小学数学应用题解题思路及方法
小学数学应用题解题思路及方法(大全)ppt课件
01应用题概述与分类Chapter应用题定义及重要性定义重要性常见类型与特点分析类型特点分析01020304认真审题,理解题目中的条件和要求。
理解题意根据题目中的条件,分析数量之间的关系,找出解题的关键。
分析数量关系根据数量关系列出算式,并进行计算。
列式计算将计算结果代入原题进行检验,确保答案正确。
检验答案解题思路总述02基础知识储备与运用Chapter01020304加法交换律和结合律乘法交换律和结合律减法性质与运算除法性质与运算运算规则掌握认识基本图形图形的变换与运动空间观念建立030201图形空间观念培养数据处理能力提升数据收集与整理数据表示与分析概率初步认识统计与决策03典型例题详解与技巧分享Chapter01题目小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?02解题思路这是一个简单的加法问题,只需要将小明和小红的苹果数量相加即可。
03解题步骤5 + 3 = 8,所以他们一共有8个苹果。
04题目小华买了7本书,又买了5本书,现在小华一共有多少本书?05解题思路同样是一个加法问题,需要将小华两次买的书的数量相加。
06解题步骤7 + 5 = 12,所以现在小华一共有12本书。
一个班级有4组,每组有8个学生,这个班级一共有多少个学生?题目这是一个乘法问题,需要将组数和学生数相乘得到总人数。
解题思路4 ×8 = 32,所以这个班级一共有32个学生。
解题步骤这是一个减法问题,需要将总份数减去小明吃掉的份数。
解题思路一块蛋糕被切成了8等份,小明吃了其中的2份,还剩下多少份?题目8 -2 = 6,所以还剩下份蛋糕。
解题步骤分数、百分数应用题举例题目,还剩解题思路解题步骤米,题目一件衣服原价现价是多少元?解题思路解题步骤打折后的价格是04创新思维训练与拓展提高Chapter一题多解策略探讨激发学生思维灵活性通过展示多种解题方法,引导学生从不同角度审视问题,提高思维灵活性。
拓宽解题思路鼓励学生探索多种解题思路,培养发散性思维,拓宽解题视野。
小学六年级数学应用题解题技巧
小学六年级数学应用题解题技巧数学应用题是小学生学习数学的一大难点,它要求学生将数学知识应用到实际问题中,对于孩子们来说,这是一项挑战。
为了帮助小学六年级的学生们更好地解题,下面将介绍一些解题技巧和方法。
一、认真审题在解题之前,首先要认真审题。
理解题目的意思对于正确解题至关重要。
可以通过画图、划分关键词、拆解句子等方法来帮助理解题意。
如果遇到较长的问题,可以先把问题简化,逐步分析解决。
二、确定解题思路审题之后,我们需要确定解题思路。
这个过程需要根据题目的特点和要求进行选择。
常见的解题思路包括:设未知数、列方程、找规律、逆向思维等。
根据题目的具体要求,我们选择合适的思路来解决问题。
三、灵活使用图表和图形解决数学应用题时,图表和图形是非常有用的工具。
在解题过程中,可以用图表或者图形来帮助我们更好地理解问题,并找到解题的线索。
例如,可以用条形图或者折线图来表示数据,通过观察图表中的关系,可以更好地解决问题。
四、注意单位和精确度在解题过程中,我们要注意单位和精确度的问题。
有些题目可能会涉及到将不同的单位进行转换,在计算过程中要保持一致。
同时,在结果的表达上,要注意精确到合适的位数。
这样可以避免计算错误和结果不准确的问题。
五、多练习,反复推敲学习数学需要不断的练习和巩固,数学应用题也不例外。
要养成多做题、多思考的习惯。
遇到难题时,不要轻易放弃,可以多尝试,反复推敲。
通过反复练习和思考,掌握解题的技巧和方法。
六、合理规划时间小学六年级数学应用题有一定的难度,所以合理规划时间也非常重要。
不要过分担心时间紧迫而草率行事,也不要浪费时间在一个问题上。
在做题之前,可以将时间分配给不同的题目,根据题目的难度和所需时间来安排解题顺序。
七、与他人讨论、交流在解答数学应用题的过程中,与他人讨论和交流可以帮助我们更深入地理解问题,发现解题的不同思路和方法。
可以与同学、老师或者家人进行讨论,互相交流解题思路和经验。
八、坚持思考、不放弃在解题过程中,也许会遇到一些较难的问题,但是我们不能轻易放弃。
小学数学应用题解题思路及方法
小学数学应用题解题思路及方法30类典型应用题:1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少元2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?3、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
