高分子材料发展史大事记

合集下载

高分子材料发展历程

高分子材料发展历程

高分子材料发展历程高分子材料是指由长链分子构成的材料。

它具有重要的应用价值和发展前景,因此在过去的几十年里,高分子材料的研究和应用取得了突破性的进展。

本文将从早期的发展到现在的应用,对高分子材料的发展历程进行简要介绍。

高分子材料的发展可以追溯到19世纪早期,当时化学家发现了橡胶这种新材料。

橡胶是由高分子化合物聚合而成的,具有优异的弹性和可塑性。

这个发现引起了科学家们的极大兴趣,并开始研究高分子材料的合成和性质。

随着时间的推移,高分子材料的研究进入了一个全新的阶段。

1907年,德国化学家巴赫曼成功地合成出第一个合成塑料——巴克胶。

这标志着高分子材料研究的重要突破,也为塑料的广泛应用奠定了基础。

随后的几十年里,科学家们陆续合成出了尼龙、聚氯乙烯、聚苯乙烯等一系列合成塑料,推动了高分子材料的快速发展。

在20世纪50年代和60年代,高分子材料的研究取得了巨大的进展。

化学家们发现了更多种类的高分子材料,包括聚脲醛、聚酯、聚碳酸酯等。

这些新的高分子材料具有不同的性能和应用领域,如金属的替代品、电气绝缘材料、纤维材料等。

这些材料的广泛使用推动了高分子材料行业的蓬勃发展。

到了20世纪70年代,高分子材料的研究进入了一个新的阶段。

人们开始关注高分子材料的功能性和可控性,如形状记忆材料、功能性纳米材料等。

与此同时,高分子材料在航空航天、电子、医疗器械等领域的应用也不断扩展,为高分子材料的进一步发展开辟了新的道路。

随着人们对环境污染和可持续发展的关注,高分子材料的研究方向又发生了转变。

现在,科学家们致力于开发可再生的、可降解的高分子材料,例如生物可降解塑料和纤维素基材料等。

这些材料不仅具有优异的性能,还能降低对环境的负面影响,符合可持续发展的要求。

总的来说,高分子材料的发展历程经历了几十年的探索和创新,取得了令人瞩目的成就。

它已经成为现代化学和材料科学中不可或缺的一部分,并广泛应用于各个领域。

随着科学技术的不断进步和人们对新材料需求的提高,相信高分子材料的发展前景将更加广阔。

三大高分子合成材料发展史

三大高分子合成材料发展史

三大高分子合成材料发展史塑料(合成树脂)也许是因为塑料制品在日常生活中太普遍了,大家对塑料一词熟悉得不能再熟悉了。

从字面上理解,塑料指所有可以塑造的材料。

但我们所说的塑料,单指人工合成的塑料(又称合成树脂),是用人工方法合成的高分子物质。

大家一定都听说过“赛璐珞”。

在19世纪,台球都是用象牙做的,数量自然非常有限。

于是有人悬赏1万美元征求制造台球的替代材料。

1869年,美国的海厄特(J.W.Hyatt,1837-1920)把硝化纤维、樟脑和乙醇的混合物在高压下共热,然后在常压下硬化成型制出了廉价台球,赢得了这笔奖金。

这种由纤维素制得的材料就是“赛璐珞”。

“赛璐珞”是人类历史上第一种合成塑料,它是一种坚韧材料,具有很大的抗张强度,耐水,耐油、耐酸。

从此,"赛璐珞"被用来制造各种物品,从儿童玩具到衬衫领子中都有"赛璐珞"。

它还被用来做胶状银化合物的片基,这就是第一张实用照相底片。

不过,由于"赛璐珞"中含硝酸根,所以它有一个很大的缺点,就是极易着火引起火灾。

"赛璐珞"是由天然的纤维素加工而成的,并不是完全人工合成的塑料。

人类历史上第一种完全人工合成的塑料是在1909年由美国人贝克兰(Leo Baekeland)用苯酚和甲醛制造的酚醛树脂,又称贝克兰塑料。

酚醛树脂是通过缩合反应制备的,属于热固性塑料。

其制备过程共分两步:第一步先做成线型聚合度较低的化合物;第二步用高温处理,转变为体型聚合度很高的高分子化合物。

20世纪40年代乙烯类单体的自由基引发聚合迅速发展,实现工业化的包括氯乙烯、聚苯乙烯和有机玻璃等,这是合成高分子蓬勃发展的时期。

进入50年代,从石油裂解而得的a-烯烃主要包括乙烯与丙烯,德国人齐格勒(Karl Ziegler)与意大利人纳塔(Giulio Natta)分别发明用金属络合催化剂合成低压聚乙烯与聚丙烯的方法,前者1952年工业化,后者1957年工业化,这是高分子化学的历史性发展,因为可以由石油为原料又能建立年产10万吨的大厂,他们二人后来都获得了1963年的诺贝尔化学奖。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类具有特殊结构和性能的材料,由于其独特的物理、化学和力学性质,被广泛应用于各个领域。

