解直角三角形及其应用-PPT课件资料
合集下载
《解直角三角形及其应用》ppt导学课件
义务教育教科书(人教版)九年级数学下册
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
结束语Biblioteka 学习知识要善于思考,思考,再思考。
《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
结束语Biblioteka 学习知识要善于思考,思考,再思考。
《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
《解直角三角形及其应用》实用课件 (PPT优 秀课件 ) 《解直角三角形及其应用》实用课件 (PPT优 秀课件 )
解直角三角形的应用ppt课件
(结果保留一位小数).
(参考数据:sin63°≈0.9,cos63°≈0.5,
tan63°≈2.0, ≈1.73)
26.4 解直角三角形的应用
解:(1)∵MC=AB=10 cm,∠ACM=63°,
重 ∴AM=MC·tan∠ACM=MC·tan63°≈10×2.0=20(cm).
难
题 答:AM 的长为 20 cm;
直接测量的物体高度或长度
26.4 解直角三角形的应用
归纳总结
考
点
(1)仰角和俯角是视线相对于水平视线而言的,可巧记
清
单 为“上仰下俯”;(2)实际问题中遇到仰角或俯角时,要
解
读 放在直角三角形或转化到直角三角形中运用,注意确定水平
视线;(3)在解有关俯角、仰角的问题中,常作水平线或
铅垂线来构造直角三角形.
,
∴tan30°=
=
−
+
=
,解得
x=60 +90,经检验
x=60 +90 是原方程的解且符合题意,∴AB=(60 +90) m
,
26.4 解直角三角形的应用
变式衍生 3 某中学依山而建,校门 A 处有一坡角
重
难
题 α=30°的斜坡 AB,长度为 30 m,在坡顶 B 处测得教学
26.4 解直角三角形的应用
(2)如答案图,过点 D 作 DH⊥AB,垂足为点 H,则
重
难
题 DG=BH=30 m,DH=BG.设 BC=x m,
型
在 Rt△ABC 中,∠ACB=45°,
突
破
∴AB=BC·tan45°=x m,
∴AH=AB-BH=(x-30) m,
(参考数据:sin63°≈0.9,cos63°≈0.5,
tan63°≈2.0, ≈1.73)
26.4 解直角三角形的应用
解:(1)∵MC=AB=10 cm,∠ACM=63°,
重 ∴AM=MC·tan∠ACM=MC·tan63°≈10×2.0=20(cm).
难
题 答:AM 的长为 20 cm;
直接测量的物体高度或长度
26.4 解直角三角形的应用
归纳总结
考
点
(1)仰角和俯角是视线相对于水平视线而言的,可巧记
清
单 为“上仰下俯”;(2)实际问题中遇到仰角或俯角时,要
解
读 放在直角三角形或转化到直角三角形中运用,注意确定水平
视线;(3)在解有关俯角、仰角的问题中,常作水平线或
铅垂线来构造直角三角形.
,
∴tan30°=
=
−
+
=
,解得
x=60 +90,经检验
x=60 +90 是原方程的解且符合题意,∴AB=(60 +90) m
,
26.4 解直角三角形的应用
变式衍生 3 某中学依山而建,校门 A 处有一坡角
重
难
题 α=30°的斜坡 AB,长度为 30 m,在坡顶 B 处测得教学
26.4 解直角三角形的应用
(2)如答案图,过点 D 作 DH⊥AB,垂足为点 H,则
重
难
题 DG=BH=30 m,DH=BG.设 BC=x m,
型
在 Rt△ABC 中,∠ACB=45°,
突
破
∴AB=BC·tan45°=x m,
∴AH=AB-BH=(x-30) m,
18、解直角三角形及其应用PPT课件
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
6
已知条件 已知两直角边(a,b) 已知斜边和一条直角边(c,a)
图形
解法 c= a2+b2,由 tanA=ab求∠A,∠ B=90°-∠A b= c2-a2,由 sinA=ac求∠A,∠ B=90°-∠A
202X权威 · 预测
第一部分 教材同步复习
12
(2)∵∠ABE=90°,AB=6,sinA=45=BAEE, ∴设 BE=4x,则 AE=5x,得 AB=3x, ∴3x=6,得 x=2,∴BE=8,AE=10, ∴tanE=ABBE=68=CDDE=D4E, 解得,DE=136, ∴AD=AE-DE=10-136=134,即 AD 的长是134.