4、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?5、小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?6、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?3、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2 小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
7、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?8、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
如何快速解决小学数学应用题以及解题思路
如何快速解决小学数学应用题以及解题思路小学数学应用题是很多小朋友失分最多的题,但其实,小学数学的知识点也不是很多,所以,平时家长们可以多让孩子读题目,理解题意。
这里给大家分享一些小学数学应用题的解题思路,希望对大家有所帮助。
小学数学应用题解题思路1、简单应用题(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2) 解题步骤:a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。
读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。
也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。
从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。
如果发现错误,马上改正。
2、复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
答案:根据计算的结果,先口答,逐步过渡到笔答。
( 7 ) 解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
小学三年级数学教学中的应用题解题技巧
小学三年级数学教学中的应用题解题技巧在小学三年级数学教学中,应用题是一个重要的部分。
应用题不仅考察学生对数学知识的掌握程度,还培养了学生的逻辑思维和解决问题的能力。
然而,许多三年级的学生在解应用题时常常感到困惑。
本文将介绍几种解应用题的技巧,帮助三年级学生更好地解题。
1. 理解问题:在解应用题之前,首先要全面理解问题的意思。
仔细阅读题目,将问题中的信息进行整理,了解问题所涉及的知识点。
可以使用图表、关键词等方法将问题的要点整理清楚。
2. 分析问题:将问题逐步分解,找出问题中的关键信息。
根据问题所给的条件,进行数据的整理和归类。
在进行计算之前,要弄清楚所需求的是什么,思考应该用什么方法进行计算。
可以画图或者列算式来帮助更好地分析问题。
3. 使用举例法:对于一些复杂的应用题,学生可以运用举例法来解决。
从合适的数值入手,用具体的数值进行计算和解释。
通过运算符和关键词,得出规律性的结论,再将结论应用到问题的解答中。
这样可以帮助学生更好地理解问题和解题的思路。
4. 利用图表:对于一些需要对比和统计的问题,可以使用图表来更好地解答。
学生可以根据问题中所涉及的数据,绘制图表,进行直观的比较和分析。
图表可以是柱状图、折线图等,选择合适的图表形式有助于理清问题的思路。
5. 建立方程:对于一些需要求解未知数的问题,可以尝试建立方程来解答。
根据问题中所给的条件,用变量代表未知数,列出方程,解方程求解。
这种方法对于一些关系型问题和变量间的等价关系问题非常有用。
6. 反复练习:解应用题需要通过反复练习来掌握技巧。
让学生多做类似的应用题,熟悉不同类型问题的解题思路和方法。
通过不断练习,学生可以提高解题的速度和准确性。
在小学三年级数学教学中,应用题是一个不可忽视的部分。
通过掌握应用题解题技巧,学生可以更好地应用数学知识解决实际问题。
教师在教学中应注重培养学生的综合运用能力,引导学生从多个角度思考问题,并正确运用解题技巧,提高解题的效率和准确性。
小学数学应用题解题技巧与思路
小学数学应用题解题技巧与思路“直接思路”是解题中的常规思路。
它一般是通过分析、综合、归纳等方法,直接找到解题的途径。
【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。
这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。
例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。
(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。
(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。
