调节对象的特性

合集下载

1080《过程控制》西南大学网教23秋季作业参考答案

1080《过程控制》西南大学网教23秋季作业参考答案

108020232单项选择题1、串级控制系统的主回路是一个(),因此对于设计中的主参数的选择,可以按照单回路控制系统的设计原则进行。

.随动控制系统 . 定值控制系统. 程序控制系统 .以上都不是2、比例调节的缺点是存在静态误差,因此也称为()。

. 误差调节 . 动态调节. 有差调节.静态调节3、实验法建模时,为了获得被控对象的(),应加入激励信号使被控对象处于被激励的状态。

. 动态特性. 静态特性. 物理属性 .化学特性4、利用阶跃响应曲线法建立被控对象的数学模型,需求取被控对象输入与输出之间的()。

.大小关系.最大值.最小值.传递函数5、比例积分调节规律中,积分调节可以消除()。

.振荡.比例系数.调节时间.静态误差6、比例积分微分调节的缩写为()。

.DCS.PID.PI.PD7、若调节对象的特性是线性的,应选择具有()流量特性的调节阀。

.双曲线.抛物线.直线.等百分比8、为了减小调节阀()的影响,一般采用阀门定位器克服阀杆摩擦力。

.流量.重量.间隙特性.尺寸9、弹性式压力表是利用各种弹性元件,在被测介质压力作用下产生弹性变形的原理来测量压力的,服从()。

.法拉第电磁感应定律.胡克定律.质量守恒定律.惯性定律10、变送器一般由输入转换部分、放大器和()组成。

.控制器.反馈部分.传感器.执行单元11、关于压力检测仪表的安装,下列叙述错误的是()。

.压力检测仪表必须经检验合格后才能安装.压力检测仪表应水平安装.取压点应能如实反映被测压力的真实情况.压力检测仪表的连接处,应选择适当的材料作为密封垫圈12、串级控制系统是把两个调节器串接在一起,其中一个调节器的输出作为另一个调节器的(),共同稳定一个被控变量所组成的闭合回路。

.输入值.给定值.扰动量.以上都不是13、阶跃响应曲线法适用于处于()的被控对象。

.C. 开环、非稳态.开环、稳态.闭环、稳态.闭环、非稳态14、调节器的调节规律是指调节器输出信号与输入信号之间随()变化的规律。

职业技能试卷 — 热工自动装置检修(第051套)

职业技能试卷 — 热工自动装置检修(第051套)

一、选择题(共 25 题,每题 2 分):【1】在气动执行机构出现晃动现象时,不可能引起的原因是()。

A.调节器输出的实际指令信号在晃动B.指令信号的传输电缆屏蔽不佳,使干扰信号串入C.气源压力不稳定D.定位器固定螺丝脱落【2】十进制数101的二进制码为()。

A.101B.100101C.1100101D.11100101【3】在串级汽温调节系统中,副调节器可选用()动作规律,以使内回路有较高的工作频率。

A.P或PDB.PIC.PIDD.以上都可以【4】做机组性能试验时,300MW等级及以上机组的汽温控制系统中再热蒸汽温度的稳态品质指标为()℃。

A.士2B.±3C.±4D.±5【5】在堵转情况下,交流异步电动机的转差率为()。

A.0B.0.5C.1D.1.5【6】数字0.0520中的有效数字有()位。

A.5B.4C.3D.2【7】强制开送风机动叶自然通风的条件是()。

A.两台一次风机跳闸B.MFTC.两台送风机跳闸D.全炉膛灭火【8】电厂制氢系统一般包含三个子调节系统,即槽温调节系统、氢氧液位调节系统和()调节系统。

A.槽压B.负压C.流量D.以上都不是【9】炉膛吹扫条件中,最少需有()额定空气量的通风量进行吹扫。

A.10%~15%B.15%~20%C.25%~30%D.5%~10%【10】给水回热系统各加热器的抽汽要装止回阀的目的是()。

A.防止蒸汽倒流B.防止给水倒流C.防止凝结水倒流D.以上都不是【11】3/8in=()mm。

A.10.56B.9.53C.8.76D.8.50【12】在串级三冲量控制系统中,应()。

A.主给水流量和蒸汽流量均作用于副调节器且极性一致,均为负B.主给水流量和蒸汽流量均作用于副调节器且主给水极性为正,主蒸汽流量为负C.主给水流量和蒸汽流量均作用于副调节器且主给水极性为负,主蒸汽流量为正D.主给水流量和蒸汽流量均作用于副调节器且极性一致,均为正【13】根据《火力发电厂设计技术规程》,()容量机组的协调控制系统运行方式宜包括机炉协调、机跟踪、炉跟踪和手动运行方式。

调节阀流量特性介绍

调节阀流量特性介绍

调节阀流量特性介绍1. 流量特性调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。

其数学表达式为式中:Qmax-- 调节阀全开时流量L---- 调节阀某一开度的行程Lmax-- 调节阀全开时行程调节阀的流量特性包括理想流量特性和工作流量特性。

理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1)流量特性性质特点直线调节阀的相对流量与相对开度呈直线关系,即单位相对行程变化引起的相对流量变化是一个常数①小开度时,流量变化大,而大开度时流量变化小②小负荷时,调节性能过于灵敏而产生振荡,大负荷时调节迟缓而不及时③适应能力较差等百分比单位相对行程的变化引起的相对流量变化与此点的相对流量成正比①单位行程变化引起流量变化的百分率是相等的②在全行程范围内工作都较平稳,尤其在大开度时,放大倍数也大。

工作更为灵敏有效③ 应用广泛,适应性强抛物线特性介于直线特性和等百分比特性之间,使用上常以等百分比特性代之①特性介于直线特性与等百分比特性之间②调节性能较理想但阀瓣加工较困难快开在阀行程较小时,流量就有比较大的增加,很快达最大①在小开度时流量已很大,随着行程的增大,流量很快达到最大②一般用于双位调节和程序控制在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。

一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。

另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。

因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。

称为工作流量特性[1]。

具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。

(1)串联管道时的工作流量特性调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。

调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。

第一章 调节系统的基本原理与调节

第一章  调节系统的基本原理与调节


2.自动调节系统的 任务:以预定的精 度,确保被控量等 于给定值,或与给 定值保持确定的函 数关系。
3.自动调节系统的组成



自动调节系统由调节对象、发信器、调节 器和执行器组成的闭环系统。 发信器、调节器和执行器的总和又可以称 为自动调节设备。 自动调节系统是由调节对象和自动调节设 备组成。
定义:调节系统在阶跃干扰作用下,系统的平 衡状态遭到破坏,从一个稳态过渡到另一个稳 态的过程,也就是被调参数随时间而变化的过 程,称为过渡过程。
静态(稳态)——动平衡。对于定值调节系统, 当对象的流入量与流出量相等时被调参数处于 相对平衡状态,此时被调参数不随时间而变化。
流入 调节对象
流出
例:冷藏箱——调节对象,被调参数——箱内 的温度,给定值θ 0 。当干扰加入后,箱内温度 会偏离θ 0 ,原来的平衡被破坏。由于调节作用, 克服了干扰的影响,是被调参数逐渐趋近于给定 值。这一过程,被调参数是随时间t变化的。
+-
自动调节系统是个闭合回路,故为闭环系统。 另外,系统的输出是被调参数,但它经过发信器 后又返回到调节器的输入端。这种把系统的输出 信号又引到系统输入端的作法叫做反馈。
如果反馈信号使被调参数的变化减小,称为负 反馈,反之,称为正反馈。 负反馈信号(即被调参数的测量值z)进入比较元 件时取负值,而给定值r取正值,所以比较元件输 出的偏差信号为 e=r-z。 在自动调节系统中一般都采用负反馈。它是按 偏差进行控制的,所以,产生偏差是自动调节的 必要条件。
空调系统中采用的开环控制系统方框图如下
按干扰补偿的控制系统方框图
这种控制方式的原理是需要控制受控对象 (调节对象),而测量的是破坏系统正常工作 的干扰。利用干扰信号产生控制作用,以补偿 干扰对被调参数的影响,所以称干扰补偿。 信号源干扰经测量、计算、执行诸元件至 对象的被控量,是单向传递的,所以是开式控 制。 由于测量的是干扰,所以只能对可测干扰 进行补偿。不可测干扰以及对象各功能部件参 数变化给被控量造成的影响,系统自身无法控 制。因此,控制精度受到原理上的限制。

调节对象参数和运动特性随工况变化的分析

调节对象参数和运动特性随工况变化的分析
维普资讯
第3 2卷第 1期
20 年 1 06 月
水9 4 (0 60 — 0 7 0 0 5 —3 2 20 ) 10 5 —4
调节对象参数和运动特性随工况 变化的分析
曾 云, 沈祖诒 , 曹林 宁
( 河海 大学水 利水 电学院 , 苏 南京 2 0 9 ) 江 1 0 8
Z n n S e u i C oLn ig e g Yu , h n Z y , a i nn
(ol eo t o sra c n y rpw r nier g, o a U iesy N nigJ ns 0 8 C l g f e C nevnyadH doo e E gnei H hi nvrt, aj agu2 0 9 ) e Wa r n i n i 1
附 近线 件 化 , 化为 状 态 越 的增 量 方 程 , 到线 性 化 模 型 。 得 许 多 学 芹在 调 节 对 象 的 分 析研 究方 面做 了 许 多工 作 , 文
式 中 。 、 、 分 别 是 水 轮 机 力 矩 对 转 速 、 头 、 叶 开 度 的 Be e 水 导 传 递系数 ; m 为水 轮 机 力矩 ; e 、 分 别 是 水 轮 机 流 量 对 e
A s atT eojc prm tr ca g i okp itnw trubn oe igss m. ae ntel er dl f bt c: h bet aa ee hn ewt w r o a riegvr n yt B sdo na e o r s h ni et n e h i mo
K yWo d: oe igojc moe p rm t ; h neo eao odt n; oe e t h rc r t s e rs gvr n bet dl aa e rc ag f p r i cnios m vm n c aat i i n ; e o tn i e sc

第一章 调节系统的基本原理与调节对象特性11

第一章 调节系统的基本原理与调节对象特性11

把此输出信号引回调节系统输入端的比较元件,这
种方式称为 反馈
反馈
负反馈:反馈信号使被调参数变化减小 正反馈:反馈信号使被调参数变化增大
在自动调节系统中都采用负反馈。 偏差信号为:e=r-z
其中 r——给定值信号; z——负反馈信号。
三、调节系统的基本概念
(一)调节系统分类 反馈调节系统按给定值的变化规律不同, 分为: 定值调节系统 程序控制系统
七、调节过程时间ts
调节系统受到干扰作用,被调参数开始波 动到进入新稳态值上下±5%(或±2%)范围 内所需时间。通常期望ts=3 Tp。
八、峰值时间tp
过渡过程达到第一峰值所需的时间,即 达到最大偏差值所经历的时间。
第三节 调节对象特性
静态特性 对象特性 动态特性
输入一个单位阶跃干扰,然后分析下列两点: 1、从新稳态数值求取对象的静态特性,如放大系 数。 2、从过渡过程曲线求取对象动态特性参数,如时 间常数T和延迟τ等。
一、冷藏箱空气温度数学模型 (一)冷藏箱内空气温度动态 方程 假定箱内壁与箱内空气温 度相同,均匀分布,可视为集 中参数,箱壁不蓄热。
(一)冷藏箱内空气温度动态方程
冷藏箱空气温度动态方程为:
C d dt k1 A1 k 2 A2 k1 A1 s k 2 A2 2
方程左边为被调参数,是对象的输出信号; 而方程右边两项为输入信号,其中θs箱外温度 为干扰作用参数,k1A1θs为干扰作用项,θ2为 调节作用参数,k2A2θ2为调节作用项。
△Φ1≈6△d1
空调室空气湿度动态方程式的解可写成
Φ1≈6d1
t T 1 e d

思考题
1.某热交换器如右图所 示,用蒸汽将送入的冷 水加热至一定温度,生 产工艺要求热水温度保 持在θ℃,试设计一个 单回路反馈调节系统, 说明系统的自动调节过 程。

第9章 燃气的压力调节及计量

第9章 燃气的压力调节及计量
Q0max 1.15 ~ 1.2Qp
调压器的计算流量:管网计算流量的1.2倍 调压器的压力降:调压器前燃气管道的最低压力 和调压器后燃气管道所需压力差确定
11
2015/11/11
表9-1 国产TZY-40K型自力式调压器,调节阀门完全开启时 系数C值
公称直径 20 (mm) 阀口直径 10,12, (mm) 15,20 阀座形式 单座 25 25 32 32 40 40 50 50 80 80 100 100 150 150 单座, 双座 200 200 单座, 双座 450, 630
PP1 9006 m3 / h 0T1Z1
12
2015/11/11
三、敏感元件(薄膜)
感测燃气出口压力的变化,并将其与给定值比较, 从而驱动传动装置,带动调节元件调节调压器出口压 力
1、薄膜有效系数
随着弯曲程度(挠度)的不同,有效系数也不同 挠度越大,有效系数越小 2、薄膜特性 应具有一定的强度和耐久性能、有较高的灵敏度 和良好的气密性、耐腐蚀性、耐热性及耐低温等。 通常用皮革,橡胶及塑料等材料制成
理论值 (9-16) ε:考虑密度变化的膨胀系数 经验值 图9-8 C是流通能力系数,可查表9-1
P P2 2 k 1 在临界状态时 2 0.91 P k 1 1 1 c P
k
Q0 5260C
PP1 0T1Z1
P P 1 c Q0 5260C c P 1 0T1Z1
三、差压式流量计:又称节流流量计
和阀座的配合,压损不超过10kPa
安全阀:安全切断阀和安全放散阀 安全装置: 监视器装置:调压器的串联 调压器的并联装置 旁通管:保证调压器检修时不间断供气 •测量仪表:判断各种装置及设备工作是否正常 进口:指示式压力计,出口:记录式压力计

关于PID调节器的正反作用的确定

关于PID调节器的正反作用的确定

关于PID调节器的正反作用的确定
调节器的正反作用的确定,需要根据实际控制回路和工艺运行要求确定。

一下步骤可供参考:
1、根据生产安全和操作运行要求,确定执行单元的正反作用(电开、气开型计为+,气开、气关型计为-);
2、根据对象特性,确定调节对象的正反作用。

如果阀门开大(此处的“开大”的含义是:阀门的流通面积增加,并非控制信号增大)测量值升高则为+,反之为-;
3、测量单元的信号特性一般都为+;
4、根据“闭环回路必须形成负反馈,整个系统才可以处于稳定状态”的原则,我们可以确定调节器的正反作用(调节器的偏差取PV-SV),正作用为+,反作用计-。

举例:
有一反应釜的液位调节回路,调节阀安装与反应釜的出口。

根据工艺生产安全,要求当调节阀气源压力丧失或控制信号丢失,调节阀必须处于全开状态,尽快放空反应釜中的物料,以防止物料凝固。

根据以上要求,我们可以确定:
1、调节阀采用气关阀(或电关型),计为“-”;
2、由于阀门安装于反应釜的出口,阀门通径增大,液位下降,反作用,计为“-”;
3、差压变送的租用形式计为“+”;
4、将以上三个环节的符号相乘,的符号为“+”;为使为整个闭环回路形成负反馈即“-”,调节器的作用形式计为“-”,调节器采用反作用。

5、验证:当液位升高(PV-SV值增大),调节器是反作用输出下降,调节阀为气关式信号下降阀门开大,物料流出速度增高,液位下降,液位恢复稳定。

以上举例是单回路,对视实际的复杂回路通过简化同样可以采用此步骤来确定。

需要了解详细的说明,可以参考自动控制工程等相关书籍。

控制系统设计 第六章 调节系统设计

控制系统设计 第六章 调节系统设计

例1:船舶的自动驾驶仪设计
解:船舶自动驾驶仪有两个方式:保持航向和变向航向,前者是 调节,后者是跟踪。驾驶员只干预给定信号,即改变航向
K

K G (s) s ( s 1)

D( s ) K p K d s
1 K ( K p K d s) s ( s 1) 0
h( s ) R Q1 ( s ) RCs 1
G(s)
类似的还有升温过程都符合规律电气等效:
u u I1 R 1 Cs
u R I RCs 1
还有另一种情况:容积特性小,主要是传输滞后,
e
s
Ke s 容积可以成为多容,最终上述两种情况均有, s 1
,性,系统有储能特点。
容积系数
液阻:R
物料变化量 模型化:水位系统 被调量变化
h Q2

动态阻抗
C :水槽面积
d h C Q1 Q2 dt

C
RC
d h h Q1 dt R
d h h R Q1 dt
max 100 max
max ----本体振动
本例中 6 的幅度产生 M max 32000Kg m / rad
过程控制系统设计:一般对化工、电力、造纸
1.调节对象特性: 主要是滞后特性,用容积特性刻画,一般简称为容性负载 容积系数:被调量改变一个单位所需物料变化 所以,这是以物料控制为模型的 容积系数C即为水槽

R h / Q2
C
RC
d (h) h R Q1 dt
R Ts 1
d (h) Q1 Q2 dt
G( s)

《初级工》第七章 自动调节系统的基本知识及应用

《初级工》第七章 自动调节系统的基本知识及应用



当t=3T时,
h(3T ) KA(1 e ) 0.95KA 0.95h()
从加入输入作用以后,经过3T时间,h已经变化了全部变 化范围的95%,这时,可近似认为动态过程基本结束。
3
c、时间常数τ对控制系统的影响
对控制通道的影响: 在相同的控制作用下,时间常数大,被控变量的变化 比较缓慢,则过程比较平稳,容易进行控制,但过渡 过程时间较长;若时间常数小,被控变量的变化速度 快,则控制过程比较灵敏,不易控制。时间常数太大 或太小,对控制都不利。
Kp ——比例调节器的放大倍数
只需改变支点o的位置就可以改变放大倍数Kp 的大小。工业中所用的调节器都用比例度来表 示比例调节的强弱。
其中(xmax-xmin)为仪表量程,(ymax-ymin)为调 节器输出量的范围 但比例调节不能使被调量恢 复到给定值而存在余差,因而调 节准确度不高。当调节质量要求 较高时,需要加上积分调节来消 除余差。
mD—扰动作用;μ—执行机构位移;D—软化水流量; W—生水流量;h—软化水箱水位;h0—水位给定值; i1—水位偏差信号;i2—调节信号
三、自动调节系统的特征分类
1、按给定值信号的特征分类
①定值调节系统
②随动调节系统
③程序调节系统
2、按工作原理分类 ①反馈调节系统 ②前馈调节系统
③前馈-反馈调节系统


对上式求导:
当t=0时,
h
dh KA t T e dt T dh KA h() dt T T
当对象受到阶跃输入作用 后,被控变量如果保持初 始速度变化,达到新的稳 态值所需要的时间就是时 间常数。
h(∞)
0.632h(∞)
0
T

锅炉给水调节系统

锅炉给水调节系统

锅炉给水调节系统汽包锅炉给水自动调节系统第一节给水调节任务与给水调节对象动态特性一、给水调节的任务汽包锅炉给水调节的任务是使锅炉的给水量适应锅炉的蒸发量,维持汽包水位在规定的范围内。

汽包水位反映了汽包锅炉蒸汽负荷与给水量之间的平衡关系,是锅炉运行中一个非常重要的监控参数,保持汽包水位正常是保证锅炉和汽轮机安全运行的必要条件。

汽包水位过高,会影响汽包内汽水分离器的正常工作,造成出口蒸汽湿度过大(蒸汽带水)而使过热器管壁结垢,容易导致过热器烧坏。

同时,汽包出口蒸汽湿度过大(蒸汽带水)也会使过热汽温产生急剧变化,直接影响机组运行的经济性和安全性。

汽包水位过低,则可能破坏锅炉水循环,造成水冷壁管烧坏而破裂。

二、给水调节对象动态特性汽包水位是由汽包中的储水量和水面下的气泡容积所决定的,因此凡是引起汽包中储水量变化和水面下的气泡容积变化的各种因素都是给水调节的扰动。

(1)给水流量扰动。

这个扰动来自给水调节门的开度变化、省煤器可动喷嘴开关动作、给水压力变化、给水泵转速波动等引起锅炉给水量改变的一切因素。

(2)蒸汽负荷扰动。

这个扰动是指汽轮机负荷变化而引起的蒸汽流量的改变,它使水位发生变化。

(3)锅炉炉膛热负荷扰动。

这个扰动主要是由锅炉燃烧率的变化改变了蒸发强度而引起的,它影响锅炉的输出蒸汽流量和汽水容积中的气泡体积。

给水调节对象的动态特性是指由上述引起水位变化的扰动与汽包水位间的动态关系。

当给水流量扰动时,水位调节对象的动态特性表现为有惯性的无自平衡能力特征,也就是说,当给水流量改变后水位并不会立即变化。

给水流量增加,一方面使进入锅炉汽包的给水量增加;另一方面使温度较低的给水进入省煤器、汽包及水循环系统,吸收了原有饱和水中的一部分热量,致使水面下气泡体积减小。

当蒸汽流量扰动时,汽包水位将出现“虚假水位” 现象。

原因是在蒸汽负荷突然增加时,虽然锅炉的给水流量小于蒸发量,但开始阶段的水位不仅不下降,反而迅速上升(反之,当负荷突然减少时,水位反而先下降)。

第5章 调节对象的特性及实验测定

第5章 调节对象的特性及实验测定
∆µ1

1 t ∆h K T t
H(s) K = µ1 (s) Ts + 1

1 µ1(s) = s
K 1 H(s) = ⋅ Ts +1 s
t − T
时域表达式 ∆h = K(1 − e ) ∆µ1
又称一阶惯性特性或单容特性 又称一阶惯性特性或单容特性
对象的特性参数K、T反映了对象的物理本质。 对象的特性参数 、 反映了对象的物理本质。 反映了对象的物理本质 因为工艺过程就是能量或物质的交换过程, 因为工艺过程就是能量或物质的交换过程,在 此过程中,肯定存在能量的储存和阻力 能量的储存和阻力。 此过程中,肯定存在能量的储存和阻力。 反映对象存储能量的能力。 (1)容量系数 )容量系数——反映对象存储能量的能力。 反映对象存储能量的能力 如水槽面积A, 的大小。 如水槽面积 ,它影响时间常数 T 的大小。 T = ARS (2)阻力系数 )阻力系数——反映对象对物料或能量传递 反映对象对物料或能量传递 的阻力。 的阻力。 如阀门阻力系数 RS ,它影响放大系数 K 的大 小。 K =K R
∆h
K t T
并不是所有被控过程都具有自衡特性。 并不是所有被控过程都具有自衡特性 。同样的 单容水槽如果出水用泵抽出,则成为无自衡特性。 单容水槽如果出水用泵抽出,则成为无自衡特性。
单容无自衡特性 若阀门1突然开大 增大, 不变化。 若阀门 突然开大∆µ1 , 则Q1增大,Q2不变化。 突然开大
被控对象
干扰f 干扰 + 给定值
e 控制器
- 被控量 实测值
执行器
被控对象
变送器
5.1被控过程数学模型的作用与要求 被控过程数学模型的作用与要求 被控对象大都是生产中的工艺设备, 被控对象大都是生产中的工艺设备,它是控制系 统的重要环节。无论是设计、还是操作控制系统, 统的重要环节。无论是设计、还是操作控制系统,都 需要了解被控对象的特性。 需要了解被控对象的特性。 在经典控制理论中,被控对象的特性一般用单输 在经典控制理论中, 输出的数学模型描述。最常用的是传递函数。 入、输出的数学模型描述。最常用的是传递函数。 传递函数是指用拉氏变换式表示的对象特性。 传递函数是指用拉氏变换式表示的对象特性。 X c (s) X r (s)

热工控制系统B思考题与习题

热工控制系统B思考题与习题

热工控制系统B思考题与习题第一章控制系统概述1. 什么叫自动控制系统?2.自动控制系统主要由哪几部分组成?每一部分的作用是什么?3.控制对象、被控制量、控制量和给定值是如何定义的?请举例说明。

4.自动控制系统的主要分类方法有哪几种?说明各种分类方法的特点,指出各种分类方法所包括的系统是什么?各系统的特点是什么?5.什么叫前馈控制系统?什么叫反馈控制系统?6.什么叫反馈?什么叫负反馈?7、什么叫定值控制系统?对定值控制系统来说,系统的输入量是什么?举例说明日常生活中的定值控制系统。

8.什么叫随动控制系统?对随动控制系统来说,系统的输入量是什么?举例说明日常生活中的随动控制系统。

9.、对一个实际控制系统如何实现负反馈?10.说明汽包锅炉有哪些被控制量?相应的控制量、控制机构有哪些?锅炉运行过程中被控制量可能会受到哪些扰动?11.控制过程的基本形式有哪几种?它们各有什么特点?如何根据控制过程曲线来检验控制系统是否满足基本要求?哪种控制过程的基本形式符合热工控制过程的要求,给出稳定性指标的范围。

12.通常从哪三个方面衡量自动调节系统的工作品质,表示调节系统的工作品质的指标有哪几个?如何兼顾这些指标?13.举出反馈控制系统的实例,指出被控制量、控制量、控制机构、给定值、扰动,画出控制系统的示意图。

14.水位自动控制系统的两种方案如下图所示,在运行中,希望水位高度H维持不变:(1)说明各系统的工作原理。

(2)画出各系统的方框图,并说明控制对象、被控制量、给定值、扰动各是什么?(3)试说明两系统各属于何种结构的控制方式。

(4)当水箱出口水流量q2变化时,各系统能否使水位高度保持不变?试从原理上定性说明。

第二章控制对象的动态特性1.为什么要研究对象动态特性?2.热工控制对象一般有哪几种类型?每种类型的特点是什么?写出相对应的传递函数。

3.热工控制对象的特征参数有哪些?是如何定义的,物理意义是什么?4.写出表示有自平衡能力对象动态特性的两套特征参数和它们之间的关系。

热工过程自动调节,课后习题答案,1到6章

热工过程自动调节,课后习题答案,1到6章

1-4 前馈调节系统和反馈调节系统有哪些本质上的区别?答:反馈调节系统是依据于偏差进行调节的,由于反馈回路的存在,形成一个闭合的环路,所以也称为闭环调节系统。

其特点是:(1)在调节结束时,可以使被调量等于或接近于给定值;(2)当调节系统受到扰动作用时,必须等到被调量出现偏差后才开始调节,所以调节的速度相对比较缓慢。

而前馈调节系统是依据于扰动进行调节的,前馈调节系统由于无闭合环路存在,亦称为开环调节系统。

其特点是:(1)由于扰动影响被调量的同时,调节器的调节作用已产生,所以调节速度相对比较快;(2)由于没有被调量的反馈,所以调节结束时不能保证被调量等于给定值。

1-7 基本的自动调节系统除被调对象外还有哪几个主要部件?它们各自的职能是什么?答:组成自动调节系统所需的设备主要包括:(1)测量单元:用来测量被调量,并把被调量转换为与之成比例(或其他固定函数关系)的某种便于传输和综合的信号y。

(2)给定单元:用来设定被调量的给定值,发出与测量信号y同一类型的给定值信号r。

(3)调节单元:接受被调量信号和给定值信号比较后的偏差信号,发出一定规律的调节指令μ给执行器。

(4)执行单元:根据调节单元送来的调节指令μ去推动调节机构,改变调节量。

or2—8 答案第三章3-1 什么是有自平衡能力对象和无自平衡能力对象?答案: 所谓有自平衡能力对象,就是指对象在阶跃扰动作用下,不需要经过外加调节作用,对象的输出量经过一段时间后能自己稳定在一个新的平衡状态。

所谓无自平衡能力对象,就是指对象在阶跃扰动作用下,若没有外加调节作用,对象的输出量经过一段时间后不能自己稳定在一个新的平衡状态。

3-2 试分析P、PI、PID规律对系统调节质量的影响?答案:P调节器,有一个相对较大的超调量,有较长的调节时间,存在静态误差。

PI调节器,综合了P调节器和I调节器两者的性质。

它的超调量及调节时间与P调节器差不多,但没有静态误差。

PID调节器兼有比例、积分和微分作用的特点,只要三个调节作用配合得当就可以得到比较好的调节效果,它具有比PD调节还要小的超调量,积分作用消除了静态误差,但由于积分作用的引入,调节时间比PD调节器要长。

调节对象的特性

调节对象的特性
有的对象在受到干扰作用后,被调节量不立即变化,而是经过一段时间 τ0后才开始变化的,如图7-11所示。τ0一般是由于介质的输送或热的传递 需要一段时间而引起的,称为纯滞后时间,简称纯滞后。
图7-12所示是一个蒸汽直接加热器。如果以进人的蒸汽量q为输入量, 液体的温度θ1为输出量(测温点不在水箱内,而在出口管道上,测点与水箱 的距离为L),那么,当蒸汽量增加时,水箱内温度θ1升高,水流到管道测 温点处要经过一段时间τ0。因此,管道测温点处的温度θ2变化要比水箱内 水温变化落后一段时间τ0,如图7-12(b)所示,这个时间为纯滞后。显然L 越长或管内流速v越低,则τ0越大,即
在自动调节系统中,纯滞后不利于调节,因为测量装置不能将被调量 的变化及时地送给调节器,调节器总是按滞后的信号进行调节,调节作用 也就不能快速克服千扰影响。因此应尽最大努力消除或缩短纯滞后时间τ0
时间常数T
从大量的生产实践中发现,有的对象受干扰作用后,被调量变化 很快,较迅速地达到了稳定值,有的则很缓慢。从图7-13可以看到截 面积很大的水箱与截面积小的水箱相比,当进口流量改变同样一个数 值时,截面积小的水箱水位变化很快,并迅速稳定在新的数值,而截 面积大的水箱惰性大,水位变化慢,需经过很长的时间才能稳定。在 自动调节系统中,往往用时间常数T来表示这种特性。T越大,表示对 象受到干扰作用后被调量变化得越慢,到达新的稳定值所需的时间越 长。
对象特性对过渡过程的影响
1.放大系数K
K越大表示调节量的作用越显著,但调节量作用强烈时,系统容 易产生振荡。因此调节对象的K值较大时,调节器辅出的变化应当减 小。
2.纯潜后时间与时间常数的比值τ0 /T 纯滞后时间τ0 ,与时间常数T的比值是衡量对象是否容易控制的 一个指标,τ0 /T越大,纯滞后时间τ0 的相对影响越大,调节越困难;相 反,τ0 /T的值越小,调节越有利。 3.时间常数T

电厂自动化试题

电厂自动化试题

一、填空(共35题)1.按照仪表是否与被测对象接触,测量分为(接触测量)和(非接触)测量。

2.热力学温度的符号是T,其单位名称是(开尔文)。

3.热电偶是由两根(不同性质的导体)焊接或绞接构成的。

4.热电偶两端所处温度不同,在热电偶回路中便会产生(热电势)。

5.补偿导线在0~100范围内具有与热电偶相同的(热电特性)。

6.国际单位制中,压力的单位是(牛顿/米),又叫帕斯卡,符号是Pa,其定义是1牛顿力垂直均匀作用在1米2面积上所产生的压力。

7.压力表的精度等级是用(引用误差)表示的。

8.一般取样点与压力表安装点间距应不超过(50)米。

9.压力变送器的(“零点迁移”)就是把变送器零点所对应的被测参数值由零迁移到某一个不为零的数值。

10.标准孔板的取压方式有角接取压和(法兰取压)等。

11.规程规定,工业用压力表的(变差)不得超过允许基本误差的绝对值。

12.(瞬时流量)就是单位时间内通过管道某截面的物质的数量。

13.因为电接点水位计的电极是以一定间距安装在测量管上,所以其输出信号是(阶梯)式的。

14.对小流量、低雷诺数流体流量的测量,多选用(转子式)流量计。

15.热电阻的测温范围宽、精度高,铂热电阻常用作(-200~+500℃)范围的标准温度计。

16.按照测量结果得到的程序,测量分为(直接)测量法和(间接)测量法。

17.流量与(差压开方)成正比。

18.看电气原理图应该先找(主回路),再找(控制回路),并且分开交直流回路。

19.热继电器在三相电动机损坏或(过电流)时动作。

20.对差压变送器进行过范围试验时,要求差压为量程的(125%)。

21.选取压力表的测量范围时,被测压力不小于所选量程的(1/3)。

22.仪表的精确度用(允许误差)表示。

23.集散控制系统的通信网络主要形成包括(总线型、双网冗余配置)。

24.调节对象的特性包括(动态特性)和(静态特性)。

25.压力和温度测孔在同一地点时,(压力测孔)应在(温度测孔)之前。

第5章 调节对象的特性及实验测定解析

第5章  调节对象的特性及实验测定解析

被控过程数学模型的几个参数
• 放大系数K:
– 在数值上等于对象处于稳定状态时输出变化 量与输入变化量之比:
输出的变化量 K 输入的变化量
–放大系数是描述对象静态特性的参数。
被控过程数学模型的几个参数
• 滞后时间τ:
– 是纯滞后时间τ0和容量滞后τC的总和。
• 纯滞后的产生一般是由于介质的输送或热的传递 需要一段时间引起的。 • 容量滞后一般是因为物料或能量的传递需要通过 一定的阻力而引起的。
A:又称水槽的容量系数,简称液容, 相当于电路中的电容。
Q1 Q10 Q1; Q2 Q20 Q2 ; h h0 h
Q1 K 1 Q2 h Rs
Δμ1:调节阀1的开度变化量 Rs:阀门2的阻力,又称液阻
Q1 Q2 A
dh dt
K 1
一般可以表示为:
Ke s G(s) Ts 1 Ke s G(s) (T1s 1)(T2 s 1)
(1)由飞升曲线确定有纯滞后的一阶环节的参数 方法1:在变化速度最快的 地方作一切线,切线与时 间轴的交点得滞后时间。
K y ( ) X0
y ( ) T dy ( )m dt
• 滞后时间τ 是反映对象动态特性的另一 个重要参数。
5.1 单容对象动态特性及其数学描述 物料(或能量)平衡关系
• 静态物料(或能量)平衡关系:单位时间内进入被控过 程的物料(或能量)等于单位时间内从被控过程流出的 物料(或能量)。 • 动态物料(或能量)平衡关系:单位时间内进入被控过 程的物料(或能量)减去单位时间内从被控过程流出的 物料(或能量)等于被控过程内物料(或能量)存储量 的变化率。
2。研究并建立数学模型的目的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优点:简单易行。缺点:精度低。

周期脉冲法
– 通过调节量的周期变化(矩形波或正弦变化),获取对象的
动、静态特性。 优点:能反应条件波动时的结果。缺点:不能用于大滞后系统。
对象特性实验注意事项
1. 2.
3.
4.
5.
6.
实验应在其它条件相对相对稳定时进行; 条件变化与结果记录应同时进行,以便分析滞后 时间; 实验结果的记录应持续到输出量达到稳定态为止; 尽可能增加实验点数,必要时可进行重复实验, 以提高精度; 对实验数据中的奇异点,要认真分析,尽量排除。 注意实验中的异常变化,必要时做好预防措施, 以策安全。
示例四: 一阶对象的放大倍数和时间常数
Q1
h
(Q1-Q2)dt=Adh 其中 Q2h/Rs 对于任意Q1输入,最终总能形成一 定的h,使得: Q1 = Q2h/Rs 一个Q1对应一个确定的h。 参数Rs实际上决定了稳定液位 Q2 高度与给料量之间的对应关系— —比例系数或放大倍数。 当某一瞬间Q1从a增加/减少到 b时,h需要经过一段时间才能从 对应的h1增加/减少到h2。时间常 数T即用于描述此过程的快慢。
§2.2 对象理论数学模型的建立
一阶对象: 系统输入、输出关系(动态特性)可以用 一阶微分方程来表示的控制对象。 积分对象 系统动态特性可以用一阶积分方程来表示 的控制对象。 二阶对象: 系统动态特性可以用二阶微分方程来表示 的控制对象。

示例一:一阶对象
Q1
h
Q2
由体积守恒可得: (Q1-Q2)dt=Adh 其中:Q2h/Rs RS——局部阻力项 由此可得: RS Q1=h+A Rs (dh/dt) 或: K Q1 =h+T(dh/dt)
本章作业