第一部分 教材同步复习
4
►知识点二 解直角三角形
1.解直角三角形的定义及依据 (1)定义:在直角三角形中,除直角外,由已知元素求未知元素的过程就是解直 角三角形; (2)依据:在 Rt△ABC 中,∠C=90°,∠A,∠B,∠C 所对的边分别为 a,b,c, 则①边角关系:sinA=ac,cosA=bc,tanA=ab;②三边之间的关系:a2+b2=c2;③锐 角之间的关系:∠A+∠B=∠C; 1 (3)面积公式:S△ABC=12ab=①__2_c_h_____.(h 为斜边 c 上的高)
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
11
【思路点拨】 本题考查解直角三角形.(1)要求BC的长,只要求出BE和CE的 长即可,由题意可以得到BE和CE的长,本题得以解决;(2)要求AD的长,只要求出 AE和DE的长即可,根据题意可以得到AE、DE的长,本题得以解决.
26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)
解:如图,α = 30° , β= 60°,AD=120. ∵ , ∴BD=AD·tanα=120×tan30︒, =120× =40 . CD=AD·tanβ=120×tan60︒, =120× =120 . ∴BC=BD+CD=40 +120 =160 ≈277(m).答:这栋楼高约为277m.
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习
解直角三角形PPT课件
2024/1/25
正切定理
在直角三角形中,锐角的正切值等于其对边比邻边,即 tanα = a/b。
6
02
勾股定理及其逆定 理
2024/1/25
7
勾股定理内容及证明
2024/1/25
勾股定理内容
在直角三角形中,直角边的平方 和等于斜边的平方。
勾股定理证明
可以通过相似三角形、面积法、 向量法等多种方法进行证明。
2024/1/25
正弦、余弦定理
已知任意两边和夹角,可以利用正弦定理$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$或余弦定理$c^2 = a^2 + b^2 - 2abcos C$求出第三边和角度。
16
已知一边一角求其他元素
正弦、余弦函数
已知一条边和一个锐角,可以利用正弦或余弦函数求出另一条直角边和斜边。例如,已知直角边$a$和锐角$A$ ,则可以利用$sin A = frac{a}{c}$求出斜边$c$,再利用勾股定理求出另一条直角边$b$。
正切函数
正切(tangent)是一个 角的对边长度与邻边长度 的比值,即 tan(θ) = 对边 / 邻边。
12
特殊角度三角函数值
0°、30°、45°、60°、90°等特殊角 度的三角函数值,如 sin(30°) = 1/2 ,cos(45°) = √2/2,tan(60°) = √3 等。
特殊角度三角函数值的推导过程及其 在解题中的应用。
2024/1/25
13
三角函数图像与性质
正弦、余弦、正切函数的图像及其周期性、奇偶性、单调性等性质。 利用三角函数图像解决相关问题的思路和方法。
2024/1/25
正切定理
在直角三角形中,锐角的正切值等于其对边比邻边,即 tanα = a/b。
6
02
勾股定理及其逆定 理
2024/1/25
7
勾股定理内容及证明
2024/1/25
勾股定理内容
在直角三角形中,直角边的平方 和等于斜边的平方。
勾股定理证明
可以通过相似三角形、面积法、 向量法等多种方法进行证明。
2024/1/25
正弦、余弦定理
