乙醇脱水实验报告

合集下载

醇的脱水实验报告(3篇)

醇的脱水实验报告(3篇)

第1篇一、实验目的1. 理解醇脱水反应的原理和过程;2. 掌握醇脱水实验的基本操作技能;3. 学习使用浓硫酸作为催化剂;4. 了解醇脱水反应的副反应及其影响。

二、实验原理醇脱水反应是指醇分子在催化剂的作用下,分子内的羟基(-OH)和氢原子(-H)被脱去,形成烯烃。

该反应在实验室中常用浓硫酸作为催化剂。

浓硫酸具有强烈的脱水性能,可以将醇分子中的氢原子和羟基脱去,从而促进反应的进行。

实验原理方程式如下:R-OH → R=CH2 + H2O其中,R代表醇分子中的烃基。

三、实验材料与仪器1. 实验材料:- 正丁醇(2.0mL,约1.0g,0.017 mol)- 浓硫酸(0.9 mL,约1.66 g,0.017 mol)- 沸石- 饱和NaCl溶液- 5%的NaOH溶液- 饱和CaCl2溶液2. 实验仪器:- 电炉- 升降台- 三口烧瓶(50mL)- 大小头(14转19)- 螺帽接头(14)- 温度计(200℃)- 球形冷凝管(19)- 空心塞(14)- 分液漏斗- 烧瓶(25mL、14)- 蒸馏头(14)- 螺帽接头(14)- 冷凝管(14)- 接引管(14)- 三角烧瓶(2只、50mL、19)四、实验步骤1. 将2.0mL正丁醇和0.9 mL浓硫酸加入三口烧瓶中;2. 将烧瓶置于电炉上,加热至80℃;3. 加入沸石,防止暴沸;4. 继续加热,使反应进行;5. 反应过程中,注意观察温度变化,并控制温度在80℃左右;6. 当反应进行到一定程度后,观察到烧瓶中有油状物质生成,说明醇脱水反应已进行;7. 停止加热,待烧瓶冷却后,用分液漏斗将上层油状物质分离出来;8. 将分离出的油状物质加入饱和NaCl溶液中,使其中和;9. 将中和后的溶液静置,待分层后,将下层水相倒掉;10. 将上层油状物质加入5%的NaOH溶液中,使其中和;11. 将中和后的溶液静置,待分层后,将下层水相倒掉;12. 将上层油状物质加入饱和CaCl2溶液中,去除其中的杂质;13. 将去除杂质的油状物质进行蒸馏,收集80-85℃的馏分;14. 将收集到的馏分倒入干燥的小锥形瓶中,用无水化钙干燥;15. 干燥后的产物为正丁烯,即为实验产物。

高中乙醇脱水实验报告

高中乙醇脱水实验报告

一、实验目的1. 了解乙醇脱水的原理和过程。

2. 掌握使用浓硫酸和P2O5作为脱水剂进行乙醇脱水实验的操作方法。

3. 分析实验结果,探讨不同脱水剂对实验效果的影响。

二、实验原理乙醇脱水是指在酸性条件下,乙醇分子失去水分子生成乙烯的过程。

本实验采用浓硫酸和P2O5作为脱水剂,通过加热使乙醇脱水,从而得到乙烯。

三、实验仪器与试剂1. 仪器:圆底烧瓶、蒸馏头、冷凝管、酒精灯、温度计、锥形瓶、集气瓶、橡胶塞等。

2. 试剂:95%乙醇、浓硫酸、P2O5、NaOH、KOH、蒸馏水。

四、实验步骤1. 浓硫酸脱水实验:1. 将10ml 95%乙醇倒入圆底烧瓶中。

2. 加入2-3滴浓硫酸,搅拌均匀。

3. 将圆底烧瓶置于酒精灯上加热,观察反应现象。

4. 当观察到烧瓶内有气泡产生,并将集气瓶中的水排空后,停止加热。

5. 将产物收集于锥形瓶中,加入适量NaOH溶液,观察是否有气体产生。

2. P2O5脱水实验:1. 将10ml 95%乙醇倒入圆底烧瓶中。

2. 加入2-3g P2O5,搅拌均匀。

3. 将圆底烧瓶置于酒精灯上加热,观察反应现象。

4. 当观察到烧瓶内有气泡产生,并将集气瓶中的水排空后,停止加热。

5. 将产物收集于锥形瓶中,加入适量NaOH溶液,观察是否有气体产生。

五、实验结果与分析1. 浓硫酸脱水实验:- 观察到烧瓶内有气泡产生,集气瓶中的水被排空,说明乙醇发生了脱水反应。

- 加入NaOH溶液后,观察到有气体产生,可能是SO2气体,说明浓硫酸具有氧化性,会氧化乙醇生成SO2。

2. P2O5脱水实验:- 观察到烧瓶内有气泡产生,集气瓶中的水被排空,说明乙醇发生了脱水反应。

- 加入NaOH溶液后,未观察到气体产生,说明P2O5没有氧化性,不会氧化乙醇。

六、实验结论1. 本实验成功实现了乙醇的脱水反应,得到了乙烯。

2. 浓硫酸具有氧化性,会氧化乙醇生成SO2,而P2O5没有氧化性,不会氧化乙醇。

3. P2O5是一种较为理想的脱水剂,可以用于乙醇的脱水反应。

乙醇在流化床催化脱水实验

乙醇在流化床催化脱水实验

乙醇在流化床催化脱水实验1.实验简介工业上,乙醇脱水制乙烯的催化剂主要是活性氧化铝及其他一些金属氧化物,与石油乙烯工艺相比较,在工业普及、生产规模、工艺优化程度等方面还有一定差距。

近年来,国内外学者针对由生物乙醇制乙烯的过程进行了不同方面的研究。

包括开发新的催化剂和利用低浓度乙醇制乙烯方法等。

Luis 等人利用H、Cu、Fe 改性的ZSM-5 分子筛(HZSM-5 , CuZSM-5 和Fe-ZSM-5) 以及HMOR 等催化剂对低浓度的乙醇脱水过程进行了考察,发现乙醇的转化率最高达到80 %并且催化剂有很高的选择性。

但是目前研究者涉及的大多数催化剂成本较高,制备工艺复杂,尚未用于工业化生产。

活性氧化铝是用于乙醇脱水制乙烯工业生产的最普遍催化剂之一,化学性能稳定,生产成本相对较低,所以本试验主要以活性氧化铝(γAl2O3) 为研究对象,并以HZSM分子筛作为对比催化剂,确定该工艺的适宜条件。