本文将介绍高分子材料的发展历程以及未来的发展趋势。

二、发展历程1. 早期阶段高分子材料的起源可以追溯到19世纪末的天然高分子材料,如橡胶和纤维素。

这些材料具有良好的弹性和韧性,但其性能受到天然资源的限制。

2. 合成高分子材料的发展20世纪初,合成高分子材料的研究取得了重大突破。

1907年,著名科学家巴赫曼首次合成了具有高分子结构的聚合物。

此后,聚合物的合成方法得到了不断改进,如自由基聚合、阴离子聚合和阳离子聚合等。

这些方法的发展为合成高分子材料提供了广阔的空间。

3. 高分子材料的应用拓展随着合成方法的不断改进,高分子材料的应用领域也得到了拓展。

20世纪中叶,聚合物材料在塑料、橡胶、纤维和涂料等领域得到了广泛应用。

此外,高分子材料还被应用于电子、医药、航空航天和能源等领域,推动了科学技术的发展。

4. 高分子材料的改性与功能化为了满足不同领域对高分子材料性能的需求,人们开始对高分子材料进行改性和功能化。

通过添加填料、控制聚合反应条件和引入功能基团等方法,可以改善高分子材料的力学性能、热稳定性、导电性等特性。

三、未来发展趋势1. 绿色环保未来,高分子材料的发展将趋向绿色环保。

人们将更加注重材料的可持续性和循环利用性,减少对环境的负面影响。

例如,研发可降解高分子材料,提高材料的可回收性和可再利用性。

2. 高性能材料随着科学技术的进步,人们对高分子材料的性能要求也越来越高。

未来,高分子材料将朝着高性能方向发展,如高强度、高导电性和高热稳定性等。

这将推动高分子材料在电子、能源和航空航天等领域的应用。

3. 智能材料随着人工智能和物联网技术的发展,智能材料将成为高分子材料的新方向。

智能材料可以根据外界环境的变化自主调节其性能,具有广泛的应用前景。

例如,温敏性高分子材料可以根据温度变化实现形状记忆效应,用于生物医学和机械领域。

高分子科学的发展历程

高分子科学的发展历程

1948年美国Paul Flory 建立了高分子长链结构的数 学理论,1974年荣获诺贝尔化学奖
主要贡献:
利用等活性假设及直接的统计方法,他计算了高分子 分子量分布,即最可几分布,并利用动力学实验证实 了等活性假设; 引入链转移概念,将聚合物统计理论用于非线性分子, 产生了凝胶理论; Flory-Huggins格子理论; 1948年作出了最重要的贡献,即提出“排除体积” 理论和θ温度概念; 他的著作“Principles of polymer chemistry” (1953)是高分子学科中的Bible。
Heeger、 MacDiarmid(美)、 白川英树(日) 2000 化学奖 导电高分子研究,聚乙炔掺杂后,电导率从 3.2x10-6Ω-1cm-1增加到38Ω-1cm-1,提高了1000万倍(接近铝、铜) 提出孤子概念
Alan J. Heeger
1936
Alan G. MacDiarmid
b. 1927
Hideki Shirakawa
b. 1936
白川英树(Shirakawa)从事聚乙炔聚合机理研究
韩国研修生出现幸运的失误,使白川得到膜状聚乙炔
偶然的机遇,麦克迪尔米德(MacDiarmid)首先注意 到白川的聚乙炔膜。
Hale Waihona Puke 三人在美国合作研究。 黑格(Heeger)为了说明聚乙炔的导电性,提出孤子的
高分子科学 发展历程
由碳纤维和铝合 金制成的赛车底 盘
1839年 美国人 Charles Goodyear 发现天然橡胶与硫磺 共热后明显地改变了 性能,使它从硬度较 低、遇热发粘软化、 遇冷发脆断裂的不实 用的性质,变为富有 弹性、可塑性的材料。
橡胶园

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、发展历程高分子材料是指由高分子化合物构成的材料,具有重量轻、强度高、耐磨损、耐腐蚀等优点,广泛应用于各个领域。