P33 9,14
§2.4 对象特性的实验研究
―科学”和“技术”具有不同的范畴
– 许多复杂的过程不能通过理论分析得出显性表达式; – 理论推导通常忽略一些影响因素,而这些因素对实
际结果具有相当的影响; – 通过实验获得经验方程有时比理论推算更方便。

ห้องสมุดไป่ตู้
对象特性研究的目的在于获得以下参数:
– 输入与输出的对应关系——对象的静态特性;
§2.3 描述对象特性的参数

时间常数T
– 在一定的输入作用下,被调参数完成其变化所需时
间的参数。 – 当对象受到阶跃输入作用后,被调参数如果保持初 始速度变化,达到新的稳定值所须的时间。
由于调节量越大,被调参数的变化越大。 随着调节作用的进行,相对调节量变小,被调 参数的变化减小。所以,在阶跃输入后,被调 参数的实际变化速度是越来越小的。因此,被 调参数变化到新的稳定值(与新输入量相对应的 输出量)所需的时间实际上应该是无限长。
§2.3 描述对象特性的参数

放大倍数K
– 在系统稳定条件下,输入量与输出量之间的
对应关系——系统的静态特性。 如:h=KQ+C 或 h=K Q
K值越大,系统灵敏度越高。
在实际工艺系统中,通常采用比较K值的方 法来选择主要控制参数。当然,由于工艺条件 和生产成本的制约,实际上并不一定都选择K 值最大的因素作为主控参数。
§2.3 描述对象特性的参数

滞后时间
– 在输入参数变化后,有的输出参数不能立即
发生变化,而需要等待一段时间才开始产生 明显变化,这个时间间隔称为滞后时间。

滞后时间按其产生原因可以分为:
– 传递滞后:滞后期内无变化——新参数的作
用结果还没有传递到输出点; – 容积滞后:滞后期内逐步产生微弱变化—— 新参数的作用结果受到容积量的缓冲。
示例二:积分对象
Q1
h
Q2
由体积守恒可得: (Q1-Q2)dt=Adh 其中:Q2=C C——常数 由此可得: Q1= Q2 +A (dh/dt) 或: h=(1/A) (Q1-C) dt
示例三:二阶对象
Q1
h1
Q12
Q2
h2
由体积守恒可得: (Q1-Q12)dt=A1dh1 (Q12-Q2)dt=A2dh2 由此可得: R2 Q1=h2+(A1 R2 +A2 R2 )(dh2/dt) + A1 R2 A2 R2(d2h2/dt2) 或: KQ1=h2+(T1 +T2)(dh2/dt) + T1 T2(d2h2/dt2)
系统的动态特性
对象受到干扰作用或调节作用后,被调参数跟随 变化规律。 研究系统动态特性的核心是:寻找系统输入与输 出之间的(函数)规律。

– 系统输入量:干扰作用、调节作用 – 系统输出量:系统的主要被调参数、副作用

数学模型的表示方法:
– 非参量模型:用曲线、图表表示的系统输入与输出量之
间的关系; – 参量模型:用数学方程式表示的系统输入与输出量之间 的关系。
对象动态特性的研究方法
理论分析 根据系统工艺实际过程的数质量关系,分 析计算输入量与输出量之间的关系。 实验研究 有些系统的输入与输出之间的关系是比较 难以通过计算来获得的。需要在实际系统或实 验系统中,通过一组输入来考察输出的跟随变 化规律——反映输入与输出关系的经验曲线和 经验函数关系。


所谓研究对象的特性,就是用数学的方法来描述 出对象输入量与输出量之间的关系——数学建模。
– 对象的数学模型:对象特性的数学描述;

对象的数学模型可以分为静态数学模型和动态数 学模型。
– 静态数学模型描述的是对象在稳定时(静态)的输入
与输出关系; – 动态数学模型描述的是在输入量改变以后输出量跟随 变化的规律; – 动态数学模型是更精确的模型,静态数学模型是动态 数学模型在对象达到平衡时的特例。
– 调节作用的时间常数与滞后时间——对象的动态特
性。
对象特性的实验研究方法

多点拟合法
– 在调节量的全部变化范围内,按一定规律依次取值实验,分
别记录被调参数变化规律,并进而分析各种静态特性和动态 特性参数。 优点:结果比较准确。缺点:时间长,代价大。

阶跃反应曲线法
– 通过调节量的一个阶跃变化寻找对象的动态特性。
示例五: 二阶对象传递滞后与容积滞后
Q1
h1
Q12
Q2
h2
当Q1发生变化后,需要经 过时间t1,其新流量才能进入 被控系统——传递滞后。 Q1变化后的流量进入被控 系统后,首先使h1逐步发生变 化;经过时间t2后,h1有了较 大变化,才引起Q12发生明显 变化,并进而导致h2开始发生 显著变化——容积滞后。
第二章 调节对象的特性
§2.1 化工对象的特点及其描述方法
调节效果取决于调节对象(内因)和调 节系统(外因)两个方面。 ‫۝‬外因只有通过内因起作用,内因是最终 效果的决定因素。 设计调节系统的前提是:正确掌握工艺 系统调节作用(输入)与调节结果(输 出)之间的关系——对象的特性。

对象特性的分类与研究方法
相关文档
最新文档