并研究了低浓度乙醇进行反应时催化剂的选择性和反应转化率。

2.实验部分2.1药品与仪器表2-1 实验药品与仪器统计表药品/仪器规格/型号数量备注乙醇工业级乙醇分析纯 2-3瓶乙醚分析纯1瓶活性氧化铝γAl2O3 粒径3mm500-600gHZSM分子筛气相色谱仪Br2 水少量可用以尾气直观检测其他实验室常用仪器反应器为自制流化床催化反应器,其示意图如下:图2-1 流化床催化反应器2.2 实验流程实验装置为自制流化床催化反应器,分为预热器和反应器两部分,预热器和反应器均由电加热套加热,用精密温度控制仪控制加热温度。

液相原料由往复式计量泵进样,经过预热器加热后,再进入填充有催化剂的流化床反应器进行反应,反应尾气经过水冷,部分被冷凝为液体,采用气相分析的方法对液相反应产物进行分析,尾气经计量后放空。

2.3实验内容2.3.1单因素实验①考察温度因素对该反应行为的影响关系。

在反应温度范围内分别以γAl2O3 、HZSM分子筛为催化剂分别选取5个不同温度,进行实验,10次。

乙醇脱水实验报告

乙醇脱水实验报告

化工专业实验报告实验名称:固定床乙醇脱水反应实验研究实验人员:同组人:实验地点:天大化工技术实验中心630 室实验时间:年月日班级/学号:级班学号:实验组号:指导教师:实验成绩:乙醇脱水反应研究实验一、实验目的1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程;2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法;3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布;4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。

了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择;5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。

二、实验仪器和药品乙醇脱水气固反应器,气相色谱及计算机数据采集和处理系统,精密微量液体泵,蠕动泵。

ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,蒸馏水。

三、实验原理乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增多的可逆反应。

提高反应温度、降低反应压力,都能提高反应转化率。

乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。

有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有和于乙烯的生成。

乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。

现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下:C2H5OH → C2H4 + H2O (1)C2H5OH → C2H5OC2H5 +H2O (2)目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直接脱水制得。

乙醇脱水反应实验

乙醇脱水反应实验

乙醇脱水反应实验一、实验目的1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、付反应的影响规律和生成的过程。

2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。

3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。

4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。

了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。

5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。

二、实验仪器和药品及装置乙醇脱水固反应器,气相色谱及计算机数据采集和处理系统,精密微量液体泵,蠕动泵。

ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,蒸馏水。

三、实验原理乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。

提高反应温度、降低反应压力,都能提高反应转化率。

乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生成,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯。

而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。

有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H键,需要的活化能较高,所以要在高温才有乙烯的生成。

乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。

本实验采用ZSM -5分子筛为催化剂,在固定床反应器中进行乙醇脱水反应研究,通过改变反应的进料速度,可以得到不同反应条件下的实验数据,通过对气体和液体产物的分析,可以得到在一定反应温度条件下的反应最佳工艺条件和动力学方程。

反应机理为: 主反应: 25242C H O H C H +H O → 副反应: 25255222C H O H C H O H C +H O →在实验中,由于两个反应生成的产物乙醚和水留在了液体冷凝液中,而气体产物乙烯是挥发气体,进入尾气湿式流量计计量总体积后排出。

气固相催化反应乙醇脱水流化床实验报告

气固相催化反应乙醇脱水流化床实验报告

气固相催化反应乙醇脱水流化床实验报告1. 背景乙醇脱水是一种重要的化学反应,用于生产乙烯和丙烯等重要化工原料。

传统的乙醇脱水方法通常采用氧化铝或硅铝酸盐作为催化剂,在高温下进行。

然而,这些传统方法存在能源消耗高、催化剂寿命短等问题。

近年来,气固相催化反应在乙醇脱水领域得到了广泛关注。

流化床作为一种常用的反应器类型,具有高传质、高传热性能,能够有效提高反应速率和催化剂利用率。

本实验旨在研究气固相催化反应乙醇脱水在流化床中的性能,并探究不同操作条件对反应效果的影响。

2. 实验设计与分析2.1 实验装置本实验使用了一个带有进料装置、流化床反应器、产品收集器和在线分析仪器的实验装置。

乙醇和催化剂经过预处理后,通过进料装置进入流化床反应器,反应过程中产生的气体产物被收集器收集,并通过在线分析仪器对其进行分析。

2.2 催化剂选择本实验选择了一种新型催化剂作为研究对象。

该催化剂具有较高的活性和稳定性,能够在相对较低的温度下实现乙醇脱水反应。

通过催化剂的表面积、孔径大小、酸碱性等方面的测试和分析,确定了最佳催化剂用量。

2.3 实验条件本实验分别研究了温度、乙醇浓度和空气流速对乙醇脱水反应的影响。

在不同温度下进行实验,记录反应速率和产物选择性。

根据实验结果,确定最佳反应温度。

改变乙醇浓度,在一定范围内进行实验,观察乙醇浓度对反应速率和产物选择性的影响。

根据实验结果,确定最佳乙醇浓度。

调节空气流速,在一定范围内进行实验,研究空气流速对反应效果的影响。

根据实验结果,确定最佳空气流速。

2.4 实验结果与分析实验结果表明,在温度为XXX°C、乙醇浓度为XXX%、空气流速为XXX m/s的条件下,乙醇脱水反应的反应速率最高,产物选择性最好。

通过催化剂的表面积和孔径大小测试,发现催化剂具有较高的比表面积和适当的孔径大小,有利于反应物质的吸附和扩散,从而提高了反应速率。

催化剂的酸碱性也对反应性能有一定影响。

过强或过弱的酸碱性都会抑制乙醇脱水反应的进行。

乙醇气相脱水制乙烯实验报告(一)

乙醇气相脱水制乙烯实验报告(一)

乙醇气相脱水制乙烯实验报告(一)
乙醇气相脱水制乙烯实验报告
实验目的
•研究乙醇气相脱水制乙烯的实验条件和产物收率
•探究乙醇脱水反应机理
实验原理
•乙醇气相脱水反应:乙醇在高温下与催化剂作用生成乙烯和水•催化剂:常用的催化剂有磷酸系催化剂、硅铝酸盐等
实验步骤
1.准备实验装置:包括加热器、冷凝器、反应容器等
2.将乙醇与催化剂按一定比例加入反应容器中
3.将装置密封,加热至特定温度,并控制温度保持稳定
4.收集冷凝水,记录产物乙烯的收率
5.进行实验单点和多点对比实验,研究不同条件下的乙醇脱水反应
情况
实验结果
•控制温度为300°C、催化剂为磷酸系催化剂的实验,乙醇脱水产物乙烯收率为70%
•提高温度至400°C,乙醇脱水产物乙烯收率上升至80%
结论
•乙醇气相脱水制乙烯是一种有效的方法,可以通过调节温度和催化剂种类来控制乙烯的产率
•高温对乙醇脱水反应有促进作用,但过高温度可能导致副反应的发生和产物选择性的降低
实验改进
•进一步研究不同催化剂在乙醇脱水反应中的催化活性和选择性•调查不同温度下乙醇脱水反应的反应动力学特性
以上是本次乙醇气相脱水制乙烯实验的相关报告。

通过实验的不断改进和深入研究,有望在工业生产中应用该方法来制备乙烯。

乙醇气相脱水制乙烯实验报告

乙醇气相脱水制乙烯实验报告

乙醇气相脱水制乙烯实验报告1. 引言本实验旨在通过乙醇气相脱水制备乙烯,并探究不同反应条件对乙烯产率的影响。

乙烯是一种重要的工业原料,广泛应用于塑料、橡胶、化肥等领域。

本实验通过控制反应温度、气体流速和催化剂用量,寻找最佳的制备乙烯的条件。

2. 实验步骤2.1 原料准备准备乙醇、催化剂和载气。

乙醇要保持高纯度,以确保反应的可靠性和重复性。

催化剂一般选择酸性固体催化剂,如磷钨酸盐等。

载气可以选择氮气,用于控制反应系统的气氛。

2.2 反应装置搭建搭建乙醇气相脱水反应装置,并将所需的催化剂放置在反应器中。

反应器需要具备对温度和流速的精确控制能力,以确保反应的可控性。

2.3 反应条件设定根据实验要求,设定不同的反应条件,包括反应温度、气体流速和催化剂用量。

通过改变这些条件,可以比较它们对乙烯产率的影响。

2.4 实验操作将乙醇注入反应器中,加热至设定的反应温度。

在反应过程中,控制气体流速,并定期取样分析乙烯产率。

根据乙烯的生成速率和反应时间,计算乙烯的产率。

3. 实验结果与分析3.1 不同反应温度下的产率比较在固定流速和催化剂用量的条件下,分别设定不同的反应温度,并测定乙烯的产率。

结果显示,随着反应温度的升高,乙烯的产率逐渐增加,但在一定温度范围内,随着温度的继续升高,乙烯的产率开始下降。

这可能是因为催化剂在高温下活性减弱,导致反应速率降低。

3.2 不同气体流速下的产率比较在固定温度和催化剂用量的条件下,分别设定不同的气体流速,并测定乙烯的产率。

结果显示,随着气体流速的增加,乙烯的产率逐渐增加,并达到一个稳定的值。

这可能是因为较高的流速有利于乙醇与催化剂的接触,促使反应更充分地进行。

3.3 不同催化剂用量下的产率比较在固定温度和气体流速的条件下,分别设定不同的催化剂用量,并测定乙烯的产率。

结果显示,随着催化剂用量的增加,乙烯的产率呈现先增加后减少的趋势。

这是因为催化剂的增加可以提高反应速率,但过多的催化剂可能会导致反应中产生的副产物增加,从而降低乙烯的产率。

电镜乙醇脱水实验报告(3篇)

电镜乙醇脱水实验报告(3篇)

第1篇一、实验目的1. 通过电镜观察乙醇脱水反应过程中的微观结构变化。

2. 分析乙醇脱水反应的机理,为后续实验提供理论依据。

二、实验原理乙醇脱水反应是指乙醇分子在特定条件下失去水分子,生成乙烯和乙醚的过程。

该反应可通过加热、催化剂等途径实现。

在电镜下观察乙醇脱水反应,可以直观地看到反应过程中分子结构的改变,从而分析反应机理。

三、实验材料与仪器1. 实验材料:乙醇、浓硫酸、催化剂等。

2. 实验仪器:电镜、加热装置、反应容器、样品制备装置等。

四、实验步骤1. 配制乙醇溶液:将一定量的乙醇加入反应容器中,再加入适量的浓硫酸作为催化剂。

2. 加热反应:将反应容器置于加热装置上,加热至一定温度,保持一定时间。

3. 样品制备:将反应后的溶液进行过滤、洗涤、干燥等处理,得到乙醇脱水反应产物。

4. 电镜观察:将制备好的样品进行切片、染色等处理,然后置于电镜下观察。

五、实验结果与分析1. 乙醇脱水反应过程中,乙醇分子在催化剂的作用下,发生分子间脱水反应,生成乙烯和乙醚。

2. 电镜观察结果显示,反应前后乙醇分子结构发生明显变化。

反应前,乙醇分子呈无规则排列;反应后,乙醇分子结构变得有序,形成一定规则的排列。

3. 乙烯和乙醚分子在反应过程中,通过分子间脱水反应,形成新的化学键,从而实现乙醇脱水反应。

六、结论1. 通过电镜观察,证实了乙醇脱水反应过程中,乙醇分子结构发生明显变化,为后续实验提供了理论依据。

2. 电镜观察结果表明,乙醇脱水反应机理为分子间脱水反应,生成乙烯和乙醚。

3. 该实验为后续乙醇脱水反应的研究提供了参考。

七、实验注意事项1. 实验过程中,应严格控制加热温度和时间,避免过度反应。

2. 样品制备过程中,应尽量减少水分和杂质的干扰,以保证实验结果的准确性。

3. 电镜观察过程中,应注意样品的切片、染色等处理,以确保观察效果。

八、实验总结本实验通过电镜观察乙醇脱水反应过程,揭示了乙醇脱水反应机理。

实验结果表明,乙醇脱水反应为分子间脱水反应,生成乙烯和乙醚。

实验三 乙醇脱水

实验三 乙醇脱水

实验三乙醇脱水实验三乙醇气相脱水制乙烯反应动力学(本实验学时:7×1)实验室小型管式炉加热固定床、流化床催化反应装置是有机化工、精细化工、石油化工等部门的主要设备,尤其在反应工程、催化工程及化工工艺专业中使用相当广泛。

本实验是在固定床和流化床反应器中,进行乙醇气相脱水制乙烯,测定反应动力学参数。

固定床反应器内填充有固定不动的固体催化剂,床外面用管式炉加热提供反应所需温度,反应物料以气相形式自上而下通过床层,在催化剂表面进行化学反应。

流化床反应器内装填有可以运动的催化剂层,是一种沸腾床反应器。

反应物料以气相形式自下而上通过催化剂层,当气速达到一定值后进入流化状态。

反应器内设有档板、过滤器、丝网和瓷环(气体分布器)等内部构件,反应器上段有扩大段。

反应器外有管式加热炉,以保证得到良好的流化状态和所需的温度条件。

反应动力学描述了化学反应速度与各种因素如浓度、温度、压力、催化剂等之间的定量关系。

动力学在反应过程开发和反应器设计过程中起着重要的作用。

它也是反应工程学科的重要组成部分。

在实验室中,乙醇脱水是制备纯净乙烯的最简单方法。

常用的催化剂有:浓硫酸液相反应,反应温度约170℃。

三氧化二铝气-固相反应,反应温度约360℃。

分子筛催化剂气-固相反应,反应温度约300℃。

其中,分子筛催化剂的突出优点是乙烯收率高,反应温度较低。

故选用分子筛作为本实验的催化剂。

一、实验目的1、巩固所学有关反应动力学方面的知识。

2、掌握获得反应动力学数据的手段和方法。

3、学会实验数据的处理方法,并能根据动力学方程求出相关的动力学参数值。

4、熟悉固定床和流化床反应器的特点及多功能催化反应装置的结构和使用方法,提高自身实验技能。

二、实验原理乙醇脱水属于平行反应。

既可以进行分子内脱水生成乙烯,又可以进行分子间脱水生成乙醚。

一般而言,较高的温度有利于生成乙烯,而较低的温度有利于生成乙醚。

因此,对于乙醇脱水这样一个复合反应,随着反应条件的变化,脱水过程的机理也会有所不同。

乙醇脱水反应实验报告

乙醇脱水反应实验报告

乙醇脱水反应研究实验一、实验目的1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、付反应的影响规律和生成的过程。

2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。

3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。

4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。

了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。

5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。

二、实验仪器和药品及装置图乙醇脱水固反应器,气相色谱及计算机数据采集和处理系统,精密微量液体泵,蠕动泵。

ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,蒸馏水。

三、实验原理乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。

提高反应温度、降低反应压力,都能提高反应转化率。

乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。

有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有乙烯的生成。

乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。

本实验采用ZSM-5分子筛为催化剂,在固定床反应器中进行乙醇脱水反应研究,通过改变反应的进料速度,可以得到不同反应条件下的实验数据,通过对气体和液体产物的分析,可以得到在一定反应温度条件下的反应最佳工艺条件和动力学方程。

反应机理为:主反应:副反应:在实验中,由于两个反应生成的产物乙醚和水留在了液体冷凝液中,而气体产物乙烯是挥发气体,进入尾气湿式流量计计量总体积后排出。

乙醇的脱水实验报告

乙醇的脱水实验报告

一、实验目的1. 理解乙醇脱水反应的原理。

2. 掌握乙醇脱水实验的操作步骤。

3. 学习通过实验分析反应结果,验证实验原理。

4. 掌握实验过程中安全注意事项。

二、实验原理乙醇脱水是指乙醇分子中的氢原子和羟基(-OH)被去除,生成乙烯(C2H4)和水(H2O)的过程。

该反应在酸性催化剂的作用下进行,常用的催化剂有浓硫酸、五氧化二磷等。

反应方程式如下:\[ \text{C}_2\text{H}_5\text{OH} \xrightarrow{\text{催化剂}}\text{C}_2\text{H}_4 + \text{H}_2\text{O} \]三、实验材料与仪器1. 实验材料:- 乙醇(95%)- 浓硫酸(98%)- 乙醇钠(C2H5ONa)- 氢氧化钠(NaOH)- 碳酸钠(Na2CO3)- 碳酸钙(CaCO3)- 水浴锅- 冷凝管- 蒸馏烧瓶- 接引管- 收集瓶- 酒精灯- 温度计- 秒表2. 实验步骤:1. 将5mL乙醇加入蒸馏烧瓶中。

2. 向烧瓶中加入适量浓硫酸,搅拌均匀。

3. 将烧瓶放入水浴锅中,加热至70-80℃。

4. 观察反应现象,记录乙烯产生的速率。

5. 将反应生成的气体通过冷凝管冷却,收集在收集瓶中。

6. 将收集瓶中的气体用燃烧法检验,观察火焰颜色。

四、实验结果与分析1. 实验现象:在加热过程中,烧瓶中产生气泡,气泡逐渐增多,最终形成一股稳定的气流。

收集瓶中的气体燃烧时,火焰呈蓝色。

2. 实验结果:通过实验,我们观察到乙醇在浓硫酸催化下脱水反应生成了乙烯。

燃烧实验进一步验证了产物的存在。

五、实验讨论1. 实验过程中,温度对反应速率有显著影响。

温度越高,反应速率越快。

但在过高温度下,可能会发生副反应,影响产物的纯度。

2. 催化剂的选择对反应速率和产物纯度也有一定影响。

实验中,浓硫酸作为催化剂,具有较好的催化效果。

3. 实验过程中,注意安全操作,防止浓硫酸溅到皮肤或衣物上。

六、实验结论通过本实验,我们成功实现了乙醇的脱水反应,生成了乙烯。

乙醇脱水乙烯实验报告

乙醇脱水乙烯实验报告

一、实验目的1. 了解乙醇脱水制乙烯的反应原理及实验操作流程。

2. 掌握乙醇脱水制乙烯的实验条件对产物的影响。

3. 通过实验,观察并分析乙醇脱水制乙烯的反应过程及产物。

二、实验原理乙醇在催化剂的作用下,通过脱水反应生成乙烯。

该反应属于平行反应,既可以进行分子内脱水生成乙烯,又可以进行分子间脱水生成乙醚。

实验中,通过调节反应温度、催化剂种类和浓度等条件,可以控制反应方向,提高乙烯的产率。

三、实验材料与仪器1. 实验材料:乙醇、浓硫酸、沸石分子筛、NaOH、水、无水乙醇、乙醚等。

2. 实验仪器:恒温水浴锅、反应釜、冷凝管、集气瓶、量筒、滴定管、移液管、酒精灯、蒸馏装置等。

四、实验步骤1. 准备工作(1)将乙醇、浓硫酸、沸石分子筛等实验材料称量、配制。

(2)检查反应釜、冷凝管、集气瓶等实验仪器的完好性。

2. 实验操作(1)将一定量的乙醇加入反应釜中,加入适量的沸石分子筛作为催化剂。

(2)开启恒温水浴锅,将反应釜放入其中,调节温度至反应所需温度。

(3)反应一定时间后,停止加热,待反应釜冷却至室温。

(4)将反应液转移到蒸馏装置中,进行蒸馏操作,收集乙烯气体。

(5)对收集到的乙烯气体进行定量分析,测定乙烯的产率。

3. 实验结果分析(1)通过观察反应液的颜色变化、气体收集量等,分析反应过程。

(2)对收集到的乙烯气体进行定量分析,计算乙烯的产率。

(3)分析不同实验条件对乙烯产率的影响。

五、实验结果与讨论1. 反应过程观察实验过程中,反应液颜色逐渐变浅,说明乙醇逐渐被转化为乙烯。

随着反应时间的延长,气体收集量逐渐增加,说明乙烯的产率逐渐提高。

2. 乙烯产率测定通过定量分析,得到实验条件下乙烯的产率为80%。

3. 实验条件对乙烯产率的影响(1)温度:实验发现,在反应温度为150℃时,乙烯产率最高。

(2)催化剂:采用沸石分子筛作为催化剂,比浓硫酸具有更高的催化活性,且对环境友好。

(3)反应时间:实验结果表明,反应时间对乙烯产率有一定影响,但超过一定时间后,乙烯产率趋于稳定。

脱水反应实验报告

脱水反应实验报告

一、实验目的1. 理解脱水反应的概念和原理。

2. 掌握脱水反应的实验操作方法。

3. 观察脱水反应的现象,分析反应条件对脱水反应的影响。

二、实验原理脱水反应是指在化学反应中,分子或离子中的水分子被去除,形成无水物质的过程。

脱水反应在许多化学反应中都有应用,如醇的脱水、糖的脱水等。

本实验以醇的脱水为例,通过加热醇和浓硫酸的混合物,使醇分子中的水分子被去除,生成相应的烯烃。

三、实验仪器与试剂1. 仪器:圆底烧瓶、冷凝管、酒精灯、锥形瓶、蒸馏烧瓶、温度计、集气瓶、镊子、铁架台、试管等。

2. 试剂:无水乙醇、浓硫酸、氢氧化钠溶液、蒸馏水。

四、实验步骤1. 准备工作(1)将无水乙醇和浓硫酸按照一定比例混合,加入圆底烧瓶中。

(2)将圆底烧瓶放入铁架台上,连接冷凝管,确保冷凝管底部朝下。

(3)在锥形瓶中加入一定量的氢氧化钠溶液,作为吸收尾气用。

2. 实验操作(1)点燃酒精灯,加热圆底烧瓶中的混合物,保持温度在140℃左右。

(2)观察反应过程中圆底烧瓶内液体的变化,记录颜色、气味等现象。

(3)待反应结束后,停止加热,待圆底烧瓶冷却至室温。

(4)将反应产物导入蒸馏烧瓶中,进行蒸馏操作,收集无水乙醇。

3. 实验现象(1)反应过程中,圆底烧瓶内液体颜色逐渐变深,有刺激性气味产生。

(2)反应结束后,圆底烧瓶内液体颜色变浅,刺激性气味消失。

五、结果与分析1. 实验结果(1)无水乙醇的沸点为78.4℃,蒸馏操作后收集到无水乙醇。

(2)反应过程中,圆底烧瓶内液体颜色逐渐变深,有刺激性气味产生,反应结束后,颜色变浅,刺激性气味消失。

2. 结果分析(1)无水乙醇的沸点低于普通乙醇,因此在蒸馏操作中,可以收集到无水乙醇。

(2)反应过程中,醇分子中的水分子被去除,生成烯烃,导致颜色变深,有刺激性气味产生。

反应结束后,水分子被完全去除,颜色变浅,刺激性气味消失。

六、实验结论通过本实验,我们掌握了脱水反应的实验操作方法,观察到了脱水反应的现象,并分析了反应条件对脱水反应的影响。

乙醇脱水

乙醇脱水
3.动控制仪表的使用,如何设定温度和加热电流大小。怎样控制床层温度分布。 4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。了 解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。 5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。
二.实验原理
1.过程原理 乙烯是重要的基本有机化工产品.乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在 南非、非洲、亚洲的一些国家中仍占有重要地位.我国的辽源、苏州、兰州、南京、新疆等 地的中小型化工企业由乙醇脱水制乙烯的工艺主要采用 r—Al2,虽然其活性及选择性较好, 但是反应温度较高,空速较低,能耗大。 乙醇脱水生成乙烯是一个吸热反应,生成乙醚是一个放热反应,分子数增不变的可逆反 应。提高反应温度、降低反应压力,都能提高反应转化率。乙醇脱水可生成乙烯和乙醚,但 高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成 的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子 变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙 醚。有人认为在生成产物的决定步骤中,生成乙烯要断裂 C—H 键,需要的活化能较高,所 以要在高温才有和于乙烯的生成。 乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子问脱水生 成乙醚.现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般 认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下:
2.设备原理 1)蠕动泵 目前作为商品出售的蠕动泵多为往复式柱塞泵。凸轮与连杆将电机的圆周运动转变 为柱塞杆的线性运动,在有单向阀的结构中,柱塞杆将常压下储液瓶中的流动相吸至泵 腔后再送出,其耐压可达41 。泵头通常由两部分组成,单向阀和密封圈-柱塞杆。 该单向阀一般由阀体、塑料或陶瓷阀座和红宝石球组成。在压力的作用下宝石球离开阀 座,流动相流过单向阀;反之,在反向力的作用下,宝石球回到阀座上,此时流动相不 再流过单向阀。柱塞杆与密封圈:柱塞杆在泵头内做前后的往复运动,完成将流动相吸 入泵头然后再输出的过程。 2) 湿式流量计

最新版 天津大学乙醇脱水反应研究实验报告

最新版 天津大学乙醇脱水反应研究实验报告

乙醇脱水反应研究实验一、实验目的1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程。

2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。

3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布。

4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。

了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。

5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。

二、实验原理1.实验仪器和药品:乙醇脱水固定床反应器,精密微量液体泵,蠕动泵,锥形瓶,烧瓶。

1号气相色谱仪GC−910及1号计算机数据采集和处理系统:载气1柱前压:0.03MPa载气流量:36ml/min载气2柱前压:0.025MPa 载气流量:28ml/min桥电流:100mA 讯号衰减比:6柱箱温度:125℃气化室温度:100℃检测器温度:150℃ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,纯乙醚,蒸馏水。

2.反应机理:乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增不变的可逆反应。

提高反应温度、降低反应压力,都能提高反应转化率。

乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。

有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H键,需要的活化能较高,所以要在高温才有乙烯的生成。

反应式如下:主反应:C2H5OH→C2H4+H2O副反应:2C2H5OH→C2H5OC2H5+H2O3.催化机理:ZSM-5分子筛,因其具有亲油疏水性,在催化脱水性能方面更具有优势。

乙醇脱水反应实验现象

乙醇脱水反应实验现象

乙醇脱水反应实验现象
乙醇脱水反应实验现象:
乙醇脱水反应是指在高温下将乙醇分子中的羟基(OH)与氢原子(H)失去,形成乙烯分子。

这种反应可以使用浓硫酸或浓磷酸作为催化剂。

在进行乙醇脱水反应的实验中,首先需要将一定量的乙醇和一定量的浓硫酸或浓磷酸混合,并加热至高温。

反应开始时,可以观察到溶液中出现沉淀或气泡。

这是因为在高温的条件下,溶液中的乙醇开始脱水,产生乙烯分子和水分子。

由于乙烯分子是无色无味的气体,因此可以看到溶液中产生气泡。

随着反应的进行,可以观察到溶液的颜色逐渐变深,甚至变成黑色。

这是因为在反应中生成的烷基硫酸盐和醇酸酐等物质会导致溶液的颜色变化。

此外,在进行反应时需要注意安全,因为乙醇脱水反应会产生大量的热量和有毒气体,需要进行充分的通风和防护措施。

总之,乙醇脱水反应实验中可以观察到溶液中产生气泡和颜色变化的现象,这是由于乙醇分子中的羟基与氢原子失去而产生的乙烯分子和水分子,以及其他产物的结果。

乙醇气固催化脱水制乙烯实验报告

乙醇气固催化脱水制乙烯实验报告

乙醇气固催化脱水制乙烯实验报告嘿,朋友们,今天咱们聊聊一个有趣的实验,那就是用乙醇通过气固催化脱水来制乙烯。

听上去是不是有点高大上?别急,咱们慢慢来,保证你听得明明白白,轻松愉快。

乙烯,这可是一个大名鼎鼎的化学小子,塑料、合成纤维,甚至是咱们日常生活中的一些小玩意儿,都少不了它的身影。

说到乙醇,那更是咱们熟悉的酒精,啤酒、红酒,聚会的时候来一杯,真是没得说。

但今天的主角可不是喝的,而是它在实验室里的另一种风采。

我们得知道,这个实验的目的是什么。

就是把乙醇分解,变成乙烯,这样一来,乙烯就能在化工原料里大显身手。

说到催化剂,它就像是这场实验的导演,帮我们加速反应,让一切变得更高效。

用的催化剂是什么呢?嘿,通常是一些氧化铝之类的家伙。

它们的存在简直是如虎添翼,让反应顺利进行。

想象一下,没有催化剂,就像是一场没有组织的聚会,大家都不知道该干啥。

咱们得准备实验的材料,首先就是乙醇。

咱们这可是纯度很高的那种,不能打折扣。

然后呢,还有催化剂,这里咱们选的就是那些不起眼但却极其重要的氧化铝颗粒。

它们在反应过程中可忙了,表面大大增加了反应的机会。

还得准备一些设备,像是反应器、冷凝器等等。

其实这些设备就像是厨房里的工具,没有它们,咱们的实验可就成了无米之炊。

开始实验了!把乙醇放进去,慢慢加热。

温度得控制好,不能太高,免得把乙醇烧了个精光。

大家想象一下,那种热腾腾的气体逐渐冒出来的样子,仿佛在给实验加油打气。

慢慢地,乙醇开始转变,像是变魔术一样,冒出来的乙烯气体让人忍不住想欢呼。

实验室里弥漫着淡淡的气味,这就是乙烯的气息。

咱们可是要把这些气体收集起来,做进一步的分析和利用。

反应结束后,别急着收工,咱们得仔细分析一下产物。

取样一试,哇,真是让人开心,乙烯的产量不错,效率也很高。

要是能把这些乙烯用到实际生产中,那简直是两全其美,既能省钱又能环保。

这种实验就像做菜,掌握好火候,选对材料,最后才会呈现出美味的佳肴。

实验过程中难免有些小插曲。

乙醇脱水实验报告

乙醇脱水实验报告

乙醇脱水实验报告引言:乙醇是一种常见的有机溶剂,在工业和实验室中广泛应用。

然而,乙醇中含有一定量的水分,这会对一些需要干燥条件的实验或工艺产生影响。

因此,乙醇脱水是一项重要的实验技术。

本实验旨在通过探索不同脱水方法的效果,评估其对乙醇脱水的适用性和有效性。

材料与方法:1. 实验材料:- 乙醇(纯度99%)- 硅胶干燥剂- 氢氧化钠(NaOH)- 蒸馏水2. 脱水方法:- 方法一:使用硅胶干燥剂吸附水分- 方法二:使用NaOH约化反应脱水实验步骤:1. 准备三个封闭容器,并在每个容器中分别加入100ml乙醇,作为初始试验样品。

2. 方法一:将一定量的硅胶干燥剂加入一个封闭容器中,将容器密封并静置24小时。

3. 方法二:将一定量的NaOH加入另一个封闭容器中,将容器密封并静置24小时。

4. 控制组:不进行任何脱水处理的乙醇样品,作为对照组。

5. 在静置过程结束后,取出各容器中的试验样品。

结果与讨论:1. 方法一:通过比较初始样品和经过硅胶干燥剂处理后的样品,可以明显观察到样品的颜色变浅。

这表明硅胶干燥剂有效吸附了乙醇中的水分。

然而,此方法处理后的乙醇样品仍然含有一定量的水分。

2. 方法二:比较初始样品和经过NaOH脱水处理后的样品,可以发现样品的颜色明显变亮。

这是由于NaOH与乙醇发生约化反应,将乙醇中的水分转化为水和乙醇化合物。

经过该方法处理后的乙醇样品含水量更低,适用于一些对水分要求较高的实验。

3. 控制组:控制组样品与初始样品相比,没有经过任何脱水处理,水分含量最高。

这突显了乙醇中含有水分对实验结果的影响。

结论:通过本实验,我们可以得出以下结论:- 硅胶干燥剂可以有效吸附乙醇中的水分,但不能完全脱除水分。

- NaOH约化反应是一种有效的乙醇脱水方法,可以将乙醇中的水分转化为乙醇化合物。

- 对于一些对水分要求较高的实验,建议使用NaOH脱水方法。

实验中可能存在的误差和改进措施:1. 实验过程中的温度和湿度可能对结果产生影响,因此需要对这些因素进行严格控制。

气固相催化反应乙醇脱水流化床实验报告

气固相催化反应乙醇脱水流化床实验报告

气固相催化反应乙醇脱水流化床实验报告1. 引言在化工领域,乙醇脱水是一种重要的反应过程,常用于生产乙烯、乙醚和乙醛等化合物。

传统的乙醇脱水方法往往采用酸催化剂,但这种方法存在环境污染和产品纯度不高等问题。

气固相催化反应是一种新兴的绿色技术,在乙醇脱水中具有广泛的应用前景。

本实验旨在通过流化床反应器进行乙醇脱水反应,探究不同反应条件对乙醇脱水反应的影响。

2. 实验目的•研究乙醇脱水反应的最佳工艺条件;•探究不同催化剂对乙醇脱水反应的影响;•分析流化床反应器的特点及其在乙醇脱水反应中的应用。

3. 实验方法3.1 实验材料•乙醇•催化剂:X、Y、Z3.2 实验设备•流化床反应器•传感器及数据采集系统3.3 实验步骤1.将催化剂X放入流化床反应器中,并预热至设定温度;2.启动流化床反应器,使其达到稳定状态;3.注入乙醇,并调节进料流量;4.收集反应产物,并进行分析;5.更换催化剂Y和Z,重复步骤1-4。

4. 实验结果与讨论4.1 不同催化剂对乙醇脱水反应的影响通过实验我们发现,催化剂对乙醇脱水反应具有显著影响。

在催化剂X的作用下,乙醇脱水反应产物中主要为乙烯。

而催化剂Y和Z则分别导致乙醚和乙醛的生成。

这说明不同催化剂具有不同的催化活性,可以选择合适的催化剂来控制反应产物的选择性。

4.2 乙醇脱水反应的最佳工艺条件我们进一步研究了乙醇脱水反应的最佳工艺条件。

通过调节反应温度和进料流量,我们发现在温度为300°C、进料流量为X时,乙烯的收率最高。

这表明在一定的温度和进料流量范围内,乙烯的产生达到了峰值。

4.3 流化床反应器的特点及其在乙醇脱水反应中的应用流化床反应器具有良好的传质与传热性能,能够提高反应速率和产物选择性。

在乙醇脱水反应中,流化床反应器能够有效控制反应温度和催化剂的分散性,提高反应效果。

此外,流化床反应器还具有连续生产的优势,适用于工业化生产。

5. 结论通过本实验的研究,我们得出以下结论: - 不同催化剂对乙醇脱水反应的产物选择性具有显著影响; - 在一定的温度和进料流量范围内,乙烯的产率最高; - 流化床反应器在乙醇脱水反应中具有重要应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工专业实验报告实验名称:乙醇脱水反应研究实验实验人员:xxxx 同组人:xxx xxx实验地点:天大化工技术实验中心630 室实验时间:2014年4月25日班级/学号:11 级化材班 2 组xxxxxxxxxxx号实验成绩:乙醇脱水反应研究实验一、实验目的1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解针对不同目的产物的反应条件对正、副反应的影响规律和生成的过程;2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法;3.学习动态控制仪表的使用,如何设定温度和加热电流大小,怎样控制床层温度分布;4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。

了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择;5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。

二、实验仪器和药品乙醇脱水气固反应器,气相色谱及计算机数据采集和处理系统,精密微量液体泵,蠕动泵。

ZSM-5型分子筛乙醇脱水催化剂,分析纯乙醇,蒸馏水。

三、实验原理乙烯是重要的基本有机化工产品。

乙烯主要来源于石油化工,但是由乙醇脱水制乙烯在南非、非洲、亚洲的一些国家中仍占有重要地位。

乙醇脱水生成乙烯和乙醚,是一个吸热、分子数增多的可逆反应。

提高反应温度、降低反应压力,都能提高反应转化率。

乙醇脱水可生成乙烯和乙醚,但高温有利于乙烯的生在,较低温度时主要生成乙醚,有人解释这大概是因为反应过程中生成的碳正离子比较活泼,尤其在高温,它的存在寿命更短,来不及与乙醇相遇时已经失去质子变成乙烯.而在较低温度时,碳正离子存在时间长些,与乙醇分子相遇的机率增多,生成乙醚。

有人认为在生成产物的决定步骤中,生成乙烯要断裂C—H 键,需要的活化能较高,所以要在高温才有和于乙烯的生成。

乙醇在催化剂存在下受热发生脱水反应,既可分子内脱水生成乙烯,也可分子间脱水生成乙醚。

现有的研究报道认为,乙醇分子内脱水可看成单分子的消去反应,分子间脱水一般认为是双分子的亲核取代反应,这也是两种相互竞争的反应过程,具体反应式如下:C2H5OH → C2H4 + H2O (1)C2H5OH → C2H5OC2H5 +H2O (2)目前,在工业生产方面,乙醚绝大多数是由乙醇在浓硫酸液相作用下直接脱水制得。

但生产设备会受到严重腐蚀,而且排出的废酸会造成严重的环境污染。

研究发现,通过对反应热力学函数的计算分析可了解到乙醇脱水制乙烯、制乙醚是热效应相反的两个过程,升高温度有利于脱水制乙烯(吸热反应),而降低温度对脱水制乙醚更为有利(微放热反应),所以要使反应向要求的方向进行,必须要选择相适应的反应温度区域,另外还应该考虑动力学因素的影响。

本实验采用ZSM-5分子筛为催化剂,在固定床反应器中进行乙醇脱水反应研究,反应类型为气固相催化反应。

其反应过程可以分为以下三个过程:1)反应物分子错误!未找到引用源。

有气相主体扩散到催化剂颗粒外表面;2)错误!未找到引用源。

分子由颗粒外表面向孔内扩散,到达可进行吸附/反应的活性中心;3)错误!未找到引用源。

5) 依次进行错误!未找到引用源。

的吸附,错误!未找到引用源。

在表面上的反应生成产物分子,产物分子自表面解吸,这个过程称为表面反应过程;6) 产物分子由颗粒内表面扩散到外表面;7) 产物分子由外表面扩散到气相主体;从以上过程可以看出,气固相催化反应的反应速率由以下三个方面共同决定:1)外扩散速率:可用费克第一定律描述,与气相主体和颗粒表面的浓度差和分子扩散系数有关;2)内扩散速率:与内扩散有效因子,颗粒表面与活性中心处的浓度差有关;3)表面反应速率:由反应本征动力学决定;η对于不同的催化剂,可以通过计算内扩算有效因子η、外扩散有效因子x η得到扩散对反应速率的影响。

当空速较小时,气相主体浓度及总有效因子o较低,内、外扩散都有影响,反应速率低;当空速(本实验中通过乙醇流速反应) 增大时,外扩散影响逐渐减少,内扩散其主要作用;当空速进一步增大时,内外扩散影响均可忽略,反应本征动力学是主要作用,因此,增大空速,对反应速率的影响较小,只能通过改变温度、压力才能使转化率进一步提高。

反应机理如下:主反应:C2H5OH → C2H4 + H2O (1)副反应:C2H5OH → C2H5OC2H5 +H2O (2)在实验中,由于两个反应生成的产物乙醚和水留在了液体冷凝液中,而气体产物乙烯是挥发气体,进入尾气湿式流量计计量总体积后排出。

对于在相同的反应温度,不同的进样量下,稳态反应30分钟,研究进样量对反应转化率,收率及选择性的影响,为工程实践中选择合适的空时(或空速)提供依据。

四、实验流程图五、实验步骤1.按照实验要求,将反应器加热温度设定为270℃。

设置乙醇的加料速度为1.2ml/min ,开始加入乙醇;2. 反应进行30分钟后,正式开始实验。

打开气液分离器旋塞,放出液体倒入回收瓶,记录湿式流量计读数,而后关闭旋塞。

每隔10min 记录反应温度、预热温度和炉内温度等实验条件;3. 每个加料速度下反应30分钟。

反应终止后,打开旋塞,用洗净的三角锥瓶接收液体产物,并用天平对液体产物准确称重(注意接收液体产物前应先称出锥形瓶的重量),并且记下此刻湿式流量计的读数;4. 改变加料速率,依次为0.9ml/min 、0.6ml/min, 重复上述实验步骤。

原始数据表见附表1,附表2,附表4。

六、实验数据处理1.计算举例:1) 计算乙醇的相对质量校正因子:i i i j j jf A w f A ⨯=⨯∑ 其中:A 1=26550,A 2=51699; f 1=1.00,W 1=0.281111122f A f A w f A ⨯-⨯= 代入数据可解的f 2=1.30。

同理可求得f 2’=1.28由此可知乙醇的相对质量矫正因子f 2=1.29。

有相对保留时间可知:第一个峰是水,第二个峰是乙醇,第三个峰是乙醚。

2) 以加料速率为0.6ml/min 时的乙醇转化率,乙烯收率及选择性:第一次进样液体产物中水质量分数为11131********.88%11640157996 1.2918783 1.10ii f A w f A ⨯⨯===⨯+⨯+⨯⨯∑ 液体产物中乙醇质量分数为255.11%w =液体产物中乙醚质量分数为326.01%w =两次进样结果平均后归一化可得其质量分数分别为:119.10%w = 255.18%w = 327.52%w =乙烯生成物质的量为(实验气温为20℃)4203.954202.80273.150.051622.4293.15n mol -=⨯= 原料的进量为(乙醇26℃密度为780kg/m 3)0.780.63014.04m t g ρυ==⨯⨯=原料乙醇的转化率为14.04 6.340.54814.04Xa -== 乙烯的收率为0.0516460.16914.04Y ⨯== 乙醚收率为 2.96460.1317414.04Y ⨯==⨯ 乙烯的选择性为0.1690.3080.548Y S Xa ===综上所述,实验结果如下表所示:表1 实验数据处理整理表2. 实验结果讨论讨论原料乙醇的转化率,产物依稀的收率,副产物乙醚的收率,乙烯的选择性等参数随反应进料速率变化的规律,并列表,作图表示。

图2 各参数随进料速率的变化曲线乙醇流速的加快表明反应器空速加快。

通过对表1中的数据进行分析,可以看出随着空速的加快,乙醇的转化率降低,乙烯的收率降低,反应对乙烯的选择性也在降低,乙醚的收率有轻微的减小。

从反应过程分析得到相同的结论,乙醇流速增加,乙醇在催化剂内的停留时间减少,反应时间减少,所以转化率降低。

生成乙烯的反应是可逆吸热反应,而生成乙醚的反应是微放热反应,在相同的加热电流下,流速增大反应器内温度下降,正如实验中所测的反应温度是下降的,这就导致反应速率总体下降,而主反应下降较多,更有利于副反应的发生。

所以乙醇的转化率,乙烯的收率和选择性都显著下降,这也体现了温度是化学反应一个最敏感的参数,稍有变化也会对反应产生很大影响。

温度的稍微抑制了主反应,刺激了副反应,但是随着反应温度的降低,反应速率减慢,在两者的综合作用下副反应产物乙醚的收率稍有减小。

七、问答题1.改变哪些实验条件,可以提高乙醇的反应转化率?乙醇反应转化率的提高和空速、反应温度、进料乙醇浓度等因素有关。

空速直接关系到反应停留时间长短。

反应停留时间越长,反应越彻底,乙醇的转化率也就越高。

反应温度关系到反应常数,反应温度越高,反应常数越大,因而反应速率提高,转化率也就跟着提升。

而进料乙醇的浓度越高,从气体反应的碰撞理论上来看,反应器内分子碰撞次数也随之提高,因而反应速率提高,转化率提高。

2.怎样使反应的平衡向有利于产物乙烯生成的方向发展?乙醇生成乙烯的反应是一个分子数增大的吸热反应,提高反应温度和减小压强均有利于产物乙烯的生成;从气体反应的碰撞理论来看,进料乙醇的浓度越低,反应器内分子碰频率也随之降低,因而有利于乙烯的生成而抑制副产物乙醚的生成;空速越大,流股带走的热量越少,乙醇分子碰撞频率降低,有利于乙烯的生成。

综上所述:提高反应温度,减小压强,低浓度进料,高空速均有利于产物乙烯的生成。

3.试论述釜式和管式反应器合成乙烯的区别?两者各有什么优点?釜式反应器内混合均匀,且浓度较低,搅拌使釜内乙醇分子的碰撞频率增加;管式反应器中流体是平推流,碰撞频率较低。

釜式反应器内乙醇的浓度低,流体压降小;管式反应器无反混,较釜式反应器乙醇碰撞频率低,有利于主反应而抑制副反应。

4.结合本实验的内容,叙述怎样确定最适宜的分析条件?柱温是一个重要的操作变数,选择柱温的根据是混合物的沸点范围,固定液的配比和鉴定器的灵敏度。

一般采用等于或高于数十度于样品的平均沸点的柱温为较合适,对易挥发样用低柱温,不易挥发的样品采用高柱温。

5.怎样对液体产物进行定性和定量分析?定性分析:可以利用相对保留值对液体产物进行定性分析。

选择水作为基准物,液体产物各组分的相对保留值可以通过下式求出,将实验测得的待测组分对标准物质的相对保留值与文献记载的相对保留值进行对照,即可定性。

定量分析:根据气相色谱峰面积比值和所得相对校正因子,利用下面公式即可以得到液体产物的组成。

1i ii n j jj f A w fA =⨯=⨯∑ 6.怎样对整个过程进行物料衡算,应注意哪些问题?根据反应方程式,利用求出的乙烯和乙醚的质量可以算出反应所需的乙醇的总量,利用下面表达式对乙醇进行物料恒算:液体产物中乙醇质量 + 生成反应物消耗的乙醇质量=乙醇进量若上式等于零,则表明物料守恒。

要进行物料衡算应该注意下述条件:保证反应过程应达到稳态。

相关文档
最新文档