下面将介绍高分子材料的发展历程。

1. 早期阶段高分子材料的起源可以追溯到19世纪末20世纪初,当时的研究主要集中在天然高分子材料,如橡胶和纤维素。

这些材料具有良好的柔韧性和强度,但在加工和耐久性方面存在一些问题。

2. 合成高分子材料的发展20世纪初,合成高分子材料的研究开始兴起。

1907年,化学家Leo Hendrik Baekeland发现了第一个合成塑料——酚醛树脂,这被认为是合成高分子材料的里程碑。

随后,聚氯乙烯、聚丙烯、聚苯乙烯等合成塑料相继问世,推动了高分子材料的发展。

3. 高分子材料的应用扩展随着合成高分子材料的不断发展,高分子材料的应用范围也不断扩大。

在20世纪中叶,高分子材料开始广泛应用于电子、汽车、建筑、医疗等领域。

例如,聚碳酸酯被用于制造光学镜片,聚酰胺用于制造纤维和塑料等。

4. 高分子材料的功能化近年来,高分子材料的研究重点逐渐转向了功能化。

通过在高分子材料中引入特定的功能基团或添加剂,可以赋予材料特殊的性能,如导电性、磁性、光学性等。

这使得高分子材料在电子、光电子、生物医学等领域的应用得到了进一步拓展。

二、未来发展趋势高分子材料在各个领域的应用前景广阔,下面将介绍未来高分子材料的发展趋势。

1. 环保可持续发展随着环保意识的提高,未来高分子材料的发展将更加注重环境友好型和可持续发展。

研究人员将致力于开发可降解的高分子材料,以减少对环境的影响。

同时,通过改进材料的生产过程,降低能源消耗和废弃物产生,实现循环利用。

2. 高性能材料的研究未来,高分子材料的研究将更加注重材料的性能提升。

例如,开发高强度、高韧性的高分子材料,以满足航空航天、汽车等领域对材料强度和耐久性的要求。

同时,研究人员还将关注高分子材料的导电性、光学性等特殊性能,以满足电子、光电子等领域的需求。

高分子科学历史

高分子科学历史

高分子科学历史1. 高分子学说创立以前高分子的发展1.1 天然橡胶及其硫化工艺英国人把原产于巴西的橡胶树引种到了东南亚,使橡胶树得以推广。

当时的橡胶主要用于制造防雨布、防雨鞋等,但是无法克服夏天发粘、冬天变脆的问题,难于真正推广应用。

1839年美国人Goodyear受当时钢铁工业发展的启示,开始尝试用各种化学品对橡胶进行改性,但是始终不太成功,包括用硫磺。

后来一次偶然性的事故给他带来了成功,他在研究保存橡胶的方法时,不小心把橡胶和硫磺的混合物洒在了热火炉上,他把它刮起来、冷却后发现这东西再没有了粘性、而且还具有弹性、不再溶解,他沿着这条路线走下去,终于发明了橡胶的硫化技术。

但是他本人并没有获得好处,为了获得专利权他打了好几年的官司,身背20多万美元的债务,穷困交加,死于1860年。

他死后,官司胜诉,1898年美国建立了第一家汽车轮胎公司,为了纪念Goodyear该公司就以其名字作为商标,至今仍然是世界上最大的轮胎生产企业,中文一般翻译为“固特异”轮胎。

也正是由于他的贡献,所有橡胶的交联技术统称为“硫化”不管用不用硫磺。

1.2 赛璐珞和赛璐玢瑞士科学家舍拜恩是一个实验迷,他除了在实验室进行实验以外,*还把实验室搬到了自己的厨房。

一次实验时,他不小心将盛有浓硝酸和浓硫酸混酸的烧瓶打破,酸液流到了地上,他顺手拿起夫人的围裙擦掉了酸液,并用水冲洗后,开始在火炉上烘烤,结果围裙在没有很干的情况下突然着了火,这令舍拜恩非常震惊。

他开始设计实验让纤维素和硝酸/硫酸反应,发现是硝酸与纤维素发生了反应,而硫酸只是催化剂,因此他发明了硝酸纤维素。

它极易燃烧,剧烈燃烧可以发生爆炸,而且基本没有烟,逐渐代替了黑火药成为炸药,当时的欧洲很多国家建立了被称为火棉炸药的生产企业,但是硝酸纤维素太容易燃烧了,造成了很多爆炸事故,损失惨重,诺贝尔发明了TNT炸药后,它作为炸药方面的应用被遗弃。

当时美国的贵族们流行打台球,台球最初由象牙制造,价格昂贵,同时来源受到极大限制,有一家公司出资1万美元悬赏寻找制造台球的原料。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类以高分子化合物为基础制备的材料,具有广泛的应用领域和巨大的市场潜力。

本文将介绍高分子材料的发展历程,包括其起源、发展阶段和主要应用领域,并展望未来高分子材料的发展趋势。

二、高分子材料的起源高分子材料的起源可以追溯到20世纪初,当时人们开始研究和应用天然高分子材料,如橡胶和纤维素。

随着科学技术的进步,人们开始研究合成高分子材料,首次成功合成高分子材料的里程碑是由赛门·诺瓦克于1907年合成的硅橡胶。

三、高分子材料的发展阶段1. 早期阶段(1907年-1945年):在这个阶段,人们主要关注天然高分子材料的研究和应用,如橡胶、纤维素和天然胶等。

同时,也开始尝试合成高分子材料,如合成橡胶和合成纤维。

2. 发展阶段(1945年-1980年):在二战后的这个阶段,高分子材料的研究和应用得到了极大的推动。

人们成功合成了许多新型高分子材料,如聚乙烯、聚丙烯、聚氯乙烯等。

这些材料具有良好的物理性能和化学稳定性,广泛应用于塑料制品、纺织品、电子产品等领域。

3. 现代阶段(1980年至今):在这个阶段,高分子材料的研究重点逐渐转向功能性高分子材料的开发。

人们开始研究和合成具有特殊功能的高分子材料,如高温耐磨材料、导电高分子材料、生物可降解材料等。

这些材料在航空航天、电子信息、医疗健康等领域有着广泛的应用前景。

四、高分子材料的主要应用领域1. 塑料制品:高分子材料是塑料制品的主要原料,广泛应用于日常生活中的各个方面,如食品包装、家居用品、汽车零部件等。

2. 纤维材料:高分子材料在纺织行业中有着重要的地位,用于制造各种纤维材料,如聚酯纤维、尼龙纤维等。

3. 电子产品:高分子材料在电子产品中的应用越来越广泛,如导电高分子材料用于制造柔性显示屏、电子纸等。

4. 医疗健康:高分子材料在医疗健康领域有着重要的应用,如生物可降解材料用于制造医用缝线、植入器械等。

五、高分子材料的未来发展趋势1. 功能性高分子材料的发展:随着科学技术的不断进步,人们对高分子材料的功能要求也越来越高。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势高分子材料是一类以聚合物为基础的材料,具有重要的应用价值和广泛的应用领域。