(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。
(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离?这个分析思路可以用下图(图2.1)表示。
例2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。
(1)左端点是A的线段有哪些?有AB AC AD AE AF AG共6条。
(2)左端点是B的线段有哪些?有BC、BD、BE、BF、BG共5条。
小学应用题解题思路和方法
小学应用题解题思路和方法小学应用题是指能够通过运用所学知识和思考解决实际问题的数学题目。
小学生在学习数学的过程中应该注重应用题的训练,通过解决应用题不仅可以巩固所学的知识,还可以培养学生的逻辑思维能力和实际问题解决能力。
下面将介绍一些解决小学应用题的思路和方法。
1.阅读题目,理解问题:首先,小学生需要仔细阅读题目,并确保自己理解了问题的意思。
可以在读题的过程中划出关键信息,弄清楚问题所涉及的数学概念和操作,明确求解的目标。
2.找出已知条件:在理解问题的基础上,需要找出已知条件。
已知条件是解答问题所必需的信息,它们通常以文字、图表或图形等形式给出。
可以用不同颜色的笔或者划线的方式标记出已知条件。
3.确定所需求解的量:根据题目的要求,确定需要求解的量是什么。
有时,问题会直接给出所求的答案,有时需要通过运算来求解。
4.找到解题思路:在了解问题和已知条件的基础上,需要思考如何设置求解的步骤和方法。
可以通过列方程式、画图表、制作模型等方式寻找解题思路。
5.运用所学知识解题:根据已知条件和解题思路,运用所学的知识进行计算。
可以选择适当的运算符号和方法,例如加减乘除、分数、百分数、比例等。
6.检查答案的合理性:完成计算后,需要检查答案的合理性。
可以通过逻辑推理、估算、逆运算等方式确定答案是否合理。
如果答案不合理,可以重新检查解题过程。
7.总结和反思:在解答完题目后,可以进行总结和反思。
可以回答一些问题,例如:题目的分析和解答过程中遇到了哪些困难?有什么新的思考和发现?如果再遇到类似的问题,可以运用什么样的方法解决?以上是解决小学应用题的基本思路和方法。
在实际解题中,需要综合运用数学的各个知识点和技巧,同时培养自己的逻辑思维能力和问题解决能力。
通过不断的练习和思考,相信小学生可以越来越熟练地解决各种应用题。
小学数学应用题及解答方法大全
小学数学应用题及解答方法大全超人资讯百家号06-0921:40小学数学除了简单的计算,到了小学高年级阶段,开始出现应用题。
应用题是把含有数量关系的实际问题用文字叙述出来所形成的题目。
下面是小编为大家整理的小学数学应用题大全。
1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1、买5支铅笔要元钱,买同样的铅笔16支,需要多少钱?例2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?例3、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】 1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1、服装厂原来做一套衣服用布米,改进裁剪方法后,每套衣服用布米。
原来做791套衣服的布,现在可以做多少套?例2、小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?例3、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷ 2 小数=(和-差)÷ 2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
小学数学六年级应用题13种类型解题方法
解题方法一:直观化问题有些应用题可能会给出一个具体的场景,我们可以通过直观化问题来解决它。
比如,一个篮子里有苹果、梨子和橙子,苹果比梨子多两倍,橙子比梨子少3个,篮子里一共有15个水果,那么各种水果的数量分别是多少?我们可以通过直观化问题,用图表的形式来辅助解决。
解题方法二:列方程有些应用题可能无法直接看出关系,但我们可以通过列方程来建立关系。
比如,小明和小红一起骑自行车迎面而来,小明的速度是10千米/小时,小红的速度是8千米/小时,两人相距60千米,什么时候两人能够相遇?我们可以通过列方程来解决这个问题。
解题方法三:进行逆向思维有些应用题可能通过逆向思维来解决。
比如,小明现在拥有了100元,他想买一本书,但他还需要15元才能够买到,他打算用每天10元的零花钱来积攒足够的钱,问他需要多少天?我们可以通过逆向思维,从目标价钱出发,逐步推算回去。
