桩基的使用功能和受力特征分别进行桩基的
竖向承载力和水平承载力计算; 2、桩身(含桩身压曲、钢管桩局部压曲)和承台结构
二、桩基设计原则 (一)桩基的极限状态
1.承载能力极限状态 :对应于桩基达到最大承载力导致整体 失稳或发生不适于继续承载的变形。
2.正常使用极限状态:对应于桩基达到建筑物正常使用所规定 的变形限值或达到耐久性要求的某项 限值。
第 4章 桩 基 础
(二)建筑桩基设计等级划分
设计
建筑类型
等级
甲级 乙级
承载力计算; 3、软弱下卧层验算; 4、坡地、岸边桩基整体稳定性验算;
5、抗浮、抗拔桩基的抗拔承载力(基桩和群桩)验算;
6、抗震设防区抗震承载力验算。
第4章 桩基础
(四)应计算沉降的桩基 1、设计等级为甲级的非嵌岩桩和非深厚坚硬持力层
的建筑桩基 ; 2、设计等级为乙级的体型复杂、荷载分布显著不均匀
第4章__桩基础-3(4-7)
预制桩、钢桩
灌注桩
序 号
地基土类别
m (MN/m 4 )
相应单桩在地 面 处水平位移 (mm)
m (MN/m 4 )
相应单桩在 地 面处水平 位移 (mm)
1
淤泥、淤泥质土,饱和湿陷性黄土
2-4.5
10
2.5-6
6-12
流塑 (I L > 1) 、软塑 (0.75 < I L ≤
4.5-6.0
10
2 1) 状粘性土, e > 0.9 粉土,松散粉细 砂,松散填土
身不发生破坏。
24
(2)弹性桩
2.5< h <4时为半刚性桩。h ≥ 4 时为柔性桩。半刚性桩
和柔性桩统称为弹性桩。
• 在水平荷载作用下桩身发生挠曲变形, 桩的下段可视为嵌固于土中而不能转 动,随着水平荷载的增大,桩周土的 屈服区逐步向下扩展,桩身最大弯矩 截面也因上部土抗力减小而向下部转 移,
• 半刚性桩的桩身Байду номын сангаас移曲线只出现一个 位移零点
8
4.5 桩的负摩擦问题
一、 产生负摩擦的条件和原因
在桩顶竖向荷载作用下,当桩相对于桩侧 土体向下位移时,土对桩产生的向上作用 的摩阻力,称为正摩阻力。
当桩侧土体因某种原因而下沉,且其下 沉量大于桩的沉降(即桩侧土体相对于桩 向下位移)时,土对桩产生的向下作用 的摩阻力,称为负摩阻力。
9
产生负摩阻力的情况
• 为了简化,可根据桩顶荷载H0、M0及桩的变形
系数a计算如下系数:
• 由得系相数应的CI从换表算4深—度7查
h z
• 则桩身最大变 弯矩的深度为:
zmax
h
37
第四章 桩基础
第四章桩基础§4.1概述4.1.1桩基础的使用深基础:埋深较大,以下部坚实土层或岩层作为持力层的基础。
深基础的作用:把所承受的荷载相对集中地传递到地基的深层。
深基础何时采用:建筑场地的浅层土质不能满足建筑物对地基承载力和变形的要求;又不适于采取地基处理措施时。
深基础的类型:桩基础,地下连续墙,沉井等。
承台:将几个桩结合起来传递荷载4.1.2桩基础的类型桩基础的类型(按承台与地面相对位置的高低):①高承台桩基础承台底面位于地面以上,桥桩,码头,栈桥②低承台桩基础承台底面位于地面以下,承台本身承担部分荷载(注:工民建,低承台桩基础,竖直桩;桥梁港湾海洋构筑物,高承台,斜桩,承受较大水平荷载)4.1.3桩基设计原则桩基础的设计应按变形控制设计。
桩基础设计时,上部结构传至承台上的荷载效应组合与浅基础相同。
桩基础设计满足的基本条件:①单桩承受的竖向承载力不应超过单桩竖向承载力特征值;②桩基础的沉降不得超过建筑物的沉降允许值;③对位于坡地岸边的桩基础应进行稳定性验算。
4.1.4桩基设计内容七个基本内容:①桩基础的类型和几何尺寸的选择;②单桩竖向(和水平向)承载力的确定;③确定桩的数量、间距和平面布置;④桩基础承载力和沉降验算;⑤桩身结构设计;⑥承台设计;⑦绘制桩基础施工图。
§4.2桩的类型4.2.1桩的分类(三种分类方式)①按承载性状分类(荷载传递方式)和竖向受力情况:分类依据:根据桩侧与桩端阻力的发挥程度和分担荷载比例的不同。
摩擦型桩——摩擦型桩——端承摩擦桩端承型桩——端承型桩:桩顶竖向荷载由桩侧阻力和桩端阻力共同承受,但桩端阻力分担较多,其桩端一般进入中密以上的砂类、碎石类土层,或位于中等风化、微风化及新鲜基岩顶面。
