人教版七年级下册数学 平方根(导学案)
七年级数学下册6.1平方根导学案1新版新人教版2
平方根学习目标:1、了解平方根的概念,会用根号表示数的平方根2、了解开方与乘方互为逆运算3、会用平方求百以内整数的平方根学习重点:平方根的概念学习难点 :会求平方根;学习过程:一、情境导入填空:(1)3的平方等于9,那么9的算术平方根就是________;(2)25的平方等于425,那么425的算术平方根就是________;(3)展厅的地面为正方形,其面积49平方米,则边长为________米.还有平方等于9,425,49的其他数吗?二、合作探究探究点一:平方根的概念及性质1、一般地, 如果一个数x的平方等于a,即,那么这个数x就叫做a的,记为,读作。
例如和是9的平方根,也就是说是9的平方根。
2、求一个数a的的运算,叫做开平方;与开平方互为逆运算;例:求出下列各数的平方根:(1)100;(2)916;(3)0.25;(4)0; (5)11; (6) 93、根据上面的计算,思考回答:(1)正数有几个平方根?他们有什么关系?(2)0 的平方根是多少?(3)负数有平方根吗?三、归纳:【类型一】求一个数的平方根求下列各数的平方根:(1)12425;(2)0.0001;(3)(-4)2;(4)10-6;(5)81.【类型二】利用平方根的性质求值一个正数的两个平方根分别是2a+1和a-4,求这个数.探究点二:开平方及相关运算求下列各式中x的值:(1)x2=361; (2)81x2-49=0;(3)49(x2+1)=50; (4)(3x-1)2=(-5)2.三,归纳1.平方根的概念:若x2=a,则x叫a的平方根,x=± a.2.平方根的性质:正数有两个平方根,且它们互为相反数;0的平方根是0;负数没有平方根.3.开平方及相关运算:求一个数a的平方根的运算叫做开平方,其中a叫做被开方数.开平方与平方互为逆运算.四:当堂检测必做题1.如果x的平方等于a,那么x就是a的,所以a的平方根是2.非负数a的平方根表示为3.因为没有什么数的平方会等于,所以负数没有平方根,因此被开方数一定是或者4.16即的平方根是5.9的算术平方根是() A.-3 B.3 C.±3 D.816. 64的平方根是() A.±8 B.±4 C.±2 D.±27. 4的平方的倒数的算术平方根是() A.4 B.18C.-14D.14选做题8.求下列各数的平方根.(1)100; (2)0; (3)925; (4)1; (5)11549; (6)0.099.1681的平方根是_______;9的平方根是_______.10.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )A .x+1B .x 2+1C .x +1D .21x11.若2m-4与3m-1是同一个数的平方根,则m 的值是( )A .-3B .1C .-3或1D .-112.利用平方根来解下列方程.(1)225x = (2)2810x -= (3)2449x =(4)225360x -= (5)(2x-1)2-169=0; (6) 4(3x+1)2-1=0;13、已知︱a -2︱+3-b =0,求()a b a -的平方根.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.不等式﹣2x+6>0的正整数解有( )A .无数个B .0个C .1个D .2个 【答案】D【解析】不等式的解集是x<3,故不等式−2x+6>0的正整数解为1,2.故选D.2.若a >b ,则下列不等式正确的是( )A .2a <2bB .ac >bcC .-a+1>-b+1D .3a +1>3b +1 【答案】D【解析】根据不等式的性质,逐项判断即可.【详解】解:∵a >b ,∴2a >2b ,∴选项A 不符合题意;∵a >b ,c <0时,ac <bc ,∴选项B 不符合题意;∵a >b ,∴-a <-b ,∴-a+1<-b+1,∴选项C 不符合题意;∵a >b , ∴3a >3b , ∴3a +1>3b +1, ∴选项D 符合题意.故选:D .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.3.已知a 、b 均为实数,a <b ,那么下列不等式一定成立的是( )A .3﹣|a|>3﹣|b|B .a 2<b 2C .a 3+1<b 3+1D .22a b -<- 【答案】C【解析】利用特例对A 、B 、D 进行判断;利用不等式的性质和立方的性质得到a 3<b 3,然后根据不等式的性质对C 进行判断.【详解】∵a <b ,∴当a =﹣1,b =1,则3﹣|a|=3﹣|b|,a 2=b 2,1122a b ->-, ∴a 3<b 3,∴a 3+1<b 3+1.故选:C .【点睛】本题考查了不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4.已知a b <,则下列不等式一定成立的是( )A .220a b -<B .55a b -<-C .44a b +>+D .1122a b > 【答案】A【解析】根据不等式的性质逐一进行判断即可得.【详解】A. a b <,则2a<2b ,则220a b -<,故A 选项正确;B. a b <,则55a b ->-,故B 选项错误;C. a b <,则44a b +<+,故C 选项错误;D. a b <,则1122a b <,故D 选项错误, 故选A.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 5.下列四个数中,与最接近的整数是( ) A .4B .5C .6D .7【答案】B【解析】直接得出1<<6,进而得出最接近的整数.【详解】∵1<<6,且1.012=21.1021,∴与无理数最接近的整数是:1.故选B.【点睛】此题主要考查了估算无理数的大小,正确估算出的取值范围是解题关键.6.若等腰三角形的腰上的高与另一腰上的夹角为56,则该等腰三角形的顶角的度数为()A.56B.34C.34或146D.56或34【答案】C【解析】分析:本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.详解:①当为锐角三角形时,如图1,∵∠ABD=56°,BD⊥AC,∴∠A=90°-56°=34°,∴三角形的顶角为34°;②当为钝角三角形时,如图2,∵∠ABD=56°,BD⊥AC,∴∠BAD=90°-56°=34°,∵∠BAD+∠BAC=180°,∴∠BAC=146°∴三角形的顶角为146°,故选:C .点睛:本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.7.若222A x x y =++,243B y x =-+-,则A 、B 的大小关系为( )A .A >B B .A <BC .A =BD .无法确定【答案】A【解析】根据比较大小的原则,求出A-B 与零的大小,即可比较A 和B 的大小.【详解】根据222A x x y =++,243B y x =-+-,所以可得A-B=2222(43)x x y y x ++--+-222243x x y y x =+++-+=22223x y y x ++-+=2221211x x y y -+++++=22(1)(1)10x y -+++>所以可得A>B故选A.【点睛】本题主要考查比较大小的方法,关键在于凑出完全平方式,利用完全平方大于等于零的性质.8.下列说法正确的个数是( ).①连接两点的线中,垂线段最短;②两条直线相交,有且只有一个交点;③若两条直线有两个公共点,则这两条直线重合;④若AB+BC=AC ,则A 、B 、C 三点共线.A .1B .2C .3D .4【答案】C【解析】线段的基本性质是:所有连接两点的线中,线段最短.故①错误;②任意两个点可以通过一条直线连接,所以,两条直线相交,有且只有一个交点,故②正确;③任意两个点可以通过一条直线连接,若两条直线有两个公共点,则这两条直线重合;故③正确; ④根据两点间的距离知,故④正确;综上所述,以上说法正确的是②③④共3个.故选C.9.下列命题中是假命题的是( )A .两直线平行,同旁内角互补B .同旁内角互补,两直线平行C .若//a b ,a c ⊥,那么b c ⊥D .如果两个角互补,那么这两个角一个是锐角,一个是钝角【答案】D【解析】根据平行线的性质可判断A 、C ;根据平行线的判定方法可判断B ;根据补角的定义可判断D.【详解】A. 两直线平行,同旁内角互补,是真命题;B. 同旁内角互补,两直线平行,是真命题;C. 若//a b ,a c ⊥,那么b c ⊥,是真命题;D. 如果两个角互补,那么这两个角可以都是直角,故是假命题;故选D.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.如图是5×5的正方形网络,以点D ,E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( )A .2个B .4个C .6个D .8个【答案】B 【解析】试题分析:观察图形可知:DE 与AC 是对应边,B 点的对应点在DE 上方两个,在DE 下方两个共有4个满足要求的点,也就有四个全等三角形.根据题意,运用SSS 可得与△ABC 全等的三角形有4个,线段DE 的上方有两个点,下方也有两个点. 故选B .考点:本题考查三角形全等的判定方法点评:解答本题的关键是按照顺序分析,要做到不重不漏.二、填空题题11.310-=_____________(结果保留根号). 【答案】103-【解析】因为10>3,所以3−10是负数,根据负数的绝对值等于它的相反数,可解答.【详解】解:310-=103-,故答案为:103-.【点睛】本题考查了绝对值,正数的绝对值等于它本身;负数的绝对值等于它的相反数;1的绝对值等于1. 12.如图,等腰直角三角板的顶点A ,C 分别在直线a ,b 上,若a ∥b ,∠1=35°,则∠2的度数为________。