解题方法四:分情况讨论有些应用题可能包含多个条件,我们需要分开讨论不同情况。
比如,小明有100元,他想买一本书,书的价格有两个档次,A档次每本50元,B档次每本80元,他至少要买一本A档次的书,同时还可以买一本B档次的书,问他最多能够买多少本书?我们可以分情况讨论,一种情况是只买A档次的书,另一种情况是同时买A档次和B档次的书。
解题方法五:利用等差或等比数列有些应用题可能可以用等差或等比数列的性质来解决。
比如,小明每天扔掉一半的花,第一天扔掉一朵,第二天扔掉两朵,第三天扔掉四朵,以此类推,问第五天共扔掉了多少朵花?我们可以通过等比数列的性质来解决。
解题方法六:利用图形的性质有些应用题可能可以利用图形的性质来解决。
比如,一个直角三角形的两条直角边长的比是3:4,面积是60平方单位,求三角形的周长和斜边的长。
我们可以通过利用直角三角形的性质来解决。
解题方法七:利用比例关系有些应用题可能可以利用比例关系来解决。
比如,小王爸爸做17天的工作可以挣700元,小王妈妈做25天的工作可以挣900元,小王爸爸和小王妈妈一起工作了多少天可以挣到500元?我们可以通过利用比例关系,建立方程来解决。
四年级应用题解题思路和方法
四年级应用题解题思路和方法
四年级应用题是孩子们在数学学习过程中常见的题型,通过解题可以帮助孩子们巩固数学知识,提高逻辑思维和问题解决能力。
下面将介绍一些解题思路和方法。
首先,要仔细阅读题目。
理解题目的意思是解题的第一步,孩子们需要明确题目所给的条件和要求,明确解题的目标。
其次,可以通过画图或者制表的方式来帮助解题。
对于一些几何问题,可以利用画图的方式更直观地理解题意,并帮助孩子们找到解题的方法。
对于一些数据问题,可以制表来整理数据,从中找到规律。
另外,孩子们可以尝试通过逆向思维来解决问题。
即从题目给出的结果出发,思考如何得到这个结果。
这样可以培养孩子们的逻辑思维能力,提高问题解决的灵活性。
再者,可以尝试用不同的方法来解题。
有时候,一个问题可以有多种解法,孩子们可以通过尝试不同的方法来寻找最有效的解题方法。
最后,要培养孩子们的自学能力。
四年级的应用题难度逐渐增加,孩子们需要学会独立思考和解决问题。
家长可以鼓励孩子们自己思考和尝试解答问题,帮助他们建立自信心和解决问题的信心。
总之,解题思路和方法对于四年级的应用题非常重要。
通过培养孩子们的理解能力、逻辑思维和问题解决能力,可以帮助他们更好地应对数学学习中的应用题,并为日后数学学习打下坚实的基础。
小学数学应用题解题思路及方法
小学数学应用题解题思路及方法小学数学应用题是指将数学知识应用于实际生活问题的题目。
这类题目要求学生能够理解问题背景,运用数学知识解决问题,并在解题过程中培养学生的逻辑思维能力和实际问题解决能力。
本文将介绍一些常见的小学数学应用题解题思路及方法。
一、读懂题目解决任何问题的第一步是仔细阅读题目,确保完全理解题意。
特别是对于应用题而言,理解问题的背景和条件非常重要。
掌握题目的关键信息有助于建立正确的解题思路。
二、确定解题过程每个数学应用题都有一个解题过程,学生需要明确解题的步骤。
例如,一些问题需要先确定未知数,然后建立方程式,最后解方程式求解未知数。
而对于另一些问题,学生需要根据条件进行分类、比较或计算。
明确解题过程有助于学生把握整个解题过程的思路和步骤。
三、分析问题在解决数学应用题时,学生需要对问题进行细致的分析。
这包括提取关键信息、确定数学关系、寻找规律等。
通过分析问题,学生可以建立正确的数学模型,并能够准确地运用数学知识解决问题。
四、运用适当的数学方法在解决数学应用题时,学生需要选择并运用适当的数学方法。
这需要学生掌握一定的数学基础知识,并能够灵活运用它们。
常见的数学方法包括四则运算、比例、百分数、图形的面积和体积计算等。
根据问题的要求,选择适当的方法能够更快、更准确地解决问题。
五、试错和检查解决数学应用题时,学生应通过试错和检查来验证解题过程和答案的正确性。
试错和检查是解题过程中重要的环节,能够帮助学生发现和纠正错误,并提高解决问题的准确性。
六、练习和实践解决数学应用题需要不断的练习和实践。
通过反复做题,学生可以熟悉各种题型,积累解题经验,并逐渐提高解题效率和准确率。
此外,学生还可以尝试解决一些实际生活中的问题,如购物计算问题、时间计算问题等,这样可以培养学生用数学解决实际问题的能力。
七、合理利用辅助工具在解决一些复杂的数学应用题时,学生可以合理利用辅助工具。
例如,绘制图表、图形,使用计算器等。
深度研究小学一年级数学应用题的解题思路与方法
深度研究小学一年级数学应用题的解题思路与方法数学是一门基础学科,对于小学生的数学学习来说,解题是一项关键的技能。
而在小学一年级的数学学习中,常常会遇到应用题,这些题目旨在培养学生解决实际问题的能力、提高他们的数学思维。
因此,对于小学一年级数学应用题的解题思路与方法进行深入研究非常重要。