(此类桩侧摩阻力属次要,不可忽略)——摩擦端承型桩②按施工方法分类:预制桩——在工厂或施工现场制成的各种形式的桩,如锤击桩、振动桩、静压桩等。
灌注桩——在施工现场的桩位上用机械或人工成孔,然后在孔内灌注混凝土而成。
桩基础.12
桩基技术现状
(1)单桩设计承载力越来越大
(2)向小桩发展
(3)复合地基理论、疏桩理论、桩基与上部结
构共同作用理论等 (4)新品种、新工艺不断发展
桩基技术发展趋势
(1).可靠而有效的方法将代替费时、费钱的现场 静载试验,无公害施工技术将代替现在伴随有振动、 噪音、排土以及污染等的成桩工艺,特别是自动化将 在桩基施工中显示它的非凡作用。 (2).工程实践中涌现出新的支护结构和深基础, 例如桩墙、格栅状群桩护壁、圆筒式环型支护结构等 将在桩基设计和施工中被进一步分析、论证和完善。
优点:
造价低,管内无水作业桩身砼质量好;
缺点:
产生缩颈、夹土、断桩,因挤土效应,相邻桩可能破坏
防治措施:
•控制拔管速度,快振慢拔;
2)钻(冲)孔灌注桩:
先用机械方法取土成孔,然后清除孔底残渣土,安放钢筋笼,浇 灌混凝土而形成灌注桩。 它包括各种钻孔灌注桩、振动沉管灌注桩和 干作业法(螺旋钻、钻斗及人工挖孔等)。 (1)适合各类地层成桩,钻孔桩的桩长、桩径不受限,但沉管桩 因挤土量大桩长、桩径将受到一定限制; (2)没有接桩的问题,桩的耐久性好; (3)桩身配筋比钢筋混凝土预制桩少,单桩承载力高; (4)可实施扩底或支盘,以增大单桩的竖向承载力; (5)对于水下导管法灌注桩,混凝土灌注工艺及操作技术较复杂。 如需要提高单桩承载力,可采用扩底桩,即在钻机成孔后,撑开 钻头的扩孔刀刃使之旋转切土扩大桩孔,浇灌混凝土后在底端形成扩 大桩端,但扩底直径不宜大于3倍桩身直径。
本节 结 束
ξ4-2 桩的分类
1桩基础的分类:桩基础按桩的数量可分为单桩基础、群桩
基础;按承台位置分:低承台及高承台桩基础.
2 桩的分类 1.按承载性状可分 2.施工方法可分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 计算荷载作用下的桩基沉降和水平位移时, 应采用荷载效应准永久组合;计算水平地震 作用、风载作用下的桩基水平位移时,应采 用水平地震作用、风载效应标准组合。
3 验算坡地、岸边建筑桩基的整体稳定性时, 应采用荷载效应标准组合;抗震设防区,应 采用地震作用效应和荷载效应的标准组合。
河北工业大学 土木与交通学院 王贵君
15
4 在计算桩基结构承载力、确定尺寸和配筋时, 应采用传至承台顶面的荷载效应基本组合。 当进行承台和桩身裂缝控制验算时,应分别 采用荷载效应标准组合和荷载效应准永久组 合。
5 桩基结构设计安全等级、结构设计使用年限
和结构重要性系数0应按现行有关建筑结构规
范的规定采用,除临时性建筑外,重要性系
数0不应小于1.0。
河北工业大学 土木与交通学院 王贵君
6
➢可考虑采用桩基础方案的情况
➢ 软弱地基或某些特殊土地基上的各类永久建筑物, 不允许有过大沉降和不均匀沉降时
➢ 高重建筑物,地基承载力不能满足要求时
➢ 对桥梁、码头、烟囱、输电塔等结构物,宜采用桩 基以承受较大的水平力和上拔力时
➢ 对精密或大型的设备基础,需要减小基础振幅,减 弱基础振动对结构的影响时
河北工业大学 土木与交通学院 王贵君
5
➢桩基础特点
➢ 将荷载传递到下部较坚硬土层,承载力高 ➢ 沉降量小 ➢ 穿过液化层,抗震性能好 ➢ 承受抗拔(抗滑桩)及横向力(如风载荷),稳定
性好 ➢ 与其他深基础相比,造价低 ➢ 桩基础有较强的适应能力,灵活性好
造价比浅基础高 施工工艺比浅基础复杂 打入桩有振动与噪音问题,钻孔桩有环境问题
18
桩的分类
➢按桩体材料分类 木桩:现用于抢险、临时加固等 混凝土桩:由素混凝土、钢筋混凝土或预 应力钢筋混凝土制成的桩 钢桩:采用钢材制成的管桩和H型钢桩 复合材料桩:由两种材料组合而成的桩, 如钢管混凝土桩
根据建筑物规模、功能特征、对差异变形的适应性、场地地基和 建筑物体形的复杂性以及由于桩基问题可能造成建筑破坏或影响 正常使用的程度,将桩基设计分为下表所列的三个设计等级。
设计等级 甲级
建筑类型
(1)重要的建筑; (2)30层以上或高度超过100m的高层建筑; (3)体型复杂且层数相差超过10层的高低层含 纯地下室)连体建筑; (4)20层以上框架-核心筒结构及其他对差异 沉降有特殊要求的建筑; (5)场地和地基条件复杂的7层以上的一般建筑 及坡地、岸边建筑; (6)对相邻既有工程影响较大的建筑
基础工程
河北工业大学土木与交通学院 王贵君 博士·教授 Email:guijun2001@
低承台桩基础与高承台桩基础
低承台桩基础
高承台桩基础
河北工业大学 土木与交通学院 王贵君
4
➢ 桩基础=承台+桩
➢ 承台——浅基础的各种类型:柱下独立基础、 柱下条基、墙下条基、筏板基础、箱形基础
河北工业大学 土木与交通学院 王贵君
8
➢桩基设计原则
➢桩基础应按下列两类极限状态设计:
1 承载能力极限状态:桩基达到最大承载能力、 整体失稳或发生不适于继续承载的变形;
2 正常使用极限状态:桩基达到建筑物正常使 用所规定的变形限值或达到耐久性要求的某 项限值。
河北工业大学 土木与交通学院 王贵君
9
乙级 除甲级、丙级以外的建筑
丙级
场地和地基条件简单、荷载分布均匀的7层及以 下的一般建筑
河北工业大学 土木与交通学院 王贵君
10
➢桩基应根据具体条件分别进行下列承载能力 计算和稳定性验算:
1 应根据桩基的使用功能和受力特征分别进行 桩基的竖向承载力计算和水平承载力计算;
2 应对桩身和承台结构承载力进行计算;对于 桩侧土不排水剪切强度小于10kPa且长径比大 于50的桩,应进行桩身压屈验算;对于混凝 土预制桩,应按吊装、运输和锤击作用进行 桩身承载力验算;对于钢管桩,应进行局部 压屈验算;
➢应根据桩基所处的环境类别和相应的裂缝控 制等级,验算桩和承台正截面的抗裂和裂缝 宽度。
河北工业大学 土木与交通学的作用效应组合与相应 的抗力应符合下列规定:
1 确定桩数和布桩时,应采用传至承台底面的 荷载效应标准组合;相应的抗力应采用基桩 或复合基桩承载力特征值。
➢ 在地震区,以桩基作为结构抗震措施或穿越可液化 地层时
➢ 施工水位较高或河床冲刷较大,采用浅基础施工困 难或不能保证基础安全时。
河北工业大学 土木与交通学院 王贵君
7
➢桩基础设计内容
➢选择桩的类型和几何尺寸 ➢确定单桩竖向、水平向承载力特征值 ➢确定桩的数量、间距与布桩方式 ➢验算桩基承载力和沉降 ➢桩身结构设计 ➢承台设计 ➢绘制施工图
6 当桩基结构进行抗震验算时,其承载力调整
系数RE应按现行国家标准《建筑抗震设计规
范》(GB 50011)的规定采用。
河北工业大学 土木与交通学院 王贵君
16
➢《建筑桩基技术规范》(JGJ 94-2008)还 规定了以减小差异沉降和承台内力为目标的 变刚度调平设计的原则。(略)
➢软土地基上的多层建筑物,当天然地基承载 力基本满足要求时,可采用减沉复合疏桩基 础。
➢对于应进行沉降计算的建筑桩基,在其施工 过程及建成后使用期间,应进行系统的沉降 观测直至沉降稳定。
河北工业大学 土木与交通学院 王贵君
17
4.2 桩和桩基的分类与质量检测
➢单桩基础 ➢群桩基础——桩基 ➢桩基中的单桩——基桩 ➢桩基分类:
低承台桩基 高承台桩基
河北工业大学 土木与交通学院 王贵君
河北工业大学 土木与交通学院 王贵君
11
3 当桩端平面以下存在软弱下卧层时,应进行 软弱下卧层承载力验算;
4 对位于坡地、岸边的桩基,应进行整体稳定 性验算;
5 对于抗浮、抗拔桩基,应进行基桩和群桩的 抗拔承载力计算;
6 对于抗震设防区的桩基,应按进行抗震承载 力验算。
河北工业大学 土木与交通学院 王贵君
12
下列建筑桩基应进行沉降计算:
1 设计等级为甲级的非嵌岩桩和非深厚坚硬持 力层的建筑桩基;
2 设计等级为乙级的体型复杂、荷载分布显著 不均匀或桩端平面以下存在软弱土层的建筑 桩基;
3 软土地基多层建筑减沉复合疏桩基础。
河北工业大学 土木与交通学院 王贵君
13
➢对受水平荷载较大,或对水平位移有严格限 制的建筑桩基,应计算其水平位移。