已知任意两边和夹角,可以利用正弦定理$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$或余弦定理$c^2 = a^2 + b^2 - 2abcos C$求出第三边和角度。
16
已知一边一角求其他元素
正弦、余弦函数
已知一条边和一个锐角,可以利用正弦或余弦函数求出另一条直角边和斜边。例如,已知直角边$a$和锐角$A$ ,则可以利用$sin A = frac{a}{c}$求出斜边$c$,再利用勾股定理求出另一条直角边$b$。
正切函数
正切(tangent)是一个 角的对边长度与邻边长度 的比值,即 tan(θ) = 对边 / 邻边。
12
特殊角度三角函数值
0°、30°、45°、60°、90°等特殊角 度的三角函数值,如 sin(30°) = 1/2 ,cos(45°) = √2/2,tan(60°) = √3 等。
特殊角度三角函数值的推导过程及其 在解题中的应用。
2024/1/25
13
三角函数图像与性质
正弦、余弦、正切函数的图像及其周期性、奇偶性、单调性等性质。 利用三角函数图像解决相关问题的思路和方法。
2024/1/25
解直角三角形及其应用-课件ppt
(1)若某坡面的坡角为 45,则坡度 i=1:1 ; (2)若某坡面的坡度为 1: 3 ,则坡角是 30 。
坡度
如图,拦水坝的横断面为梯形 ABCD ,根据图中的数据, 求坝顶宽 AD 和斜坡 AB 的长。
坡度
解:依题意,得 DE 1 。
EC 3
Q DE AF 6 m ,
EC 1(8 m) 。
角是_____1_பைடு நூலகம்___。
仰角、俯角
如图,某航天飞船在地球表面点 P的正上方 A处, 从A 处观测到地球上的最远点 Q,若QAP ,地球
半径为 R ,则航天飞船距离地球表面的最近距离 AP
是( B )
A. R
sin
C.
R +R
sin
B. R R
sin
D.
R R
cos
方向角
1.方向角是表示方向的角;以__正__北______和 ___正__南_____方向为基准,来描述物体所处的方向;
迎水坡坡角BAC 30 ,则 AB的长为 16m 。
坡度
3.(1)坡度 i 是指__竖__直__高__度__与__水__平__距__离__的比,
这个值与坡角的____正__切____值相等;
(2)坡度 i 一般写成 1:m 的形式,坡度 i 的值
越大,表明坡角越____大______,即坡越陡。 4.填空:
解直角三角形及其应用
仰角、俯角
如图,在进行高度测量时,视线与水平线所成的角 中,视线在水平线上方的是___仰__角_____,视线在水平线 下方的是___俯__角_____。
仰角、俯角
如图,C=DEB=90 ,FB P AC ,从 A 点看 D 点的仰角是____2__,从 B 点看 D 点的俯角是___F_B_D__, 从 A 点看 B 点的_____仰__角是____B_A_C___,从 D 点看 B 点的____仰____角是_____3___,从 B点看 A 点的___俯___
坡度
如图,拦水坝的横断面为梯形 ABCD ,根据图中的数据, 求坝顶宽 AD 和斜坡 AB 的长。
坡度
解:依题意,得 DE 1 。
EC 3
Q DE AF 6 m ,
EC 1(8 m) 。
角是_____1_பைடு நூலகம்___。
仰角、俯角
如图,某航天飞船在地球表面点 P的正上方 A处, 从A 处观测到地球上的最远点 Q,若QAP ,地球
半径为 R ,则航天飞船距离地球表面的最近距离 AP
是( B )
A. R
sin
C.
R +R
sin
B. R R
sin
D.