一、理解题目在解答小学一年级数学应用题时,首先要仔细阅读题目,确保对题目的要求和条件有清晰的理解。
理解题目可以分为以下几个方面:1. 确定题目要求:理解题目要求是解题的首要步骤,需要明确问题的目标是什么,要求学生完成什么样的运算或判断。
2. 解读题目条件:仔细阅读题目中提供的条件,确保自己理解清楚,并可以将这些条件转化为数学关系或图形。
3. 辨析信息:在题目中有时会出现多余或相似的信息,学生需要学会辨析,将关键信息提取出来,排除干扰。
二、建立数学模型在理解题目之后,小学一年级的学生需要学会建立适当的数学模型来解决问题。
建立数学模型的步骤如下:1. 标注变量:在问题中找到需要解决的未知数或变量,用字母进行标注,以方便后续的计算和建模。
2. 确定关系:根据题目中的条件和要求,确定变量之间的关系,可以采用等号、大于、小于等符号表示。
3. 绘制图形:对于一些几何问题,可以通过绘制图形来帮助理解题意,确定解题思路。
三、运用适当的解题方法小学一年级的数学应用题多种多样,解题方法也有很多。
根据问题的特点,选择适当的解题方法进行求解。
1. 找规律:对于一些规律性的题目,可以通过找到规律来解决问题。
如:找出数列中的规律并进行推导。
2. 分类讨论:对于一些具有多种情况的题目,可以通过分类讨论的方法,将问题分解为几个单独的情况进行思考和解答。
3. 反推法:对于一些逆向思维的问题,可以通过反推法来求解,即从结果倒推回条件。
4. 列方程:对于一些需要联立方程求解的问题,可以通过列方程进行计算。
如:问题中涉及到两个未知数的情况。
四、巩固和练习在掌握了正确的解题思路和方法后,为了巩固和提高解题的能力,学生需要进行大量的练习和巩固。
人教版小学二年级数学应用题解题思路
人教版小学二年级数学应用题解题思路简介:数学是一门使学生培养逻辑思维和解决问题能力的重要课程。
对于小学二年级学生来说,数学应用题是他们学习数学的一个重要环节。
本文将详细介绍人教版小学二年级数学应用题的解题思路,帮助学生掌握解题方法和技巧。
一、加减法应用题的解题思路:在解决加减法应用题时,我们可以按照以下几个步骤进行:1. 读懂题目:仔细阅读题目,明确题目所给的信息和要求。
2. 标注关键信息:将题目所给的数据和条件以图表、符号或文字的形式标注出来。
可以画图、列式或者用代号表示。
3. 确定运算符号:根据题目要求判断是加法还是减法,并在标注的基础上进行判断。
4. 进行运算:根据题目所给的数据进行相应的加法或减法运算。
5. 检查答案:完成计算后,要仔细检查答案,确保算式和结果无误。
二、乘除法应用题的解题思路:对于乘除法的应用题,我们可以按照以下方法解题:1. 阅读题目:细读题目,理解问题的意思和问题要求。
2. 寻找模式:观察题目中给出的数据或指示,寻找模式、规律或重要的信息。
3. 类比分析:将题目中的具体情境与已学过的类似题目进行类比,找到解题的思路和方法。
4. 运算和计算:结合找到的解题思路和方法,进行乘法或除法运算。
5. 验证答案:求得答案后,进行校验,检查答案是否符合题意和计算有无错误。
三、综合运用:在解决综合应用题时,我们需要结合不同的数学知识和解题思路。
以下是几个常见的综合运用题解题思路:1. 多步运算:将题目中的问题拆解为多个步骤,分别进行运算,然后将各个步骤的结果进行组合。
2. 逻辑推理:根据题目所给的信息和条件,进行逻辑推理,解决问题。
3. 数字拆分:将题目中的数字按照自己的思路进行拆分,有助于简化运算过程和解决问题。
4. 反证法:通过反设并证明的方式,解决不能直接求解的问题。
总结:通过以上的解题思路,我们可以帮助小学二年级的学生更好地解决人教版小学二年级数学应用题。
在解题的过程中,学生需要充分理解题意,标注关键信息,选择合适的解题方法,并且要仔细检查答案。
小学数学应用题解题思路及方法
小学数学应用题解题思路及方法应用题在小学数学中占据着重要的地位,它不仅培养学生的思维能力和逻辑推理能力,还能帮助学生解决生活中的实际问题。
因此,掌握小学数学应用题的解题思路和方法显得尤为重要。
本文将介绍几种常用的应用题解题思路和方法。
一、审题审题是解决应用题的第一步,也是最关键的一步。
在审题过程中,学生需要明确题目中的已知条件、未知条件和问题,并尝试理解它们之间的关系。
为了更好地理解题目,学生可以尝试将题目中的信息用图形或符号表示出来,以便更好地分析和解决问题。
二、分析问题在审题的基础上,学生需要分析问题并找出解决问题的方法。
在分析问题时,学生需要注意问题的类型和特点,并尝试将问题分解成若干个小问题,逐一解决。
同时,学生还需要注意问题中的隐含条件和关键词语,以便更好地解决问题。
三、寻找等量关系在应用题中,等量关系是指题目中已知量和未知量之间的关系。
通过寻找等量关系,学生可以建立方程或方程组来解决问题。
因此,在分析问题的过程中,学生需要认真寻找等量关系并建立方程或方程组。
四、计算计算是解决应用题的最后一步,也是最简单的一步。