6_1_2 用计算器求算术平方根及其大小比较(优质学案)
学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________人教版初中数学七年级下册6.1.2 用计算器求算术平方根及其大小比较 导学案一、学习目标:1.会用计算器求算术平方根;2.掌握算术平方根的估算及大小比较. 重点:会比较两个数的算术平方根的大小.难点:会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识.二、学习过程: 课前自测求下列各数的算术平方根,并用“<”分别把被开方数和算术平方根连接起来. 1,4,9,16,25.【归纳】被开方数_______,对应的算术平方根也______. 若a >b >0,则_______________. 自主学习探究:能否用两个面积为1dm 2的小正方形拼成一个面积为2dm 2的大正方形?你知道这个大正方形的边长是多少吗?小正方形的对角线的长是多少呢?2有多大呢?学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【归纳】事实上,2=1.414213562373…,它是一个_______________.(无限不循环小数是指小数位数_______,且小数部分__________的小数.)π也是一个无限不循小数.实际上,许多正有理数的算术平方根(例如3,5,7等)都是无限不循小数.典例解析例1.用计算器求下列各式的值:(1) 3136 (2) 2 (精确到0.001)【针对练习】用计算器求下列各式的值:(1) √1369 (2) √101.2036 (3) √5 (精确到0.01)合作探究 探究:(1)利用计算器计算下表中的算术平方根,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?规律:_____________________________________________________________ (2) 用计算器计算3≈______(精确到0.001),并利用你在(1)中发现的规律说03.0≈______,300≈______,30000≈______的近似值.2学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________你能根据3的值说出30是多少吗?典例解析例2.已知面积为37的正方形的边长为x ,则x 的取值范围是( ) A .4<x<5 B .5<x<6C .6<x<7D .7<x<8【针对练习】估计√17−1的值在( ) A .1到2之间 B .2到3之间C .3到4之间D .4到5之间 例3.通过估算比较下列各组数的大小: (1) √5 与 1.9; (2) 216 与 1.5.【针对练习】比较下列各组数的大小:(1)√8 与 √10; (2)√65 与 8; (3)√5−12 与 0.5; (4)√5−12 与 1.例4.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁出一块面积为300cm 2的长方形纸片,使它的长宽之比为3:2.她不知能否裁得出来,正在发愁.小明见了说“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”,你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________达标检测1.估计√11的值在( )A.1与2之间B.2与3之间C.3与4之间D.4与5之间 2.下列式子中,正确的是( )A.10<√127<11B.11<√127 <12C.12<√127 <13D.13<√127 <14 3.下列各数中,最大的数是( )A.-1B.0C.1D.√2 4.估算√31-2的值( )A.1与2之间B.2与3之间C.3与4之间D.4与5之间5.已知√6≈2.449,不再利用其他工具,能确定出近似值的是( )A.√0.6B.√60C.√600D. √6000 6.用计算器计算下列各式的值(精确到0.001). (1)√23≈______; (2)√26.5≈______; (3)√106≈______; (4)√0.56≈_______. 7.(1)已知√53≈7.2801,则√5300≈_______. (2)已知√2015≈44.889,则√20.15≈________. (3)已知√7≈2.65,√70≈8.37,则√0.007≈_________. 8.已知m 、n 是连续整数,m<√21<n,则m=____,n=____. 9.√20的整数部分是4,√20的小数部分是20-4,仿此填空: (1)√40的整数部分是____, 小数部分是_______; (2)√70的整数部分是____,小数部分是_________.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________10.设2+√6的整数部分和小数部分分别是x 、y ,试求x 、y 的值与x-1的算术平方根.11.勤俭节约是中国人民的传统美德,涛涛的爷爷是能工巧匠,他把两张破损了一部分的桌面重新拼成一张完整的正方形桌面,其面积为169dm 2,已知他用的两张小桌面也是锯成了正方形的桌面,其中一张是边长为5dm 的小板子,试问另一张较大的桌面的边长应为多少才能拼出面积为169dm 2的桌面?12.(1)填写下表,观察被开方数a 的小数点与算术平方根√a 的小数点的移动规律:(2)根据你发现的规律填空:①已知√396.01=19.9,则√3.9601=_____________. ②已知√m =0.345,√n =34.5,则n 是m 的______倍.学习笔记记录区___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________。
平方根人教版数学七年级下册教案3篇
平方根人教版数学七年级下册教案3篇平方根人教版数学七年级下册教案1 人教版七年级数学下册《10.1平方根》教学设计PPT课件导学案教案课题: 10.1 平方根〔1〕教学目的 1.理解算术平方根的概念,会用根号表示正数的算术平方根,并理解算术平方根的非负性;2.理解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;3.通过对实际生活中问题的解决,让学生体验数学与生活实际是严密联络着的,通过探究活动培养动手才能和激发学生学习数学的兴趣。
教学难点根据算术平方根的概念正确求出非负数的算术平方根。
知识重点算术平方根的概念。
教学过程〔师生活动〕设计理念情境导入同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行获得圆满成功,实现了中华民族千年的飞天梦想〔多媒体同时出示“神舟”五号飞船升空时的画面〕.那么,你们知道宇宙飞船分开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度〔米/秒〕而小于第二宇宙速度:〔米/秒〕.、的大小满足 .怎样求、呢?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.请看下面的问题.“神舟”五号成功发射和平安着陆,标志着我国在攀登世界科技顶峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.提出问题感知新知多媒体展示教科书第160页的问题〔问题略〕,然后提出问题:你是怎样算出画框的边长等于5dm的呢?〔学生考虑并交流解法〕这个问题相当于在等式扩=25中求出正数x的值.练习:教科书第160页的填表.练习:教科书第160页的填表.这个问题抽象成数学问题就是正方形的面积求正方形的边长,这与学生以前学过的正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。
七年级数学下册第章实数平方根导学案新人教版
6、1平方根德育目标:观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,在独立思考和小组交流中学习。
学习目标:1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性2、了解开方与乘方互为逆运算,会用平方运算求某数非负数的算术平方根。
学习重点:算术平方根的概念。
学习难点:根据算术平方根的概念正确求出非负数的算术平方根。
学习过程:一、课堂引入:(知识复习)1、你能求出下列各数的平方吗?0,-1,5,2.3,-15,-3,3,1,152、若已知一个数的平方为下列各数,你能把这个数的取值说出来吗?25,0,4,425,1144,-14,1.693、正方形的面积若分别为1,9,16,36,425时,此正方形的边长分别为 .二、自学教材:阅读教材40—41页,并完成下列问题。
1、算术平方根是,a的算术平方根记为,读作,a叫做。
2、为什么规定:0的算术平方根是0?3、自学P40 例1:三、自学例题:例1 求下列各数的算术平方根:(1)100 (2)1 (3) 4964(4)196 (5)0 (6)106归纳:这节课主要就平方根中的算术平方根进行讨论,•求一个数的算术平方根与求一个正数的平方幂正好是互逆的过程,因此,求正数的算术平方根实际上可以转化为 .只不过,只有才有算术平方根, 没有算术平方根.例2:勤俭节约是中国人的一种美德,涛涛的爷爷是个能工巧匠,他把两张破损了一部分的桌面重新拼接成一张完整的正方形桌面,其面积为169dm2.•已知他用的两张小桌面也是锯成了正方形的桌面,其中一张是边长为5dm的小板子,•试问另一张较大的桌面的边长应为多少dm才能拼出面积为169dm2的桌面?分析:边长为5dm的正方形板子,其面积为25dm2,要拼出面积为169dm2的桌面,还需面积为169-25=144dm2的正方形桌面,故问题实际上转化为求144•的算术平方根,144=12.四、当堂练习。
【最新】人教版七年级数学下册第六章《算术平方根》导学案 (2)
新人教版七年级数学下册第六章《算术平方根》导学案课型:预习课 【学习目标】1.了解算术平方根的概念,会用根号表示数的算术平方根; 2. 会用平方运算求某些非负数的算术平方根; 3.能运用算术平方根解决一些简单的实际问题. 【重点难点预测】1、会用平方运算求某些非负数的算术平方根,能运用算术平方根解决一些简单的实际问题.2、区别平方根与算术平方根 一、学前准备 【情境导入】正方形的面积/dm2 191636正方形的边长/dm2【新知预习】1、算术平方根的定义: 。
记作:2、平方根和算术平方根之间的关系3、想一想,填一填:1.填空:(1)0的平方根是_______,算术平方根是______. (2)25的平方根是_______,算术平方根是______. (3)641的平方根是_______,算术平方根是______. 二、探究活动提醒:注意平方根与算术平方根之间的区别和联系。
【讨论提高】(1)25的算术平方根是_______,平方根是_______;(-4)2的平方根是_________,算术平方根是 . (2)若0|5|)12(2=-+-y x ,则y x 516-的算术平方根___________ 【例题研讨】例1.(1)=2)01.0( ;=2)5( ;=2)7( ;425(2)=23 ;=25 ; (3)=-2)3( ;=-2)5( ;思考:① =2)(a ,其中a 0.②发现:当a >0时,2a = ;当a <0,2a = ; 即2a = 当a = 0时,2a =【课堂自测】1.判断下列说法是否正确:(1)任意一个有理数都有两个平方根.( )(2)(-3)2的算术平方根是3.( )(3)-4的平方根是-2.( ) (4)16的平方根是4.( ) (5)4是16的一个平方根.( ) (6)416±= ( ) 三、自我测试1. 在0、-4、3、(-2)2、-22中,有平方根的数的个数为………………( ) A.1 B.2 C.3 D.4 2.4表示………………………………………………( )A.4的平方根B.4的算术平方根C.±2D.4的负的平方根 3.若x 的平方根是±2,则x =______;4.2)5(= ;.2)3(-π= ;_____432=⎪⎭⎫ ⎝⎛-;_____)3(2=-π.5. 下列各数有没有平方根?若有,请求出它的平方根和算术平方根;若没有,请说明理由. (1)256 (2)()21- (3)91-(4)1.21 (5)2 (6)23-四、应用与拓展1、求下列各式中的x 的值⑴1962=x ; ⑵01052=-x ; ⑶()2336-x -25=0.()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-=>=0000a a a a a a。
《平方根》精品导学案 人教版七年级数学下册学案
初中数学七年级下册第六章实数学案〔人教版〕学习目标1.了解算术平方根的概念, 会求一些数的算术平方根, 并用算术平方根的符号表示2.理解算术平方根的非负性新知形成知识点一、平方根的概念如果一个数的平方等于a, 这个数就叫做a的平方根, 记作知识点二、一个正数有两个平方根, 它们互为相反数;0有一个平方根, 它是0本身;负数没有平方根知识点三、算术平方根的概念一个正数a的正的平方根, 叫做a的算术平方根.a(a≥0)稳固练习例1.一个正数的两个平方根分别是2a-1与-a+2, 那么a的值为()A.1B. -2C.2D. -1D【解析】解:∵一个正数的两个平方根分别是2a-1与-a+2,∵2a-1+〔-a+2〕=0解之:a=-1.故答案为:D.【分析】根据正数的两个平方根互为相反数, 可建立关于a的方程, 解方程求出a的值.例2在数学课上, 老师将一长方形纸片的长增加2 √3cm, 宽增加7 √3cm, 就成为了一个面积为192cm²的正方形, 那么原长方形纸片的面积为()A.18cm²B.20cm²C.36cm²D.48cm²A【解析】设正方形的边长为acm, 那么a2=192解得a=8√3〔只取正值〕∵原长方形的面积为:〔8√3-2√3〕×〔8√3-7√3〕=18cm 2. 故答案为:A.【分析】设正方形的边长为acm, 先利用正方形的面积公式求出a, 即可求出原长方形的长和宽, 然后利用长方形的面积公式求解即可.的算术平方根是()A. 5B. ±5C. −5D. 25的算术平方根为〔〕.A. ±8B. 8C. -8D. 16 3.以下说法错误的选项是〔〕A. 9的平方根是±3B. 一个数的绝对值一定是正数C. 单项式5x 2y 3z 与−2x 2y 3z 是同类项D. 平方根是本身的数只有04.在计算器上按键:, 显示的结果为〔〕A. -5B. 5C. -25D. 25 5.“3625的平方根是± 65〞, 以下各式表示正确的选项是〔〕A. √3625=± 65B. ± √3625=± 65C. √3625= 65D. ± √3625= 656.算术平方根等于它本身的数是〔〕A. 1和0B. 0C. 1D. ±1和0 7.当x=0时, 二次根式√4−2x 的值是( )A. 4B. 2C. √2D. 0 8.一个正数的两个平方根分别为a +3和4−2a , 那么这个正数为〔〕A. 7B. 10C. -10D. 100 9.一个正偶数的算术平方根是m , 那么和这个正偶数相邻的下一个正偶数的算术平方根是〔〕 A. m +2B. m +√2C. √m 2+2D. √m +2 10.根据表中的信息判断, 以下语句中正确的选项是 〔〕A. √25.281=B.235的算术平方根比小C.只有3个正整数n满足15.5<√n<15.6D.根据表中数据的变化趋势, 可以推断出2将比256增大参考答案1. A2. B3. B4. A5. B6. A7. B8. D9. C 10. C第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y是x的函数的是()5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x表示乘公共汽车的站数, y表示应付的票价.x/站12345678910y/元1112233344A.y是x的函数B.y不是x的函数C.x是y的函数D.以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h(单位:m)与上的台阶数m(单位:个)之间的函数关系式是()A .h =6mB .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是()9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是() A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是()A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是()A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表:信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A 15 95% 3 B2099%4设购置(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x吨, 这批原材料能用y天, 那么y与x之间的函数表达式为〔〕A.y=100x B.y=C.y=+100D.y=100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m3的圆柱形煤气储存室, 那么储存室的底面积S〔单位:m2〕与其深度d〔单位:m〕的函数图象大致是〔〕A.B.C.D.3.甲、乙两地相距s〔单位:km〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y〔单位:h〕关于行驶速度x〔单位:km/h〕的函数图象是〔〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热, 水温开始下降, 此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕10080604020压强y〔kPa〕6075100150300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32B.x≤32C.x>32D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k=〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2〕成反比例函数关系〔如图〕.当该物体与地面的接触面积为m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200240250400销售量y〔双〕3025241513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变, 密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小,此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100125200250…镜片与光斑的距离y/m…1…如果按上述方法测得一副老花镜的镜片与光斑的距离为m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mg.研究说明当每立方米空气中含药量低于mg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕4006258001000 (1250)镜片焦距x〔cm〕251610 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.实验数据显示, 一般成人喝半斤低度白酒后, 小时内其血液中酒精含量y〔毫克/百毫升〕与时间x〔时〕成正比例;小时后〔包括小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降, 此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件, 在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式〔2〕当每立方米空气中的含药量低于mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?〔3〕当室内空气中的含药量每立方米不低于mg的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是()A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是()A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是() 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是() A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是() A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是()9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是() A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是()A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是()A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:设购置(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。
人教版数学七年级下册 平方根(导学案)
6.1 平方根玉壶存冰心,朱笔写师魂。
——冰心《冰心》东山学校李媚清第2课时平方根一、新课导入1.导入课题:如果一个数的平方等于9,这个数是多少?从前面我们知道,这个数可以是3,除了3以外,还有没有别的数的平方也等于9呢?这就是这节课要研究的问题:平方根(板书课题).2.学习目标:(1)知道什么叫平方根?用符号如何表示它?有哪些性质?(2)能利用开平方与平方互为逆运算求某些非负数的平方根.3.学习重、难点:重点:平方根的概念.难点:平方根算术平方根的区别和联系.二、分层学习1.自学指导:(1)自学内容:课本P44“思考”至P45“思考”之前的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课本、思考相关问题,注意平方根与算术平方根定义的区别.(4)自学参考提纲:①根据“导入课题”中问题的研究过程填表:②一般地,如果一个数的平方等于a,那么这个数就叫做a的平方根或二次方根,即如果x2=a,那么x就叫做a的平方根.你能说说平方根与算术平方根的定义有什么不同吗?③求一个数a的平方根的运算,叫做开平方,平方运算与开平方运算有什么关系?④根据平方与开平方运算的关系,可以求一个数的平方根,按例4的格式求下列各数的平方根:64; 0.09; 4981; (-7)2; 0.解:∵(±8)2=64,∴64的平方根是±8.∵(±0.3)2=0.09,∴0.09的平方根是±0.3.∵(±79)2=4981,∴4981的平方根是±79.∵(±7)2=(-7)2=49,∴(-7)2的平方根是±7.∵02=0,∴0的平方根是0.⑤判断下列说法是否正确:a.49的平方根是7.(×)b.2是4的平方根.(√)c.-5是25的平方根.(√)d.64的平方根是±8.(√)e.-16的平方根是-4.(×)2.自学:同学们可结合自学导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应的指导.(2)生助生:小组内相互交流和纠错.4.强化:(1)平方根的概念(注意与算术平方根的概念相对照).(2)求下列各数的平方根:25 0.64 (-2)4 81上面4个小题的答案依次为:±5,±0.8,±4,±31.自学指导:(1)自学内容课本P45“思考”至P46“练习”之前的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课本,弄清楚平方根有什么性质,用符号如何表示它.(4)自学参考提纲:①请归纳出正数、0、负数的平方根的特征,并说说得出这些特征的理由.②因为正数a的平方根有2个,它们互为相反数,其中正的平方根就是它的a,那么它的负的方根就可表示为a,故正数a的平方根就用符号±a表示,读作正、根号a.③式子a有意义时,a应满足条件a≥0,这是为什么呢?90.49;64 81上3小题的答案依次为3,-0.7,±8 9⑤判断下列各式计算是否正确?并说明理由:4=±2 4±4=±2上面3小的答案依次为:错误,正确,错误,理由略.2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的学习情况,着重关注学生是否理解平方根的性质得出的理由及相应符号所表示的意义.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流研讨,订正纠错,互助解疑难.4.强化:(1)平方根的性质.(2)平方根的符号表示:±a ,其中a ≥0三、评价1.学生的自我评价:学生代表交流学习目标的达成情况和学习感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现(态度、方法和效果等)进行总结和点评(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学重在挖掘平方根与算术平方根间的区别与联系,通过实例训练引导学生认识新知识,形成计算能力.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列各式:①3-323-();2110(C )A.1个B.2个C.3个D.4个2.(10分)下列各式中正确的是(C ) -425-()25-()16±43.(10分)下列说法中正确的有(A )(1)0的平方根是0;(2)1的平方根是1;(3)-1的平方根是-1;(4)±0.01是0.1的平方根A.1个B.2个C.3个D.4个4.(20分)求下列各数的平方根:(1)49; (2)425; (3)6110; (4)0.0016. 解:(1)∵(±7)2=49.∴49的平方根为±7;(2)∵(±25)2=425,∴425的平方根为±25; (3)∵(±3110)2=6110,∴6110的平方根为±3110; (4)∵(±0.04)2=0.0016,∴0.0016的平方根为±0.04.5.(20分)求下列各式的值:(1) 1.44; (2)±9100; (3)-22-(); (4)-4110. 解:(1) 1.44=1.2;(2)±9100=±310; (3)-22-()=-2;(4)-4110=-2110=-1100. 二、综合运用(20分)6.(10分)求下列各式中x 的值:(1)x2=25; (2)x2-81=0; (3)25x2=36.解:(1)∵(±5)2=25,∴x=±5;(2)∵(±9)2=81,∴x=±9;(3)x2=3625. ∵(±65)2=3625. ∴x=±65. 7.(10分)根据下表回答下列问题:(1)268.96的平方根是±16.4;(2285.616.9;(316.4和16.5这两个相邻的数之间.∵268.96<270<272.25,∴三、拓展延伸(10分)8.若一个数x的平方根是2a+3和1-4a,求a和x的值. 解:∵2a+3和1-4a是x的平方根,∴2a+3+1-4a=0,∴a=2,∴2a+3=2×2+3=7.∴x=(2a+3)2=72=49.【素材积累】1、人生只有创造才能前进;只有适应才能生存。
6_1_3平方根(导学案)【人教版七下数学精品备课】
,可以用什么方法求一个数的平方根?(认识开平方运算,理解开平方运算和平方运算之间的互逆关系)
【问题3】通过对例4的解答,你认为正数的平方根有什么特点?0的平方根呢?负数呢?(用教师的提问带动学生的进一步思考,得到平方根的性质,并得出平方根和算术平方根之间的关系)
3在数字下面的横线上,表示该数的平方根
400 0.81 2
(对平方根表示方法的练习)
自
学
探
究
展示交流
小组
展示
2
小组内交流问题1、问题2、问题3、问题4.
教师采用师生互动的方法利用第1小题师范解答过程
班级
展示
2
每组选派一名代表展示平方根与算式平方根的区别。
点拨升华
反馈
矫正
2
教师就学生的展示点拨
扩展
提升
总结平方根的性质:
正数有个平方根,它们
0的平方根是
负数
【问题4】用什么方法来表示正数的两个平方根呢?阅读课本P74“归纳”下面的一段话,回答下列问题:(自学平方根的表示方法,教师用两个问题提示学生最容易出错的两个问题)
1在平方根的表示方法中,根号前面为什么会有两个性质符号?
2被开方数a为什么要大于或等于0
反思
为学生提供有趣且富有数学含义的问题,让学生进行充分的探索和交流.如把正方形的面积不断地扩大为原来的2倍、3倍、n倍,引导学生进行交流、讨论与探索,从中感受学习平方根的必要性。
2、求下列各式的值
⑴ ⑵ ⑶-
∵( )2=81 ∴81的算术平方根是
互助
释疑
2
对于例4部分学生可能有困难,在做适当解释。
人教版数学七下《平方根》word导学案
《6.1平方根》导学案(1)【学习目标】1.了解算术平方根的概念,并会用符号表示。
2)会求一个数的算术平方根。
2.自主、合作、交流3.培养学生的分析能力和归纳能力【重点】算术平方根的概念【难点】算术平方根的概念一复习导入:(2分钟)正方形的面积/m² 1 9 16 25 425正方形的边长/m仔细观察,你会发现,这些问题都是已知一个正数的平方,求这个正数的问题。
一般地,如果一个 x那么这个 x方根记为a,读作“根号规定:0的算术平方根是0)25 81;探究:现有一个面积为1dm²的正方形,试求其对角线的长度深度探究:2、3、5到底是多大呢?(1)8与512-;(2)65与8;)51-与)51-与0的算术平方根是0,1的算术平方根是1,被开方数越大,对应的算术平方根越大。
A .9B .9C .-9D .3已知正方形的边长为a ;②S ;③平方根;④a 是 A .①③ B .②③ C .①④ D .②④如果y 4. 计算22的结果是( )-2 B .2 C .25.2623二、填空题(细心填一填)一个数的算术平方根是,这个数是________2. 算术平方根等于它本身的数有______________。
3. 81的算术平方根是4. 144=_______;4925=________;0.01________;0025.0=_______。
196;28_________;169256=___________1. 求下列各数的算术平方根:。
人教版七年级数学下册 第6章 6.1 平方根 导学案(共3课时)
第1课时 算术平方根【学习目标】1、理解数的算术平方根的概念,并会用符号表示。
2、理解平方与开平方是互为逆运算。
3、会求一些非负数的算术平方根。
【学习重点和难点】1.学习重点:算术平方根的概念。
2.学习难点:算术平方根的概念。
【学习过程】 一、自主探究学校要举行美术作品比赛,小鸥很高兴.他想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米? (一)说这块正方形画布的边长应取多少分米?你是怎么算出来的?答:因为52=25,所以这个正方形画布的边长应取5分米。
这个实例中的问题、填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题.通过解决这个问题,我们就有了算术平方根的概念. 正数3的平方等于9,我们把正数3叫做9的算术平方根. 正数4的平方等于16,我们把正数4叫做16的算术平方根. 说说6和36这两个数?说说1和1这两个数? 同桌之间互相说一说5和25这两个数.(同桌互相说)说了这么多,同学们大概已经知道了算术平方根的意思.那么什么是算术平方根呢?还是先在小组里讨论讨论,说说自己的看法.(三)什么是算术平方根呢?如果一个正数的平方等于a ,那么这个正数叫做a 的算术平方根请大家把算术平方根概念默读两遍.(生默读)如果一个正数的平方等于a ,那么这个正数叫做a 的算术平方根.为了书写方便,我们把a (板书:a 的.(指准上图)看到没有?这根钓鱼杆似的符号叫做根号,a a 的算术平方根.根号被开方数a二、边学边练1、 求下列各数的算术平方根: (1)4964; (2)0.0001. (要注意解题格式,解题格式要与课本第40页上的相同) 精练 2、填空:(1)因为_____2=64,所以64的算术平方根是____________;(2)因为_____2=0.25,所以0.25的算术平方根是____________;(3)因为_____2=1649,所以1649的算术平方根是____________.3、求下列各式的值:=______;=______;______;______;=______;______. 4、根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:=_______,=_______,=_______,=_______,_______,_______,_______,_______,_______.(学生记住没有,教师可以利用卡片进行检查,并要求学生课后记熟)5、辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?三、我的感悟这节课我的最大收获是: 我不能解决的问题是:四、课后反思第2课时用计算器求算术平方根及其大小比较【学习目标】1.感受无理数,初步了解无限不循环小数的特点.2.会用计算器求算术平方根.【学习重点和难点】1.学习重点:感受无理数。
人教版七年级数学下册《用计算器求算数平方根,用有理数估计算数平方根》导学案
6.1平方根(2)教学设计一、学习目标:(1)用有理数估计无理数的大致范围,并初步体验“无限不循环小数”的含义.(2)用计算器求一个非负数的算术平方根.二、课前预习展示:预习课本第41----44页内容,标注出重点内容,并完成下列问题:(1)什么是无限不循环小数?(2)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的?学习新知一:想一想:(1)√2究竟有多大?(2)√2在哪两个整数之间?(3)能不能得到√2更精确的数值?推一推:√3、√5、√6、√7、√8的值练一练:1.√5的整数部分是------------,小数部分是--------------2.数字a满足3<a<4,则a的整数部分是------------,小数部分是---------------3.从5<√34<6可知,√34的整数部分是------------,小数部分是---------------4.若a为√170的整数部分,b-1为400的算术平方根,求√a+b5.4+√5的小数部分为m,4-√5的小数部分为n,求m+n的值学习新知二:用计算器求下列各式的值:(1)√3136 (2)√2(精确到0.001)练一练:用计算器求下列各式的值:√3、√5、√6、√7、√8探究规律:利用计算器计算,并将计算结果填在表中,你发现了什么规律?规律:练一练:(1)若√3≈1.732,利用刚才得到的规律说出√0.03、√300、√30000的近似值,你能否根据√3的值说出√30的值?练一练已知√1.720=1.311,,17.20=4.147,求0.0001720的平方根?例题讲解例2 比较大小练一练比较的大小三、巩固练习1().A.5~6之间B.6~7之间C.7~8之间D.8~9之间2.利用规律计算:已知414.12≈,472.420≈,则_____2.0≈.3. 用计算器计算下列各式的值(精确到0.01).四、历年高考题1、(安徽)与1最接近的整数是( )A.4 B.3 C.2 D.1(2016·天津)的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2、(2015·六盘水)如图,在数轴上表示的点位于哪两个字母之间().5.215与-212315与-A.C与D B.A与BC.A与C D.B与C五、归纳小结这节课你学到了哪些知识?六、布置作业教材第44页练习第1,2(1)、(2)、(4)题;习题6.1第6题板书设计6.1平方根(2)一、2有多大?二、无限不循环小数三、夹值法四、用计算器求非负数的算数平方根。
精品学案:6_1_2 算术平方根的估算
人教版七年级数学下册《第六章 实数》导学案课题:6.1.2 算术平方根的估算◆【学习目标】1.会比较两个数的算术平方根的大小.2.会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识.3.会用计算器求一个数的算术平方根.◆【学习重、难点】学习重点: 夹值法及估计一个(无理)数的大小.学习难点:掌握算术平方根的估算及比较两个带根号的数大小的方法.◆【学习过程】第一环节 自主学习旧知链接: (1)8表示的意义是 ;(2)16和0的算术平方根分别是 、 . (3)=36 ; =--)4( .新知自研:1.自研课本P41—P44页的内容. 2.完成导学案自研自探的内容.自学指导:导入新课:我们生活中的数有整数、有限小数、无限循环小数都是能够直接表示出来的数,有没有这样的数,它无限且不循环而又能准确的表达出来?【学法指导1】自研课本第41-42页探究上面的内容,思考:1. 自制两个面积为1dm 2的正方形,并按课本中的方法沿着对角线裁开,拼成一个面积为2dm 2的大正方形, 你能求出这个大正方形的边长吗?依据是什么?3. 由1.42=1.96,1.52=2.25从而得到:1.4<2<1.5是因为 ;那么我们比较一个带根号的数和一个有限数的大小就是比较 如:;4.归纳估计一个有理数的算术平方根的近似值的方法.5.无限不循环小数指 .6.是否所有的带根号的数都是无限不循环小数?请举例说明..【自研自探】1.例2用计算器求算术平方根有条件的课后求.2.猜想:≈1.414 , ≈1.732 ; ≈2.236.3.4= ,400= ,40000= ,4000000= ,04.0= ,0004.0= .由上面的结果可以发现被开方数与它的算术平方根的规律是:被开方数的小数点向右每移动 位,它的算术平方根的小数点就向右移动 位;被开方数的小数点向左每移动 位,它的算术平方根的小数点就向左移动 位. 由上面的规律填空:5≈2.236则05.0≈ ; 500≈ .4.由b a 可以得到 .5. 25表示 ;25≈ .(保留两位小数)【例题导析】自研课本43页例3,思考:1.如果能够裁出小长方形,长和宽必须满足什么条件: .2.长宽比为3:2如何设未知数? .3.本题的等量关系为: .4.50的整数部分为 ,为什么?因为 ;那么长方形纸片长503整数部分大于 ,所以5.你还其它的方法比较503和20的大小方法吗?第二环节 合作探究·启迪智慧对子学习相互检查导学内容的完成书写情况并给出等级评定.小组群学在小组长的带领下:A.近似值的推理过程、无理数、带根号的数的大小比较方法;B. 3、5近似值及被开方数扩大(缩小)100的情况;C.能否裁剪及比较长宽与纸片边长的大小及带根号数的比较方法;D.在组长的主持下,根据本组的展示内容学科组长做好分工,完成版面设计,做好展示前的预演. 第三环节展示提升·质疑评价方案预设1:主题:2有多大?①制作2个面积1平方分米拼一个面积为2的正方形,表示出对角线的长和边长;①推算2近似值的过程;(解读一个步骤,其它类比)①无理数概念、比较大小的方法.方案预设2:主题:自研自探①、3、5的近似值;①通过实例总结被开方数扩大(缩小)的关系;表示的意义及近似值.方案预设3:主题:例题3导析①经历“猜想”→“操作”→“探究”→“总结”的过程展示例3;①分析例3的解题思路,再现例3的解题过程于展示板,分析结果的实际意义.第四环节自主测评·追求卓越1.学生总结交流本节课的学习收获,进行课堂小结.2.安排学生爬板下面习题,其他同学独立完成.【自主测评】1、与51最接近的整数是()A.8B.7C.6D.52、已知2≈1.414,20≈4.472,求2.0≈;200≈;02.0≈;2000≈;3、若两个连续整数x,y满足x<23<y,则x+y的值是()A.5B.7C.9D.114、(拓展题)通过估算比较下列各组数的大小:(1)5与1.9;(2)6+12与1.5 .【随堂笔记】1、≈,≈,≈;2、用计算器求一个正有理数的算术平方根的方法:大多数计算器都有键,用它可以求出任意一个正有理数的算术平方根(或其近似值).先按ON键开机,再按键、、=,即可显示“算术平方根”.3、被开方数的小数点向右每移动位,它的算术平方根的小数点就向右移动位;被开方数的小数点向左每移动位,它的算术平方根的小数点就向左移动位.。
《平方根》导学案 人教七下数学
第3课时平方根【学习目标】1、经历平方根概念的形成过程,了解平方根的概念,会求某些正数(完全平方数)的平方根;2、经历有关平方根结论的归纳过程,知道正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根。
【学习重点和难点】1.学习重点:平方根的概念。
2.学习难点:归纳有关平方根的结论。
【学习过程】一、自主探究(一)基本训练,巩固旧知1、填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2、填空:(1)面积为16=;(2)面积为15≈(利用计算器求值,精确到0.01).3、填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈ .(二)什么是平方根呢?大家先来思考这么一个问题.(三)如果一个正数的平方等于9,这个正数是多少?如果一个数的平方等于9,这个数是多少?和算术平方根的概念类似,(指准32=9)我们把3叫做9的平方根,(指准(-3)2=9)把-3也叫做9的平方根,也就是3和-3是9的平方根。
我们再来看几个例子.同学们大概已经明白了平方根的意思.平方根的概念与算术平方根的概念是类似的,谁会用一句话概括什么是平方根?平方根:如果一个数的平方等于a,那么这个数叫做a的平方根.平方根概念与算术平方根概念只有一点点区别,哪一点点区别?二、边学边练1、求下面各数的平方根:(1)100; (2)0.25; (3)0; (4)-4.(1)因为(±10)2=100),所以100的平方根是+10和-100的平方是0,正数的平方是正数,负数的平方还是正数,所以任何数的平方都不会等于-4.这说明什么?从这个例题你能得出什么结论?正数有几个平方根?0有几个平方根?负数有几个平方根?小组讨论:正数有平方根。
平方根有什么关系?0的平方根有个,平方根是 .负数平方根2.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;3.填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35,的算术平方根是35.4.判断题:对的画“√”,错的画“×”. (1)0的平方根是0 ()(2)-25的平方根是-5;() (3)-5的平方是25;()(4)5是25的一个平方根;() (5)25的平方根是5;()(6)25的算术平方根是5;() (7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()三、我的感悟这节课我的最大收获是:我不能解决的问题是:四、课后反思。
新人教版七年级数学下册第六章《平方根(1)》导学案
新人教版七年级数学下册第六章《平方根(1)》导学案【学习目标】1、了解平方根的概念,会用根号表示数的平方根.2.了解开平方与平方互为逆运算,会用平方根的概念求某些非负数的平方根.【重点难点】1重点:了解开方与乘方互为逆运算,能熟练地用平方根求某些非负数的平方根. 2.难点:平方根的意义。
【学法指导】自主探究、合作学习导 学 过 程方法导引【自主学习,基础过关】 知识链接: 1.填表:a 11 12 1314 15 16 17 18 19 22a2.填空:(-3)2= ;(-35)2= ; =-23 。
总结:任意有理数.....的平方是 数.即 2a ≥0 。
的意义不相同与22)(a a --。
3.我们知道:4的平方是16, 的平方也是16,所以 的平方是16.类似的: 的平方是25; 的平方是2549; 的平方是179 ; 新知预习1、平方根的定义:一般的, ,也叫做 。
记作:2、平方根的性质:(1)正数有 个平方根,且它们互为 。
(2)0的平方根是 。
(3)负数 。
3、想一想,填一填:(1)5±表示(2)-25的平方根 ,理是 。
(3)因为22=_____,(-2)2=______,所以2和-2都是_____的平方根. 【合作探究,释疑解惑】1、① 因为25= , 2)5(-= ,所以 ±5是 的平方根 . ② 平方得81的数是 ,因此81的平方根是 .③ 9的平方根是 ;49的正的平方根是 ;1.44的负的平方根是 .2、归纳定义:3、① 3有 个平方根,它们互为 数,记作 . ② 0有 个平方根,0的平方根是 .③ -4、-8、-36有平方根吗?为什么? 4、总结:一个数的平方根有几个?(平方根的性质)【检测反馈,学以致用】1.如果一个数的平方根等于它本身,那么这个数是 .2.-9是数a 的一个平方根,那么数a 的另一个平方根是 ,数a 是 .3.如果一个数的平方根是1+a 与132-a ,那么这个数是 .4. 225±= , 2516±= , =-972 , 5、求下列各数的平方根(1)8116(2)7- (3)15 (4)2)5(-6.求下列各式中的x .(1)492=x ; ⑵25)1(2=-x ; (3)09)12(42=-+x 【总结提炼,知识升华】 1、学习收获2、需要注意的问题【课后训练,巩固拓展】1、必做题:教科书 页练习 题;2、悬赏题(2个优)若正数a 的两个平方根的积为-259,则a = .【课后反思,自悟自励】6.1平方根(2)【学习目标】1、了解算术平方根的概念,会用根号表示一个数的平方根以及算术平方根.2、会求一个正数的平方根、算术平方根.3、会用计算器计算一个正数的算术平方根.【重点难点】1重点:算术平方根的概念和求法,会用计算器求一个正数的算术平方根.2.难点:平方根、算术平方根的概念以及两者之间的区别与联系.【学法指导】自主探究、合作学习导学过程方法导引【自主学习,基础过关】知识链接:1、一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,也就是说,如果x2=a,那么,()叫做()的平方根.正数有个平方根,它们。
人教版七年级下导学案15平方根教案教师用教学案含答案学生用学案
平方根(教师用)一、教学目标(一)知识与技能:理解平方根的概念,知道开平方是平方逆运算,会用符号表示平方根,并会求平方数的平方根. (二)过程与方法:类比算术平方根概念探究平方根,利用平方与开平方互逆揭示开平方运算的本质,经历观察、思考、交流、总结归纳出平方根的特征.(三)情感态度与价值观:使学生深入体验平方与开平方的互逆关系,培养学生逆向思维解决问题的习惯. 二、教学重点、难点重点:理解平方根概念,会用符号表示一个正数的平方根. 难点:理解平方根的意义. 三、教学过程 复习回顾1.什么叫一个数的算术平方根?怎样表示?一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根. a 的算术平方根表示为:a (a ≥0),0的算术平方根是0,负数没有算术平方根.2.25的算术平方根是_____,13的算术平方根是_____. 思考如果一个数的平方等于9,这个数是多少?由于(±3)2=9,所以这个数是3或-3.3是前面学习过的9的算术平方根,-3与9的算术平方根有什么关系?(与算术平方根互为相反数.) 归纳平方根的概念 填表:如果我们把±1,±4,±6,±7,±52分别叫做1,16,36,49,254的平方根,你能类比算术平方根的概念,给出平方根的概念吗?一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根. 这就是说,如果x 2=a ,那么x 叫做a 的平方根.例如,3和-3是9的平方根,简记为±3是9的平方根. 求一个数a 的平方根的运算,叫做开平方. 观察下图,你发现了什么?平方与开平方互为逆运算 例4 求下列各数的平方根:(1) 100; (2) 169; (3) 0.25.解:(1)因为(±10)2=100,所以100的平方根是±10;(2)因为243⎪⎭⎫ ⎝⎛±=169,所以169的平方根是43±;(3)因为(±0.5)2=0.25,所以0.25的平方根是±0.5. 即(1) 10100±=±; (2) 43169±=±; (3) 5.025.0±=±. 归纳数的平方根的特征:正数的平方根有什么特点?(正数有两个平方根,它们互为相反数) 0的平方根是多少?(0的平方根是0) 负数有平方根吗?(负数没有平方根) 平方根的表示我们已经学过一个正数的算术平方根的表示方法,你能表示一个正数的平方根吗? 正数a 的算术平方根可以表示为a ,正数a 的负的平方根,可以表示为-a . 正数a 的平方根可以用±a 表示,读作“正、负根号a ”. 例如,±9=±3,±25=±5. 例5 求下列各式的值:(1) 36; (2) -81.0; (3) ±949. 解:(1)因为62=36,所以36=6;(2)因为0.92=0.81,所以-81.0=-0.9;(3)因为237⎪⎭⎫ ⎝⎛±=949,所以±949=±37.练习1.判断下列说法是否正确:(1) 0的平方根是0;……………………( ) (2) 1的平方根是1;……………………( ) (3) -1的平方根是-1;…………………( ) (4) 0.01是0.1的一个平方根.…………( ) 2.填表:3.计算下列各式的值:(1) 9 (2) -49.0 (3) ±8164 解:(1) 9=3;(2) -49.0=-0.7;(3) ±8164=±98. 4.平方根概念的起源与几何中的正方形有关,如果一个正方形的面积为A ,那么这个正方形的边长是_____.课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思为学生提供有趣且富有数学含义的问题,让学生进行充分的探索和交流. 如把正方形的面积不断地扩大为原来的2倍、3倍、n倍,引导学生进行交流、讨论与探索,从中感受学习平方根的必要性.平方根(学生用)一、教学目标(一)知识与技能:理解平方根的概念,知道开平方是平方逆运算,会用符号表示平方根,并会求平方数的平方根. (二)过程与方法:类比算术平方根概念探究平方根,利用平方与开平方互逆揭示开平方运算的本质,经历观察、思考、交流、总结归纳出平方根的特征.(三)情感态度与价值观:使学生深入体验平方与开平方的互逆关系,培养学生逆向思维解决问题的习惯. 二、教学重点、难点重点:理解平方根概念,会用符号表示一个正数的平方根. 难点:理解平方根的意义. 三、教学过程 复习回顾1.什么叫一个数的算术平方根?怎样表示?一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根. a 的算术平方根表示为:a (a ≥0),0的算术平方根是0,负数没有算术平方根.2.25的算术平方根是_____,13的算术平方根是_____. 思考如果一个数的平方等于9,这个数是多少?由于(±3)2=9,所以这个数是3或-3.3是前面学习过的9的算术平方根,-3与9的算术平方根有什么关系?(与算术平方根互为相反数.) 归纳平方根的概念 填表:如果我们把±1,±4,±6,±7,±52分别叫做1,16,36,49,254的平方根,你能类比算术平方根的概念,给出平方根的概念吗?一般地, ,那么这个数叫做a 的平方根或二次方根. 这就是说, ,那么x 叫做a 的平方根. 例如,3和-3是9的平方根,简记为±3是9的平方根. ,叫做开平方. 观察下图,你发现了什么?平方与开平方例4 求下列各数的平方根: (1) 100; (2)169; (3) 0.25. .归纳数的平方根的特征: 正数的平方根有什么特点?0的平方根是多少? 负数有平方根吗? 平方根的表示我们已经学过一个正数的算术平方根的表示方法,你能表示一个正数的平方根吗? 正数a 的算术平方根可以表示为a ,正数a 的负的平方根,可以表示为-a . 正数a 的平方根可以用±a 表示,读作“正、负根号a ”. 例如,±9=±3,±25=±5. 例5 求下列各式的值:(1) 36; (2) -81.0; (3) ±949.练习1.判断下列说法是否正确:(1) 0的平方根是0;……………………( ) (2) 1的平方根是1;……………………( ) (3) -1的平方根是-1;…………………( ) (4) 0.01是0.1的一个平方根.…………( ) 2.填表:3.计算下列各式的值:(1) 9 (2) -49.0 (3) ±8164 解:(1) 9=3;(2) -49.0=-0.7;(3) ±8164=±98. 4.平方根概念的起源与几何中的正方形有关,如果一个正方形的面积为A ,那么这个正方形的边长是_____. 课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗? 四、教学反思为学生提供有趣且富有数学含义的问题,让学生进行充分的探索和交流. 如把正方形的面积不断地扩大为原来的2倍、3倍、n 倍,引导学生进行交流、讨论与探索,从中感受学习平方根的必要性.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1 平方根
第2课时平方根
一、新课导入
1.导入课题:
如果一个数的平方等于9,这个数是多少?从前面我们知道,这个数可以是3,除了3以外,还有没有别的数的平方也等于9呢?这就是这节课要研究的问题:平方根(板书课题).
2.学习目标:
(1)知道什么叫平方根?用符号如何表示它?有哪些性质?
(2)能利用开平方与平方互为逆运算求某些非负数的平方根.
3.学习重、难点:
重点:平方根的概念.
难点:平方根算术平方根的区别和联系.
二、分层学习
1.自学指导:
(1)自学内容:课本P44“思考”至P45“思考”之前的内容.
(2)自学时间:6分钟.
(3)自学要求:认真阅读课本、思考相关问题,注意平方根与算术平方根定义的区别.
(4)自学参考提纲:
①根据“导入课题”中问题的研究过程填表:
②一般地,如果一个数的平方等于a,那么这个数就叫做a的平方根或二次方根,即如果x2=a,那么x就叫做a的平方根.你能说说平方根与算术平方根的定义有什么不同吗?
③求一个数a的平方根的运算,叫做开平方,平方运算与开平方运算有什么
关系?
④根据平方与开平方运算的关系,可以求一个数的平方根,按例4的格式求下列各数的平方根:
64; 0.09; 49
81
; (-7)2; 0.
解:∵(±8)2=64,
∴64的平方根是±8.
∵(±0.3)2=0.09,
∴0.09的平方根是±0.3.
∵(±7
9
)2=
49
81
,
∴49
81
的平方根是±
7
9
.
∵(±7)2=(-7)2=49,
∴(-7)2的平方根是±7.
∵02=0,
∴0的平方根是0.
⑤判断下列说法是否正确:
a.49的平方根是7.(×)
b.2是4的平方根.(√)
c.-5是25的平方根.(√)
d.64的平方根是±8.(√)
e.-16的平方根是-4.(×)
2.自学:同学们可结合自学指导进行学习.
3.助学:
(1)师助生:
①明了学情:教师巡视课堂了解学生的自学情况.
②差异指导:根据学情进行相应的指导.
(2)生助生:小组内相互交流和纠错.
4.强化:
(1)平方根的概念(注意与算术平方根的概念相对照).
(2)求下列各数的平方根:
25 0.64 (-2)4 81
上面4个小题的答案依次为:±5,±0.8,±4,±3
1.自学指导:
(1)自学内容:课本P45“思考”至P46“练习”之前的内容.
(2)自学时间:6钟.
(3)自学要求:认真阅读课本,弄清楚平方根有什么性质,用符号如何表示它.
(4)自学参考提纲:
①请归纳出正数、0、负数的平方根的特征,并说说得出这些特征的理由.
②因为正数a的平方根有2个,它们互为相反数,其中正的平方根就是它的算术平方根,a那么它的负的平方根就可表示为-,故正数a的平方根就用符号±a表示,读作正、负根号a.
③式子a有意义时,a应满足条件a≥0,这是为什么呢?
90.49;64 81
上述3小题的答案依次为3,-0.7,±错误!未找到引用源。
⑤判断下列各式计算是否正确?并说明理由:
4=±2 4=±4=±2
上面3小题的答案依次为:错误,正确,错误,理由略.
2.自学:同学们可结合自指导进行学习.
3.助学:
(1)师助生:
①明了学情:教师巡视课堂,了解学生的学习情况,着重关注学生是否理解平方根的性质得出的理由及相应符号所表示的意义.
②差异指导:根据学情进行相应指导.
(2)生助生:小组内相互交流研讨,订正纠错,互助解疑难.
4.强化:
(1)平方根的性质.
(2a其中a≥0
三、评价
1.学生的自我评价:学生代表交流学习目标的达成情况和学习感受等.
2.教师对学生的评价:
(1)表现性评价:教师对学生在本节课学习中的整体表现(态度、方法和效果等)进行总结和点评
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思):
本课时教学重在挖掘平方根与算术平方根间的区别与联系,通过实例训练引导学生认识新知识,形成计算能力.
(时间:12分钟满分:100分)
一、基础巩固(70分)
1.(10分)下列各式:①3-323-();2110
(C )
A.1个
B.2个
C.3个
D.4个
2.(10分)下列各式中正确的是(C ) -425-()25-()16±
4
3.(10分)下列说法中正确的有(A )
(1)0的平方根是0;(2)1的平方根是1;(3)-1的平方根是-1;(4)±0.01是0.1的平方根
A.1个
B.2个
C.3个
D.4个
4.(20分)求下列各数的平方根:
(1)49; (2)425; (3)6110
; (4)0.0016. 解:(1)∵(±7)2=49.∴49的平方根为±7;
(2)∵(±
25)2=425,∴425的平方根为±25 ; (3)∵(±3110)2=6110,∴6110的平方根为±3110;
(4)∵(±0.04)2=0.0016,∴0.0016的平方根为±0.04.
5.(20分)求下列各式的值:
(1) 1.44; (2)±9100; (3)-22-(); (4)-4
110. 解:(1) 1.44=1.2;
(2)±9100=±310; (3)-22-()=-2;
(4)-4110
=-2110=-1100. 二、综合运用(20分)
6.(10分)求下列各式中x 的值:
(1)x2=25; (2)x2-81=0; (3)25x2=36.
解:(1)∵(±5)2=25,∴x=±5;
(2)∵(±9)2=81,∴x=±9;
(3)x2=
3625
. ∵(±65)2=3625
. ∴x=±65. 7.(10分)根据下表回答下列问题:
(1)268.96的平方根是±16.4;
(2285.616.9;
(3270
27016.4和16.5这两个相邻的数之间.
∵268.96<270<272.25,
∴270
三、拓展延伸(10分)
8.若一个数x的平方根是2a+3和1-4a,求a和x的值.
解:∵2a+3和1-4a是x的平方根,
∴2a+3+1-4a=0,
∴a=2,
∴2a+3=2×2+3=7.
∴x=(2a+3)2=72=49.
【素材积累】
1、冬天是纯洁的。
冬天一来,世界变得雪白一片,白得毫无瑕疵,白雪松软软地铺摘大地上,好似为大地铺上了一层银色的地毯。
松树上压着厚厚的白雪,宛如慈爱的妈妈温柔地抱着自己的孩子。
白雪下的松枝还露出一点绿色,为这白茫茫的世界增添了一点不一样的色彩。
2、张家界的山真美啊!影影绰绰的群山像是一个睡意未醒的仙女,披着蝉翼般的薄纱,脉脉含情,凝眸不语,摘一座碧如翡翠的山上,还点缀着几朵淡紫、金黄、艳红、清兰的小花儿,把这山装扮得婀娜多姿。
这时,这山好似一位恬静羞涩的少女,随手扯过一片白云当纱巾,遮住了她那美丽的脸庞。