本文将详细介绍高分子材料的发展历程以及未来的发展趋势。

一、发展历程1. 早期发展阶段(20世纪初-20世纪30年代)在20世纪初,人们开始研究可塑性高分子材料,如塑料。

1907年,白朗宁发明了世界上第一个合成塑料——尼龙。

随后,人们开始研究其他合成塑料材料,如聚乙烯、聚丙烯等。

这一时期的高分子材料主要应用于日常生活用品和包装材料。

2. 高分子材料的快速发展(20世纪40年代-20世纪80年代)在第二次世界大战期间,高分子材料得到了快速发展。

人们开始研究高分子材料的结构和性能,并开发了更多种类的高分子材料,如聚氯乙烯、聚苯乙烯、聚碳酸酯等。

这些材料具有优异的物理和化学性能,被广泛应用于汽车、电子、建筑等领域。

3. 高分子材料的功能化发展(20世纪90年代至今)随着科学技术的进步,人们开始对高分子材料进行功能化改性,使其具有更多的特殊性能和应用功能。

例如,人们通过添加纳米材料、改变分子结构等方法,使高分子材料具有优异的导电性、热稳定性、抗菌性等特殊功能。

此外,人们还研究了生物可降解高分子材料,以应对环境问题和可持续发展的需求。

二、未来发展趋势1. 绿色环保未来,高分子材料的发展趋势将更加注重绿色环保。

人们将致力于研究生物可降解高分子材料,以替代传统的塑料材料。

这些生物可降解材料可以在自然环境中迅速分解,减少对环境的污染。

此外,人们还将研究可回收利用的高分子材料,以实现资源的循环利用。

2. 高性能未来,高分子材料的发展将趋向于高性能化。

人们将继续研究功能化改性的方法,使高分子材料具有更多的特殊性能,如高强度、高导电性、高热稳定性等。

这将推动高分子材料在电子、航空航天、能源等领域的应用。

3. 多功能化未来,高分子材料将趋向于多功能化的发展。

人们将研究制备具有多种特殊功能的高分子材料,以满足不同领域的需求。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类重要的材料,具有广泛的应用领域,如塑料、橡胶、纤维等。

本文将介绍高分子材料的发展历程以及未来的发展趋势。

二、发展历程1. 早期发展高分子材料的研究和应用可以追溯到19世纪末。

当时,人们开始研究天然高分子材料,如橡胶和蛋白质。

然而,由于对高分子结构和性质的认识有限,发展进展缓慢。

2. 高分子合成20世纪初,人们开始尝试合成人工高分子材料。

1907年,化学家Leo Baekeland成功合成了第一个合成塑料——酚醛树脂。

随后,聚合物的合成方法不断发展,如聚乙烯、聚丙烯等。

这些合成高分子材料具有良好的物理和化学性质,推动了高分子材料的发展。

3. 高分子材料的广泛应用随着高分子材料的不断发展,它们的应用范围也不断扩大。

塑料制品成为人们生活中不可或缺的一部分,如塑料包装、塑料容器等。

橡胶材料广泛应用于轮胎、密封件等领域。

纤维材料则用于纺织、服装等行业。

三、未来发展趋势1. 绿色环保未来,高分子材料的发展将更加注重环境友好型。

研究人员将致力于开发可降解的高分子材料,以减少对环境的负面影响。

同时,将推动高分子材料的回收利用,实现资源的循环利用。

2. 功能化材料随着科技的进步,高分子材料的功能化将成为未来的发展趋势。

通过对高分子材料的结构和性质的调控,可以赋予其特定的功能,如导电性、光学性能等。

这将推动高分子材料在电子、光电子等领域的应用。

3. 新型高分子材料的开发未来,研究人员将继续探索新型高分子材料的合成和应用。

例如,研发具有超高强度和超高韧性的高分子材料,以满足航空航天等领域对材料性能的要求。

此外,研究人员还将关注生物医学领域的高分子材料,如生物可降解材料、药物传递系统等。

4. 多功能复合材料未来,高分子材料的发展将趋向于多功能复合材料的研究和应用。

通过将高分子材料与其他材料相结合,可以实现多种性能的综合优化。

例如,高分子复合材料在汽车制造中的应用可以提高车身的强度和减轻重量。

高分子材料发展历程综述

高分子材料发展历程综述

高分子材料发展历程综述
高分子材料是指由大分子结构构成的材料,一般可以用来构筑填充剂,密封剂,涂料,装饰、缓冲、吸附、绝缘等材料。

近二百多年来,高分子材料的发展历程始终很精彩。

19世纪末,著名的德国发明家豪斯·瓦尔特·韦伯研制了第一种人造高分子,用葡萄糖丙交联来制造塑料,利用活性助剂
调节塑料物理性能,从而发明出高分子研发故事一曲。

20世纪早期,高分子材料的发展开始发力:1904年,美国科学家乔治·邓特·拉里
利发明了第一种塑料,即聚甲醛;1909年,美国科学家乔治·马歇尔·路德利发明了第一种涤纶,即聚酯聚乙烯。

之后,各种高分子材料不断发展,例如:甲苯材料——聚苯乙烯,醋酸环氧乙烯;乙醇醚醚材料——环氧树脂,聚氨酯;硅酮类材料——硅橡胶,模塑硅酮。

20世纪50年代,由于科学技术的发展和近几十年来全球经济增速的加快,高分子材
料的生产和应用取得了飞跃式发展,制造成本急剧降低,运用领域扩大,无论在任何行业,都受到很大的好评。

20世纪60年代,高分子材料又与复合材料和低流动性高分子材料一起进入一个新的
阶段。

分子级复合材料的出现,彻底改变了传统的高分子材料的形象,使其走了一条性能
更高,价格更低的新道路。

此外,随着现代科技的发展,高分子材料整体材料性能以及特性以及加工工艺也经历
了极大的改观,物理和机械性能都有了很大的进步。

可以说,高分子材料的未来发展前景
一片光明。

总而言之,高分子材料的发展越来越成熟,应用范围也越来越广泛,它在构筑现代社
会科技发展框架中起到了不可磨灭的历史作用,是近两百多年来的一个重要科技成果。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言:高分子材料是一类由大量重复单元组成的大分子化合物,具有广泛的应用领域。

本文将介绍高分子材料的发展历程,并展望其未来的发展趋势。

一、发展历程1. 早期发展阶段高分子材料的研究起源于19世纪末20世纪初,当时主要研究天然高分子材料,如橡胶和纤维素。

这些材料具有良好的柔韧性和可塑性,但缺乏稳定性和耐久性。

2. 合成高分子材料的突破1920年代至1930年代,德国化学家赫尔曼·斯托德尔成功合成了世界上第一个合成高分子材料——聚合物。

这一突破开启了合成高分子材料的新时代。

随后,聚合物的合成方法不断改进,推动了高分子材料的快速发展。

3. 高分子材料的广泛应用20世纪50年代至70年代,高分子材料的应用领域不断扩大。

聚合物被广泛用于塑料制品、纤维材料、涂料、胶粘剂等领域。

同时,高分子材料的性能也得到了极大的提升,如力学性能、耐热性、耐腐蚀性等。

二、未来发展趋势1. 绿色环保未来高分子材料的发展将更加注重环境友好性。

研究人员将致力于开发可降解的高分子材料,以减少对环境的污染。

同时,节能减排和资源循环利用也将成为高分子材料研究的重点。

2. 功能性材料随着科技的进步,高分子材料将朝着功能性方向发展。

例如,研究人员正在开发具有特殊功能的高分子材料,如自修复材料、智能材料和生物医用材料。

这些材料将在医疗、电子、能源等领域发挥重要作用。

3. 纳米技术的应用纳米技术的发展将为高分子材料带来新的突破。

通过纳米级的改变,高分子材料的性能可以得到进一步提升。

例如,纳米复合材料具有优异的力学性能和导电性能,将成为未来高分子材料的重要研究方向。

4. 多功能复合材料未来高分子材料的发展将趋向多功能化。

研究人员将探索不同材料的复合,以获得更好的性能和应用。

例如,高分子基复合材料可以结合金属、陶瓷等材料的优点,具有更高的强度和耐用性。

5. 智能化和自适应性未来高分子材料将朝着智能化和自适应性方向发展。

高分子发展史

高分子发展史

日本筑波大学 美国宾夕法尼亚大学 美国加利福尼亚大学
白川英树 艾伦-G-马克迪尔米德
艾伦-J-黑格
22
导电高分子电路板
23
高分子在现实生活中的应用

食科技Biblioteka 用 行住24
塑料瓶底数字的秘密 三角形代表可回收利用,里面数字代表材质。
PET制成,可在短时期内装常温水,不能装高 温水,也不宜装酸碱性饮料。 高密度聚乙烯,常见于白色药瓶、清洁用品、 沐浴产品。不易彻底清洁,不适合做水杯等, 勿循环使用。
19
1963年诺贝尔化学奖 ✓ Ziegler—Natta催化剂
✓ 配位聚合乙烯、丙烯 ✓ 实现乙烯、丙烯
工业化生产
Karl Ziegler
Giulio Natta
(1898-1973) (1903-1979)
德国科学家(Karl Ziegler)与意大利科学家 (Giulio Natta)分别发明用三乙基铝和三氧化钛组成 的金属络合催化剂合成低压聚乙烯与聚丙烯的方法20。
➢高性能化: 耐磨、耐高温、耐老化、耐腐蚀等 ➢高功能化: 电磁、光学、生物等功能高分子材料、
高分子分离膜、催化剂等 ➢复 合 化: 纤维增强材料,高性能的结构复合材料 ➢精 细 化: 向高纯化、超净化、精细化、功能化等 ➢智 能 化: 预知预告性、自我诊断、自我修复、
自我增殖、认识识别能力等
34
谢谢
1991年诺贝尔物理学奖
因其在对液晶、聚合物及其界面等 科学的研究中获得重大突破,并提 出了高分子标度理论,而荣获1991 年诺贝尔物理学奖,被瑞典皇家科 学院誉为“当今的牛顿”。
Pierre -Gilles de Gennes (1932-2007)

高分子材料发展史大事记_526504151

高分子材料发展史大事记_526504151

高分子材料发展史大事记15世纪美洲玛雅人用天然橡胶做容器,雨具等生活用品。

1839 美国人古德伊尔(Charles Goodyear)发现天然橡胶与硫磺共热后明显地改变了性能,使它从硬度较低、遇热发粘软化、遇冷发脆断裂的不实用的性质,变为富有弹性的材料。

1846 发明硝化纤维素-瑞士Schonbein1870 1968年美国的海厄特(John Wesley Hyatt,1837-1920)把硝化纤维、樟脑和乙醇的混合物在高压下共热,制造出了第一种人工合成塑料“赛璐珞”(cellulose)。

1870年工业化1887 Count Hilaire de Chardonnet用硝化纤维素的溶液进行纺丝,制得了第一种人造丝。

1898 发明粘胶纤维1909 1907年美国人贝克兰(Leo Baekeland)发明酚醛树酯,1909年工业化,是第一种完全人工合成的高分子。

1920 施陶丁格(Hermann Staudinger)发表了"关于聚合反应"(Uber Polymerization)的论文提出:高分子物质是由具有相同化学结构的单体经过化学反应(聚合),通过化学键连接在一起的大分子化合物,高分子或聚合物一词即源于此。

获得1953年度诺贝尔化学奖1925 聚醋酸乙烯酯(PVAc)工业化1926 瑞典化学家斯维德贝格等人设计出一种超离心机,用它测量出蛋白质的分子量:证明高分子的分子量的确是从几万到几百万。

1926 美国化学家Waldo Semon合成了聚氯乙烯,并于1927年实现了工业化生产。

1928 聚甲基丙烯酸甲酯(有机玻璃,PMMA)和聚乙烯醇(PVA)问世1930 聚苯乙烯(PS)发明。

德国人用金属钠作为催化剂,用丁二烯合成出丁钠橡胶和丁苯橡胶1931 聚氯乙烯(PVC)、氯丁橡胶问世1932 施陶丁格(Hermann Staudinger)总结了自己的大分子理论,出版了划时代的巨著《高分子有机化合物》成为高分子化学作为一门新兴学科建立的标志。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一类由大量重复单元组成的大分子化合物,具有较高的分子量和多样的物理、化学性质。

自20世纪初以来,高分子材料在各个领域中得到广泛应用,并在科学技术的推动下不断发展。

本文将介绍高分子材料的发展历程以及未来发展的趋势。

一、早期发展阶段1.1 天然高分子材料的发现- 人们早在古代就开始使用天然高分子材料,如皮革、天然橡胶等。

- 1839年,美国化学家查尔斯·戴克斯特尔发现了天然橡胶的弹性,并将其命名为“弹性体”。

1.2 合成高分子材料的诞生- 1907年,美国化学家莱昂纳德·巴斯德成功合成了世界上第一个合成高分子材料——酚醛树脂。

- 1920年代,德国化学家赫尔曼·斯托德尔合成了聚氯乙烯(PVC)。

1.3 高分子材料的应用拓展- 1930年代,高分子材料开始应用于塑料制品、橡胶制品等领域。

- 1940年代,高分子材料在航空、航天等高科技领域得到广泛应用。

二、中期发展阶段2.1 高分子材料的改性与合金化- 1950年代,人们开始将高分子材料进行改性,以改善其性能。

- 1960年代,高分子材料与其他材料进行合金化,形成了高分子合金材料。

2.2 高分子材料的新型结构与功能- 1970年代,人们开始研究高分子材料的新型结构,如共聚物、交联聚合物等。

- 1980年代,高分子材料开始展现出多种新的功能,如导电、光学、生物相容性等。

2.3 高分子材料的环保与可持续发展- 1990年代,人们开始关注高分子材料的环境影响,并提出了环保的研究方向。

- 21世纪初,高分子材料的可持续发展成为研究的热点,如生物可降解材料的研究与应用。

三、近期发展阶段3.1 高分子材料的纳米化与智能化- 近年来,人们将高分子材料进行纳米化处理,以获得更好的性能。

- 同时,高分子材料的智能化也成为研究的重点,如自修复材料、自感应材料等。

3.2 高分子材料的多功能与多场耦合- 近期,高分子材料的多功能化与多场耦合成为研究的热点,如光电、磁电、压电等多种功能的结合。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势高分子材料是一类由大量重复结构单元组成的聚合物材料,具有重要的应用价值和广泛的应用领域。

本文将介绍高分子材料的发展历程以及未来的发展趋势。

一、高分子材料的发展历程1. 早期阶段(19世纪末-20世纪初)在19世纪末至20世纪初,人们开始研究天然高分子材料,如橡胶和纤维素。

1884年,美国化学家约瑟夫·普利斯特利发现了硝化纤维素,为合成高分子材料奠定了基础。

2. 合成高分子材料的突破(20世纪20年代-40年代)20世纪20年代至40年代,合成高分子材料取得了重大突破。

1928年,英国化学家亚历山大·弗莱明发现了聚合物材料聚乙烯,开创了合成高分子材料的新时代。

随后,聚合物材料如聚丙烯、聚苯乙烯等相继问世。

3. 高分子材料的广泛应用(20世纪50年代-70年代)20世纪50年代至70年代,高分子材料得到了广泛的应用。

聚合物材料在塑料制品、橡胶制品、纤维材料等领域得到了大规模的应用,推动了工业的发展和生活的改善。

4. 高分子材料的功能性和特殊性发展(20世纪80年代至今)20世纪80年代至今,高分子材料的研究重点逐渐转向功能性和特殊性。

人们开始研究和开发具有特殊功能的高分子材料,如高强度聚合物材料、高温耐性聚合物材料、导电聚合物材料等。

这些材料在航空航天、电子、医疗等领域发挥着重要作用。

二、高分子材料的未来发展趋势1. 绿色环保未来,高分子材料的发展将更加注重绿色环保。

人们将致力于开发可降解的高分子材料,减少对环境的污染。

同时,将推动高分子材料的回收利用,实现资源的循环利用。

2. 高性能高分子材料的未来发展将更加注重高性能。

人们将致力于开发具有更高强度、更好耐热性和更好导电性的高分子材料,以满足不同领域的需求。

3. 功能性未来,高分子材料的发展将更加注重功能性。

人们将致力于开发具有特殊功能的高分子材料,如自修复材料、传感材料等,以满足不同领域的需求。

高分子材料科学的历史

高分子材料科学的历史

— CH 2 — CH 2 — CH2 — CH 2 — CH 2 — CH 2 —
— CH 2 — CH 2 — CH 2 — CH 2 — CH 2 — CH 2 — CH 2 CH 2 CH 2
1956年,美国人Szwarc发明活性阴离子聚合, 开创了高分子结构设计的先河。 50年后期至60年代,大量高分子工程材料问世。 聚甲醛(1956),聚碳酸酯(1957),聚砜 (1965),聚苯醚(1964),聚酰亚胺(1962)。
1855年,英国人 Parks用硝化纤维 素与樟脑混合制 得赛璐珞
1889年,法国人De Chardonnet(夏尔多内) 发明人造丝。
1907年,酚醛树脂诞生
1920年, 德国人 Staudinger 发表了“论 聚合”的论 文,提出了 高分子的概 念,并预测 了聚氯乙烯 和聚甲基丙 烯酸甲酯等 聚合物的结 构。
高分子材料更多的功能和更优异的性能正 在被发现,未来的高分子工业正大步向未 来迈去„„
1935年,Carothes发 明尼龙66,1938年工 业化。
高分子溶液理论在 30年代建立,并成 功测定了聚合物的 分子量。Flory为此 获得诺贝尔奖。
30年代,一系 列烯烃类加聚物 被合成出来并工 业化,PVC (1927~1937), PVAc(1936), PMMA(1927~ 1931),PS (1934~1937), LDPE(1939)。 自由基聚合发展。
聚 甲 醛 聚碳酸酯 聚 砜 聚 苯 醚
聚酰亚胺
60年代以后,特种高分子和功能高分子得到发展。
功能高分子:分 离材料(离子交 换树脂、分离膜 等)、导电高分 子、感光高分子、 高分子催化剂、 高吸水性树脂、 医用高分子、药 用高分子、高分 子液晶等。

中国高分子化学早期发展简况

中国高分子化学早期发展简况

王葆仁,江苏扬州人,高分子化学 家,中国科学院院士,中国科学院化 学研究所研究员。中国最早从事高分 子科学研究的化学家之一。对有机硅 高分子,特别是硅碳硅氧链高分子的 合成进行了深入研究。著有《有机合 成反应》上、下册。
何炳林,出生于广东省番禺县, 毕业于印第安纳州立大学,高分子 化学家、化学教育家。他是中国的 离子交换树脂工业的开创者,发明 大孔离子交换树脂,并对其结构与 性能进行了系统研究,被誉为中国 “离子交换树脂之父”,代表作品 主要有《吸附与吸附树脂》。
中国的高分子研究工作起步于20世纪50年代
当时国内从事高分子化学研究工作的单位主要有:
中国科学院长春应用化学研究所 北京大学
中国科学院上海有机化学研究所 南开大学
成都工学院(现四川大学)
吉林大学
国内最早在大学里设置相关专业的有: 北京大学 开设高分子化学专业 成都工学院 开设塑料工程专业
不同领域开展高分子方面的研究工作
中国高分子化学 早期发展简况
高分子化学发展历史回顾
天然高分子改性 ➢ 1839 Goodyear发明天然橡胶的硫化 ➢ 1855 Parks用硝化纤维素和樟脑制得了赛璐珞塑料 ➢ 1883 de Chardonnet用硝化纤维素制备人造丝
合成高分子材料 ➢ 1838 利用光化学使氯乙烯聚合 ➢ 1839 合成聚苯乙烯 ➢ 1900 合成苯乙烯和双烯类共聚物 ➢ 1909 在德国,酚醛树脂成为第一个工业化生产的高分子材料
高分子材料与人类生活
衣:合成纤维(尼龙、涤纶、腈纶、维尼纶,丙纶等), 天然纤维(棉、丝等)
食:人造肉、人造蛋白质、合成糖等
住:建筑防水材料、管道防腐、工业地坪及运动场地等
行:汽车的全塑壳体,飞机的机舱壁板等

材料的发展

材料的发展

发掘历程1.初始时期(1929年-1934年)1929年在三星堆遗址真武村燕家院子发现玉石器坑,出土玉石器三、四百件。

1931年英国神父董宜笃四处奔走,使1929年出土的玉石器大部分归华西大学博物馆。

1932年华西大学博物馆馆长葛维汉提出在广汉进行考古发掘的构想并获四川省政府教育厅的批准。

1934年3月1日葛维汉、林名均抵达广汉。

3月葛维汉、林名均等在真武村燕家院子附近清理玉石器坑,并在燕家院子东、西两侧开探沟试掘。

2.初步调查与发掘(1951年-1963年)1951年四川省博物馆王家佑、江甸潮等调查三星堆、月亮湾,首次发现大片古遗址。

1958年四川大学历史系考古教研组再次调查三星堆遗址。

1963年四川省博物馆和四川大学历史系联合发掘三星堆遗址。

由著名考古学家、四川省博物馆馆长、四川大学历史系教授冯汉骥主持。

3.两坑的发掘及古城再现(1980年-2005年)1980年~1981年四川省文物管理委员会与广汉县联合首次发掘三星堆遗址,揭露出大面积的房屋基址。

1982年11月~83年1月第二次发掘三星堆遗址,首次在三星堆遗址发现陶窑。

1984年3月~12月第三次发掘三星堆遗址,在西泉坎发掘出龙山时代至西周早期的文化堆积,确定了三星堆遗址的年代上、下限。

1984年12月~1985年10月第四次发掘三星堆遗址,发现三星堆土埂为人工夯筑,首次提出三星堆遗址是蜀国都城的看法。

1986年3月~5月四川省文物管理委员会、四川省文物考古研究所、四川大学历史系与广汉县联合,第五次发掘三星堆遗址,发掘面积1200平方公尺,发现大量灰坑和房屋遗迹‘将三星堆遗址的代上限推至距今5,000年前。

1986年7月18日当地砖厂在第二发掘区取土时发现祭祀坑,挖出玉石器。

第六次发掘三星堆遗址。

1986年7月18日四川省文物管理委员会、四川省文物考古研究所与广汉县联合发掘祭祀坑,编号为一号祭祀坑。

出土铜、金、玉、琥珀、石、陶等器物共420件,象牙13根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子材料发展史大事记
15世纪美洲玛雅人用天然橡胶做容器,雨具等生活用品。

1839 美国人古德伊尔(Charles Goodyear)发现天然橡胶与硫磺共热后明显地改变了性能,使它从硬度较低、遇热发粘软化、遇冷发脆断裂的不实用的性质,变为富有弹性、可塑性的材料。

1869 美国的海厄特(John Wesley Hyatt,1837-1920)把硝化纤维、樟脑和乙醇的混合物在高压下共热,制造出了第一种人工合成塑料“赛璐珞”(cellulose)。

1887 Count Hilaire de Chardonnet用硝化纤维素的溶液进行纺丝,制得了第一种人造丝。

1909 美国人贝克兰(Leo Baekeland)用苯酚与甲醛反应制造出第一种完全人工合成的塑料--酚醛树酯。

1920 施陶丁格(Hermann Staudinger)发表了"关于聚合反应"(Uber Polymerization)的论文提出:高分子物质是由具有相同化学结构的单体经过化学反应(聚合),通过化学键连接在一起的大分子化合物,高分子或聚合物一词即源于此。

1926 瑞典化学家斯维德贝格等人设计出一种超离心机,用它测量出蛋白质的分子量:证明高分子的分子量的确是从几万到几百万。

1926 美国化学家Waldo Semon合成了聚氯乙烯,并于1927年实现了工业化生产。

1930 聚苯乙烯(PS)发明。

1932 施陶丁格(Hermann Staudinger)总结了自己的大分子理论,出版了划时代的巨著《高分子有机化合物》成为高分子化学作为一门新兴学科建立的标志。

1935 杜邦公司基础化学研究所有机化学部的卡罗瑟斯(Wallace H. Carothers,1896-1937)合成出聚酰胺66,即尼龙。

尼龙在1938年实现工业化生产。

1930 德国人用金属钠作为催化剂,用丁二烯合成出丁钠橡胶和丁苯橡胶。

1940 英国人温费尔德(T.R.Whinfield,1901-1966)合成出聚酯纤维(PET)。

1940s Peter Debye 发明了通过光散射测定高分子物质分子量的方法。

1948 Paul Flory 建立了高分子长链结构的数学理论。

1950s 德国人齐格勒(Karl Ziegler)与意大利人纳塔(Giulio Natta)分别用金属络合催化剂合成了聚乙烯与聚丙烯。

1955 美国人利用齐格勒-纳塔催化剂聚合异戊二烯,首次用人工方法合成了结构与天然橡胶基本一样的合成天然橡胶。

1971 S.L Wolek 发明可耐300oC高温的Kevlar。

相关文档
最新文档