在计算过程中,学生需要注意计算准确性和计算速度,以便更好地解决问题。
学生还需要注意单位的换算和符号的运用,以便更好地完成计算。
小学数学应用题的解题思路和方法是解决应用题的关键。
通过审题、分析问题、寻找等量关系和计算等步骤,学生可以更好地解决应用题并提高自己的思维能力和逻辑推理能力。
刚刚接触应用题,很多同学都会有些畏难的心理,其实,应用题并不是很难的,只是需要一些细心和耐心,只要你克服了这个心理,你就会发现,应用题其实并不难。
审题是解决应用题的关键,只有明白了题目中的意思,才能更好的去解题。
分析题意是解决应用题的必经之路,只有明白了题目的意思,才能进行下一步的解题。
在题目中,你经常会遇到一些已知量和未知量,这些量可以帮助你更好的去解题。
数量关系是解决应用题的关键,只有找出了数量关系,才能更好的去解题。
小学数学应用题解题10个思路应用题解题思路解题技巧
1.顺向综合思路“直接思路”是解题中的常规思路。
它一般是通过分析、综合、归纳等方法,直接找到解题的途径。
【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。
这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。
例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。
(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。
(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。
(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。
(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离?这个分析思路可以用下图(图2.1)表示。
例2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。
(1)左端点是A的线段有哪些?有 AB AC AD AE AF AG共 6条。
(2)左端点是B的线段有哪些?有 BC、BD、BE、BF、BG共5条。
小学三年级数学问题解决技巧总结应用题与推理题的解题思路
小学三年级数学问题解决技巧总结应用题与推理题的解题思路数学是一门需要逻辑思维和解决问题的学科。
对于小学三年级的学生来说,数学问题已经开始涉及到应用题和推理题。
要解决这些题目,学生需要有一定的解题思路和技巧。
本文将总结小学三年级数学问题解决技巧,并重点介绍应用题与推理题的解题思路。
一、应用题的解题思路应用题是将数学知识应用于实际问题当中的题目。
解决应用题,学生需要通过分析问题、建立数学模型、求解等步骤来得出答案。
以下是解决应用题的一般解题思路:1. 阅读理解题目:仔细阅读问题,理解题目所描述的情境以及所求的答案。
2. 分析问题:将问题中的关键信息提取出来,明确问题的要求和条件。
3. 建立数学模型:根据问题中的关键信息,将实际问题转化为数学问题,选择适当的运算方法和公式。
4. 求解:根据建立的数学模型,进行运算计算,得出答案。
5. 检查答案:将计算的结果代入原始问题进行验证,确保答案的准确性。
通过以上步骤,学生可以较为系统地解决应用题,提高解题的准确性和效率。
二、推理题的解题思路推理题是通过逻辑思维和推理能力来解决的题目。
学生需要根据已知条件进行推理,并得出正确的结论。
以下是解决推理题的一般解题思路:1. 阅读理解题目:仔细阅读问题,理解题目中所给的条件、情境以及需要推理的结论。
2. 分析条件:将问题中的条件进行整理,并理清条件与结论之间的关系,找出已知条件和待推理的关键点。
3. 进行推理:根据已知条件和待推理的关键点,运用逻辑推理方法进行分析,形成推理链条。
4. 得出结论:通过推理链条得出正确的结论。
5. 检查结论:将得出的结论代入已知条件进行验证,确保推理的正确性。
通过以上步骤,学生可以提高解决推理题的思维能力和逻辑推理能力,解题更加准确和高效。
综上所述,小学三年级数学问题解决技巧主要包括应用题和推理题的解题思路。
通过分析问题、建立数学模型和求解,学生可以解决应用题;而通过分析条件、进行推理和得出结论,学生可以解决推理题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 爸爸比儿子大27岁,今年,爸爸的 年龄是儿子年龄的4倍,求父子二人今年各 是多少岁?
解 (1)儿子年龄=27÷(4-1)=9(岁) (2)爸爸年龄=9×4=36(岁)
答:父子二人今年的年龄分别是36岁和9岁。
例3 商场改革经营管理办法后,本月盈利比上 月盈利的2倍还多12万元,又知本月盈利比上月 盈利多30万元,求这两个月盈利各是多少万元?