R R
cos
方向角
1.方向角是表示方向的角;以__正__北______和 ___正__南_____方向为基准,来描述物体所处的方向;
迎水坡坡角BAC 30 ,则 AB的长为 16m 。
坡度
3.(1)坡度 i 是指__竖__直__高__度__与__水__平__距__离__的比,
这个值与坡角的____正__切____值相等;
(2)坡度 i 一般写成 1:m 的形式,坡度 i 的值
越大,表明坡角越____大______,即坡越陡。 4.填空:
解直角三角形及其应用
仰角、俯角
如图,在进行高度测量时,视线与水平线所成的角 中,视线在水平线上方的是___仰__角_____,视线在水平线 下方的是___俯__角_____。
仰角、俯角
如图,C=DEB=90 ,FB P AC ,从 A 点看 D 点的仰角是____2__,从 B 点看 D 点的俯角是___F_B_D__, 从 A 点看 B 点的_____仰__角是____B_A_C___,从 D 点看 B 点的____仰____角是_____3___,从 B点看 A 点的___俯___
解直角三角形及其应用精选教学PPT课件
第24讲┃ 回归教材
中考变式
[2012·扬州] 如图24-7,一艘巡逻艇航行至海面B处 时,得知正北方向上距B处20海里的C处有一渔船发 生故障,就立即指挥港口A处的救援艇前往C处营救. 已知C处位于A处的北偏东45°的方向上,港口A处 位于B处的北偏西30°的方向上. 求A、C两处之间的 距离.(结果精确到0.1 海里. 参考数据:≈1.41, ≈1.73)
你已经可以为自己的幸运 烧香拜佛了
还有什么是真爱呢 真正的爱情
年少时站在校园里期待的那种爱情 早已
在尘世中消失离别的时候 每一句话都是那么重
缓缓地扣击着我们的心灵 窗被敲开了
我们诉说着回忆中的快乐 回想著一张张可爱的笑脸
院子里,操场上 充满了甜甜的空气
离别的时候 每一句话都是那么轻 轻轻地说着离别时的感言 轻轻的拉着彼此的手 轻轻地在耳际说声对不起
第24讲┃ 归类示例
有关解直角三角形的实际问题,一般需要利用方向 角等构造直角三角形解决.
第24讲┃ 归类示例
► 类型之三 利用直角三角形解决坡度问题 命题角度: 1. 利用直角三角形解决坡度问题; 2. 将实际问题转化为直角三角形问题.
例3 [2013·衡阳]如图24-5,一段河坝的横断面为梯形 ABCD,试根据图中的数据,求出坝底宽AD.(i=CE∶ED, 单位:m)
图24-6
第24讲┃ 回归教材
解:如图所示,由题意知,∠CAD=27°,∠CBD=40°,AB=50 m,
点A、B、D在一条直线上,CD⊥AD.设BD=x m,CD=h m,
在Rt△ACD中,
tan27°=50h+
, x
h=(50+x)·tan 27°.①
在Rt△BCD中,
24. 解直角三角形及一般应用 PPT课件(华师大版)
关
添设 辅助线解
解 直 角 三 角 形
系
直角 三角形
导引:在Rt△BCD中,求出BC与BD的长,再求出甲、乙所
用的时间,比较其大小即可知道谁先到达B处.
解:乙先到达B处.理由:由题意得∠BCD=55°,
∠BDC=90°,
∵tan∠BCD= BD , CD
∴BD=CD·tan∠BCD=40×tan 55°≈57.2(m),
CD
又cos∠BCD= ,
BC
【例3】〈浙江温州〉某海滨浴场东西走向的海岸线可近似看成直线l (如图).救生员甲在A处的瞭望台上视察海面情况,发现其正 北方向的B处有人发出求救信号.他立即沿AB方向径直前往 救援,同时通知正在海岸线上巡逻的救生员乙.乙立刻从C处 入海,径直向B处游去.甲在乙入海10 s后赶到海 岸线上的D处,再向B处游去.若CD=40 m,B在 C的北偏东35°方向上,甲、乙的游泳速度都是2 m/s.谁先到达B处?请说明理由.(参考数据:sin 55°≈0.82,cos 55°≈0.57,tan 55°≈1.43)
b
(3)利用∠B=90°-∠A求出∠B的度数.
1 (兰州)如图,△ABC中,∠B=90°,BC=2AB,则cos A =( )
A. 5 B. 1
2
Байду номын сангаас
2
C.2 5 5
D. 5 5
2 如图,四边形ABCD是梯形,AD∥BC,CA是∠BCD的 平分线,且AB⊥AC,AB=4,AD=6,则tan B=( )
【例1】在Rt△ABC中,a,b,c分别是∠A,∠B,∠C
的对边,∠C=90°,a=6,b= 2 3,解这个
直角三角形.
导引:先画出Rt△ABC,标注已知量,根据勾股定理 求出斜边长,然后根据正切的定义求出∠A的 度数,再利用∠B=90°-∠A求出∠B的度数.
解直角三角形的应用(19张ppt)课件
选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。
沪科版数学九年级上册23.2第1课时解直角三角形 课件(共19张PPT)
D
C
拓展提升
1.如图,在△ABC中,∠A=30︒,∠B=45︒,AC=2 ,求AB的长.解:作CD⊥AB于D,∠A=30°, ∴AD=AC, 在Rt△BCD中,∠B=45°,
2.已知,如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12, .求: (1)线段DC的长; (2)tan∠EDC的值.解:(1)∵AD是边BC上的高,AD=12,
∠A的对边
斜边斜边
∠B的邻边
斜边
∠A的对边
∠A的邻边
∠B的对边
∠B的邻边
同学们再见!
授课老师:
时间:2024年9月1日
事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.
探索新知
例1 如图,在Rt△ABC中,∠C=90°,∠B=42°6',c=287.4,解这个直角三角形(精确到0.1).解:∵cosB= ,∴a=c cosB=287.4×0.7420≈213.3 . ∵sinB= ,∴b=c sinB=287.4×0.6704≈192.7 . ∠A=90º-∠B=90º-42º6′=47º54′ .
(2)∵E是斜边AC的中点, ∴DE=EC, ∴∠EDC=∠C, 在Rt∆ADC中, ∴
归纳小结
在解直角三角形的过程中,一般要用到下面一些关系:(1)三边之间的关系 (勾股定理)(2)两锐角之间的关系∠A+∠B=90°.(3)边角之间的关系sinA= , sinB= , cosA= , cosB= ,tanA= , tanB= .
归纳
根据以上探究,解直角三角形有哪些类型?试填写下表
C
拓展提升
1.如图,在△ABC中,∠A=30︒,∠B=45︒,AC=2 ,求AB的长.解:作CD⊥AB于D,∠A=30°, ∴AD=AC, 在Rt△BCD中,∠B=45°,
2.已知,如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12, .求: (1)线段DC的长; (2)tan∠EDC的值.解:(1)∵AD是边BC上的高,AD=12,
∠A的对边
斜边斜边
∠B的邻边
斜边
∠A的对边
∠A的邻边
∠B的对边
∠B的邻边
同学们再见!
授课老师:
时间:2024年9月1日
事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.
探索新知
例1 如图,在Rt△ABC中,∠C=90°,∠B=42°6',c=287.4,解这个直角三角形(精确到0.1).解:∵cosB= ,∴a=c cosB=287.4×0.7420≈213.3 . ∵sinB= ,∴b=c sinB=287.4×0.6704≈192.7 . ∠A=90º-∠B=90º-42º6′=47º54′ .
(2)∵E是斜边AC的中点, ∴DE=EC, ∴∠EDC=∠C, 在Rt∆ADC中, ∴
归纳小结
在解直角三角形的过程中,一般要用到下面一些关系:(1)三边之间的关系 (勾股定理)(2)两锐角之间的关系∠A+∠B=90°.(3)边角之间的关系sinA= , sinB= , cosA= , cosB= ,tanA= , tanB= .
归纳
根据以上探究,解直角三角形有哪些类型?试填写下表
解直角三角形(共30张)PPT课件
比例性质应用
利用相似三角形中对应边 之间的比例关系进行计算。
实际应用举例
测量问题
利用相似三角形原理解决 测量中的实际问题,如测 量建筑物高度、河宽等。
航海问题
在航海中,利用相似三角 形原理解决船只定位、航 向确定等问题。
物理问题
在物理实验中,利用相似 三角形原理解决光学、力 学等问题,如光的折射、 力的合成与分解等。
利用相似三角形求边长
通过已知边长和相似比,可以求出未知边长。
利用相似三角形求角度
通过已知角度和相似关系,可以求出未知角度。
利用相似三角形求面积
通过已知面积和相似比,可以求出未知面积。
相似比计算方法和技巧
01
02
03
直接计算法
根据已知条件直接计算相 似比。
间接计算法
通过引入辅助线或构造特 殊图形来计算相似比。
解直角三角形(共30张)PPT课 件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 三角函数在解直角三角形中应用 • 相似三角形在解直角三角形中作用
目录
• 复杂图形中解直角三角形策略探讨 • 拓展延伸:非直角三角形解法探讨
01
直角三角形基本概念与性 质
直角三角形定义及特点
有一个角为90度的三角形称为直角三角形。
案例三
在三角形中解直角三角形问题。 通过作高线构造直角三角形,并
结合相似性质进行求解。
总结归纳与提高建议
总结归纳
在复杂图形中解直角三角形的关键在于构造直角三角形并利用 已知条件进行推理和计算。通过添加辅助线、利用相似性质和 三角函数关系等方法,可以有效地解决这类问题。
提高建议
为了更好地掌握解直角三角形的技巧和方法,建议多做相关练 习题并总结归纳经验。同时,也可以学习一些高级的数学知识 和技巧,如三角函数恒等式、极坐标等,以便更好地应对复杂 的数学问题。
九年级数学下册28.2 《解直角三角形及其应用》PPT课件
解:设登到B处,视线BC在C点与地球相切,也就是 看C点,AB就是“楼”的高度,
在Rt△OCB中,∠O
AC OC
180
4.5 ,
OB
OC cos∠O
6370 cos 4.5
6389km,
∴ AB=OB-OA=6389-6370=19(km). 即这层楼至少要高19km,即1900m. 这是不存在 的.
例1 2012年6月18日,“神州”九号载人航天飞船与“天宫”一号
目标飞行器成功实现交会对接. “神州”九号与“天宫”一号的
组合体在离地球表面343km的圆形轨道上运行. 如图,当组
合体运行到离地球表面P点的正上方时,从中能直接看到的
地球表面最远的点在什么位置?最远点与P点的距离是多少
(地球半径约为6 400km,取3.142,结果取整数)?
个角), 其中∠C=90°.
B
(1) 三边之间的关系:a2+b2=__c_2__;
c a
(2) 锐角之间的关系: ∠A+∠B=__9_0_°_;
A
a
bC
b
(3) 边角之间的关系:sinA=__c___,cosA=__c___,
a
tanA=___b__.
讲授新课
一 已知两边解直角三角形
合作探究
在图中的Rt△ABC中,
三 已知一锐角三角函数值解直角三角形
例3 如图,在Rt△ABC 中,∠C=90°,cosA = 1,
3
BC = 5, 试求AB的长.
解: C 90,cos A 1, AC 1 . 3 AB 3
设 AB x, AC 1 x,
B
解直角三角形(优质课)课件pptx
思考题:请思考一下,除了上述提到的领域外,解直角三角形还可以应用于哪些领域?并尝试给出具体的例子。
练习题:请完成以下解直角三角形的练习题,巩固本节课所学的知识。
已知直角三角形的一个锐角为30度,斜边长为10cm,求这个三角形的面积。
一艘船在海上航行,测得前方两个灯塔之间的夹角为60度,且这两个灯塔与船的距离分别为10海里和15海里。求这艘船相对于两个灯塔的位置。
有效数字运算规则回顾
四舍五入法、进一法、去尾法等。
近似计算方法
在保证精度的前提下,尽量简化计算过程,减少计算量。例如,利用近似公式、近似数表等。
技巧
近似计算方法和技巧
06
总结回顾与拓展延伸
03
实际应用中的解直角三角形问题
如测量问题、航海问题、物理问题等,需要将实际问题转化为数学问题,通过建立直角三角形模型进行求解。
一个物体从斜面上滑下,已知斜面的倾角为45度,物体与斜面间的动摩擦因数为0.5。求物体下滑的加速度大小。
01
02
03
04
05
思考题与练习题
THANKS
在直角三角形中,当角度为30°、45°、60°时,可以通过简单的几何关系计算出对应的正弦、余弦、正切值。
特殊角的三角函数关系
掌握特殊角度的三角函数值之间的关系,如 sin(90°-θ) = cosθ,cos(90°-θ) = sinθ 等。
特殊角度三角函数值计算
利用三角函数求未知边长或角度
三边成比例
两个角相等
相似三角形判定定理回顾
01
02
通过相似比求解未知边长或角度
构建相似三角形,利用相似比求解未知量
利用相似三角形的性质,通过已知边长和角度求解未知边长或角度
练习题:请完成以下解直角三角形的练习题,巩固本节课所学的知识。
已知直角三角形的一个锐角为30度,斜边长为10cm,求这个三角形的面积。
一艘船在海上航行,测得前方两个灯塔之间的夹角为60度,且这两个灯塔与船的距离分别为10海里和15海里。求这艘船相对于两个灯塔的位置。
有效数字运算规则回顾
四舍五入法、进一法、去尾法等。
近似计算方法
在保证精度的前提下,尽量简化计算过程,减少计算量。例如,利用近似公式、近似数表等。
技巧
近似计算方法和技巧
06
总结回顾与拓展延伸
03
实际应用中的解直角三角形问题
如测量问题、航海问题、物理问题等,需要将实际问题转化为数学问题,通过建立直角三角形模型进行求解。
一个物体从斜面上滑下,已知斜面的倾角为45度,物体与斜面间的动摩擦因数为0.5。求物体下滑的加速度大小。
01
02
03
04
05
思考题与练习题
THANKS
在直角三角形中,当角度为30°、45°、60°时,可以通过简单的几何关系计算出对应的正弦、余弦、正切值。
特殊角的三角函数关系
掌握特殊角度的三角函数值之间的关系,如 sin(90°-θ) = cosθ,cos(90°-θ) = sinθ 等。
特殊角度三角函数值计算
利用三角函数求未知边长或角度
三边成比例
两个角相等
相似三角形判定定理回顾
01
02
通过相似比求解未知边长或角度
构建相似三角形,利用相似比求解未知量
利用相似三角形的性质,通过已知边长和角度求解未知边长或角度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D B
A
240
5.如图,甲、乙两船同时从港口A出发,甲船以12海里/h的速度向北 偏东35°航行,乙船向南偏东55°航行. 2 h后,甲船到达C岛,乙船到 达B岛,若C,B两船相距40海里,问乙船的速度是每小时多少海里?
解:∵甲的速度是12海里/h,时间是2h, ∴AC=24(海里). ∵∠EAC=35°,∠FAB=55°, ∴∠CAB=90°. ∵BC=40海里, ∴AB=32(海里). ∵乙船也用了2 h, ∴乙船的速度是16海里/h.
归纳总结
1. 在辨别方向角问题中,一般是以第一个方向为始边向另一个方向 旋转相应度数. 2. 在解决有关方向角的问题中,一般要根据题意理清图形中各角 的关系,有时所给的方向角并不一定在直角三角形中,需要用到
“同方向的方向线互相平行”是其中的一个隐含条件两直线
平行,内错角相等或余角等知识转化为所需要的角.
试一试
C 280
3.如图,拦水坝的横断面为梯形ABCD,AF=DE = 6 m.斜面坡度i= 1∶1.5是指坡面的铅直高度AF与水平宽度BF的比,斜面坡度i = 1∶3是指 DE与CE 的比.根据图中数据,求:
(1)坡角α 和β的度数;
(2)斜坡AB的长(结果保留小数点后一位).
A
D
B
F
E
C
随堂检测
那么海轮航行的距离AB的长是( C )
A. 10海里
B. 10sin50° 海里
C. 10cos50° 海里
D. 10tan50° 海里
预习检测
B
课堂导入
直角三角形中诸元素之间的关系: (1)三边之间的关系:__a_2_+_b__2=__c_2 _(勾__股__定__理__); (2)锐角之间的关系: _____∠_A_+_∠__B_=_9_0__°____ ; (3)边角之间的关系:
6.如图,水库大坝的横截面是梯形,坝顶宽5 m,坝高20 m,斜坡AB的 坡度为1∶2.5,斜坡CD的坡度为1∶2,求大坝的截面面积.
归纳总结
1. 坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它 是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成 i=1∶m的形式. 2. 把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关 系为:i=h∶l=tanα. 3. 在解决坡度的有关问题中,一般通过作高构成直角三角形, 坡角即是一锐角,坡度实际就是该锐角的正切值,水平宽度或 铅直高度都是直角边,实质也是解直角三角形问题.
试一试
A
2ห้องสมุดไป่ตู้ 3m
3.海中有一个小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点
测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方 向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?
60° B
A
D 30°
解:由点A作BD的垂线, 交BD的延长线于点F,垂足为F,∠AFD=90°. 由题意图示可知∠DAF=30° 设DF= x , AD=2x 则在Rt△ADF中,根据勾股定理
课堂探究
知识点一:方位角问题
方位角的定义:
指北或指南方向线与目标方向线所成的小于90°的角叫做 方位角.
认识方位角
北
E
D
45° 45°
西
C
O
H
东
A
FB
G
南
(1)正东,正南,正西,正北
射线 OA OB OC OD
(2)西北方向:_射__线___O__E_ 西南方向:_射___线__O__F__ 东南方向:__射__线__O__G__ 东北方向:_射__线__O__H___
认识方位角
北
(3)南偏西25°
射线OA
B
70°
北偏西70°
西
O
东 射线OB
60°
南偏东60°
25°
C
射线OC
A
南
例题解析
例1 如图,东西两炮台A,B相距2 000 m,同时发现入侵舰C,炮台A 测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方, 试求敌舰与两炮台的距离分别是多少米.(精确到1 m,参考数据: sin40°≈0.64,cos40°≈0.76,tan40°≈0.84)
希望对您的工作和学习有所帮助!
使用说明
为了更好地方便您的理解和使用,发挥本文档的价值,请在使用本文档之前仔细阅读以下说明: 本资料突出重点,注重实效。贴近实战,注重品质。适合各个成绩层次的学生查漏补缺,学习效果翻倍。本文档为 PPT格式,您可以放心修改使用。祝孩子学有所成,金榜题名。 希望本文档能够对您有所帮助!!!感谢使用
AF AD2 DF 2 2x 2 x2 3x
在Rt△ABF中,
tan ABF AF , tan 30 BF
3x , 12 x
解得x=6
AF 6x 6 3 10.4.
因而10.4 > 8,所以没有触礁危险.
60° B
A
DF 30°
课堂探究
知识点二:坡角问题
B
C
如图是某一大坝的横断面:
坡面AB的垂直高度与水
平宽度AE的长度之比是 A α
E
D
α的什么三角函数?
tan BE 坡面AB与水平面的夹角叫做坡角.记作α AE
坡度的定义:
坡面的垂直高度与水平宽度之比
B
叫做坡度(或坡比),记作 i .
ih l
h Aα
lE
坡度等于坡角的正切值
例题解析
例2 为方便行人,打算修建一座高(即点B到路面的距离)为5 m的过街 天桥(如图,路基高度忽略不计),已知天桥的斜坡AB的坡角为30°,斜 坡CD的坡度i=1∶2,请计算两个斜坡的长度. (结果保留整数)
解直角三角形的应用
九年级下册
精品模版-助您成长
学习目标
➢ 1.能运用解直角三角形解决方位角问题;
➢ 2. 能运用解直角三角形解决坡度问题.
预习检测
正切
竖直高度 水平距离
大
1∶1 30°
预习检测
3. 如图,一艘海轮位于灯塔P的北偏东50°方向,距离灯塔P为10
海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向B处,