解 由于每天运出的小麦和玉米的数量相等,所以剩下 的数量差等于原来的数量差(138-94)。把几天后 剩下的小麦看作1倍量,则几天后剩下的玉米就是3 倍量,那么,(138-94)就相当于(3-1)倍, 因此
剩下的小麦数量=(138-94)÷(3-1)=22(吨) 运出的小麦数量=94-22=72(吨) 运粮的天数=72÷9=8(天) 答:8天以后剩下的玉米是小麦的3倍。
答:东库存粮280吨,西库存粮200吨。
例3 甲站原有车52辆,乙站原有车32辆,若每天 从甲站开往乙站28辆,从乙站开往甲站24辆,几天 后乙站车辆数是甲站的2倍?
解 每天从甲站开往乙站28辆,从乙站开往甲站24辆, 相当于每天从甲站开往乙站(28-24)辆。把几天 以后甲站的车辆数当作1倍量,这时乙站的车辆数 就是2倍量,两站的车辆总数(52+32)就相当于 (2+1)倍,那么,几天以后甲站的车辆数减少 为 (52+32)÷(2+1)=28(辆)
解 如果把上月盈利作为1倍量,则(30-12)万元 就相当于上月盈利的(2-1)倍,因此
上月盈利=(30-12)÷(2-1)=18(万元) 本月盈利=18+30=48(万元) 答:上月盈利是18万元,本月盈利是48万元。
例4 粮库有94吨小麦和138吨玉米,如果每天运出 小麦和玉米各是9吨,问几天后剩下的玉米是小麦的 3倍?
筐。
4、和倍问题
【含义】
已知两个数的和及大数是小数的几倍(或小数是大数的 几分之几),要求这两个数各是多少,这类应用题叫做和 倍问题。
【数量关系】
总和 ÷(几倍+1)=较小的数
总和 - 较小的数 = 较大的数
【解题思路和方法】
简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1 果园里有杏树和桃树共248棵,桃树 的棵数是杏树的3倍,求杏树、桃树各多少 棵?
解 甲乙两袋、乙丙两袋都含有乙,从中可以 看出甲比丙多(32-30)=2千克,且甲是 大数,丙是小数。由此可知
甲袋化肥重量=(22+2)÷2=12(千克) 丙袋化肥重量=(22-2)÷2=10(千克) 乙袋化肥重量=32-12=20(千克) 答:甲袋化肥重12千克,乙袋化肥重20千克,
丙袋化肥重10千克。
例4 甲乙两车原来共装苹果97筐,从甲车取下14 筐放到乙车上,结果甲车比乙车还多3筐,两车原 来各装苹果多少筐?
解 “从甲车取下14筐放到乙车上,结果甲车 比乙车还多3筐”,这说明甲车是大数,乙车 是小数,甲与乙的差是(14×2+3),甲与 乙的和是97,因此
甲车筐数=(97+14×2+3)÷2=64(筐) 乙车筐数=97-64=33(筐) 答:甲车原来装苹果64筐,乙车原来装苹果33
甲数=(170+4-6)÷(1+2+3)=28 乙数=28×2-4=52 丙数=28×3+6=90 答:甲数是28,乙数是52,丙数是90。
5、差倍问题
【含义】
已知两个数的差及大数是小数的几倍(或小数是大数的 几分之几),要求这两个数各是多少,这类应用题叫做差 倍问题。
【数量关系】
两个数的差÷(几倍-1)=较小的数 较小的数×几倍=较大的数
小学数学应用题 解题思路及方法
小学数学中把含有数量关系的实际问题用语 言或文字叙述出来,这样所形成的题目叫做 应用题。任何一道应用题都由两部分构成。 第一部分是已知条件(简称条件),第二部 分是所求问题(简称问题)。应用题的条件 和问题,组成了应用题的结构。
应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用 题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步 骤和方法来解答的应用题,叫做典型应用题。
30类典型应用题:
1、归一问题 2、归总问题 3、和差问题 4、和倍问题 5、差倍问题 6、倍比问题 7、相遇问题 8、追及问题 9、植树问题 10、年龄问题
7、相遇问题
【含义】
两个运动的物体同时由两地出发相向而行,在途中相遇。 这类应用题叫做相遇问题。
【数量关系】
相遇时间=总路程÷(甲速+乙速) 总路程=(甲速+乙速)×相遇时间
【解题思路和方法】
简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 南京到上海的水路长392千米,同时 从两港各开出一艘轮船相对而行,从南京 开出的船每小时行28千米,从上海开出的 船每小时行21千米,经过几小时两船相遇?
所求天数为 (52-28)÷(28-24)=6(天) 答:6天以后乙站车辆数是甲站的2倍。
例4 甲乙丙三数之和是170,乙比甲的2倍少4, 丙比甲的3倍多6,求三数各是多少?
解 乙丙两数都与甲数有直接关系,因此把甲数作 为1倍量。
因为乙比甲的2倍少4,所以给乙加上4,乙数就变 成甲数的2倍; 又因为丙比甲的3倍多6,所以丙 数减去6就变为甲数的3倍;这时(170+4-6) 就相当于(1+2+3)倍。那么,
6、倍比问题
【含义】
有两个已知的同类量,其中一个量是另一个量的若干倍, 解题时先求出这个倍数,再用倍比的方法算出要求的数, 这类应用题叫做倍比问题。
【数量关系】
总量÷一个数量=倍数 另一个数量×倍数=另一总量
【解题思路和方法】
先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现 在有油菜籽3700千克,可以榨油多少?
答:甲班有52人,乙班有46人。
例2 长方形的长和宽之和为18厘米,长比 宽多2厘米,求长方形的面积。
解 长=(18+2)÷2=10(厘米) 宽=(18-2)÷2=8(厘米)
长方形的面积 =10×8=80(平方厘米) 答:长方形的面积为80平方厘米。
例3 有甲乙丙三袋化肥,甲乙两袋共重32千克, 乙丙两袋共重30千克,甲丙两袋共重22千克,求 三袋化肥各重多少千克。
解 (1)杏树有多少棵? 248÷(3+1)=62(棵)
(2)桃树有多少棵? 62×3=186(棵)
答:杏树有62棵,桃树有186棵。
例2 东西两个仓库共存粮480吨,东库存 粮数是西库存粮数的1.4倍,求两库各存粮 多少吨?
解 (1)西库存粮数: 480÷(1.4+1)=200(吨)
(2)东库存粮数: 480-200=280(吨)
例3 食堂运来一批蔬菜,原计划每天吃 50千克,30天慢慢消费完这批蔬菜。后来 根据大家的意见,每天比原计划多吃10千 克,这批蔬菜可以吃多少天?
解 (1)这批蔬菜共有多少千克? 50×30=1500(千克)
(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成综合算式:
50×30÷(50+10)=1500÷60=25(天) 答:这批蔬菜可以吃25天。
先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米, 改进裁剪方法后,每套衣服用布2.8米。原 来做791套衣服的布,现在可以做多少套?
解 (1)这批布总共有多少米? 3.2×791=2531.2(米)
(2)现在可以做多少套? 2531.2÷2.8=904(套)
列成综合算式:
解 (1)800亩是4亩的几倍? 800÷4=200(倍)
(2)800亩收入多少元? 11111×200=2222200(元)
(3)16000亩是800亩的几倍? 16000÷800=20(倍)
(4)16000亩收入多少元? 2222200×20=44444000(元)
答:全乡800亩果园共收入2222200元,全县16000 亩果园共收入44444000元。
【解题思路和方法】
简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 果园里桃树的棵数是杏树的3倍,而 且桃树比杏树多124棵。求杏树、桃树各多 少棵?
解 (1)杏树有多少棵? 124÷(3-1)=62(棵)
(2)桃树有多少棵? 62×3=186(棵)
答:果园里杏树是62棵,桃树是186棵。
11、行船问题
21、方阵问题
12、列车问题
22、商品利润问题
13、时钟问题
23、存款利率问题
14、盈亏问题
24、溶液浓度问题
15、工程问题
25、构图布数问题
16、正反比例问题 26、幻方问题
17、按比例分配
27、抽屉原则问题
18、百分数问题
28、公约公倍问题
19、“牛吃草”问题 29、最值问题
20、鸡兔同笼问题 30、列方程问题
例3 5辆汽车4次可以运送100吨钢材,如果用 同样的7辆汽车运送105吨钢材,需要运几次? 解 (1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨) (2)7辆汽车1次能运多少吨钢材? 5×7=35(吨) (3)105吨钢材7辆汽车需要运几次? 105÷35=3(次) 列成综合算式: 105÷(100÷5÷4×7)=3(次) 答:需要运3次。
1、归一问题
【含义】
在解题时,先求出一份是多少(即单一量),然后以单一 量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】
总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数
【解题思路和方法】
先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔 16支,需要多少钱? 解(1)买1支铅笔多少钱? 0.6÷5=0.12(元) (2)买16支铅笔需要多少钱? 0.12×16=1.92(元) 列成综合算式: