车辆耦合振动
公路桥梁与车辆耦合振动研究趋势探析
公路桥梁与车辆耦合振动研究趋势探析摘要:本文首先对公路桥梁与车辆耦合振动研究现状进行了系统归纳和总结,然后对公路车桥耦合振动研究以后的研究趋势进行了探析,供有关研究者和同行参考。
关键词:公路桥梁车桥耦合振动现状趋势汽车以一定的速度过桥时,由于车辆轴重及速度效应,会引起桥梁结构振动,而桥梁的振动又反过来影响车辆的运行。
桥面不平整、桥头引道等因素的存在以及车辆各旋转部分的作用,更加剧了桥梁和车辆之间振动的相互影响。
这种相互作用、相互影响的问题就是公路车辆与桥梁之间振动耦合的问题。
当公路车辆的振动频率与桥跨的振动频率一致时,即形成共振。
车辆和桥梁间的相互作用受到诸多因素影响:1)桥梁结构的动力特性(桥跨结构形式、质量与刚度分布、材料阻尼等);2)车辆的动力特性(车型、自振频率、阻尼等);3)桥头引道和桥面的平整状态、桥头沉陷及伸缩缝装置的状况。
由于这些因素的影响和综合作用,使得对车桥耦合振动的研究十分困难。
一、公路桥梁与车辆耦合振动研究现状由于实际中车桥耦合振动系统本身的复杂性,并且车型和桥型又种类繁多,以及引起振动的各种激振源的随机性,古典理论显然不能全面合理的模拟车桥耦合振动问题。
直到20世纪60年代--70年代以后,电子计算机和有限元方法的问世和发展,使得车桥耦合振动的研究有了飞速的进步。
人们可以建立比较真实的车辆和桥梁的空间计算模型,然后用数值模拟法计算车辆和桥梁系统的耦合振动效应。
现代车桥振动理论以考虑更接近真实的车辆分析模型和将桥梁理想化为多质量的有限元或有线条模型为主要特点,同时,着重研究道路路面的不平整对荷载效应的影响,对于车辆加速、制动减速效应等复杂的随机因素也进行了一些研究。
除简支梁桥之外,连续梁桥、悬索桥、斜拉桥等也逐步涉及。
到目前为止,人们对简支梁桥的车桥共振问题的理论和实验研究己经比较系统化,对其它某些桥型,像连续梁桥、索承桥、污工拱桥,也有一定程度的研究成果。
1970年,Veletsos和Huang 等早期研究者将桥梁理想化为具有集中质量和粘性阻尼的有限自由度梁,考虑了二维平面多轴拖车荷载作用。
车桥耦合振动分析
10
水平不平顺/mm
5 0 -5 -10 -15 距离/m 0 10 20 30 40 50 60 70 80 90
回上目录
车辆蛇行运动
ls
左轮滚动半径:
Amax y
a
2b
r1 r0 y
右轮滚动半径:
Y
ls
(a)
r2 r0 y
2b
Amax
a
Y (b)
下一页
车辆蛇行运动
回 2页
a)动力放大作用(强度、疲劳检算、稳定等)
b)铁路,桥梁,u=a/(b+L)
式中L-计算跨径或相应内力影响线荷载长度 a,b-因桥梁种类不同而不同的常数
回上目录
a)平稳性表示车辆的振动性能 平稳性与振动有关,反映旅客舒适度与货 物损坏程度 b)平稳性的主要指标 1、车体振动加速度幅值 2、舒适度指标(a, f ) c)舒适度的指标 斯佩林指标 、 Janeway指标、ISO2631评定 法等。
回上目录
a)桥梁设计刚度与车辆运营平稳性和桥梁冲系 数有很大关系 ,但确定控制刚度设计标准主要 由平稳性控制 。
我国公路、铁路桥梁设计竖向挠度允许值
结构类型 混凝土梁 混 凝 土 梁 混 凝 土 钢桁架桥 道路类型 桥 (跨中) 桥(悬臂端) 桁架桥 公路 铁路 L/600 L/800 L/300 L/800 L/800 L/800 钢板梁桥 L/600 L/700 悬索桥 L/400
d)试验
试验与理论(原型试验和现场实测)
用试验结果验证理 论模型的正确性,用验证过的、正确的理论模型进行仿真分 析,研究各种参数对振动影响,分析各种运营条件下列车、 桥梁的安全性。
高铁车辆横向振动耦合机制及其减振技术对策
高铁车辆横向振动耦合是指高速行驶的列车在铁轨上出现的横向振动问题。
这种振动会对列车的稳定性、乘坐舒适性和轨道的使用寿命产生影响。
其主要机制是由于列车在曲线轨道上行驶时,车辆的横向力与曲线的半径产生耦合作用,引起车辆的横向振动。
为了减少高铁车辆的横向振动,采取一系列的技术对策:
悬挂系统设计优化:通过对车辆悬挂系统的设计和调整,可以减少车体的侧向倾斜和横向振动。
采用合适的悬挂系统,包括气弹簧、液压缓冲器等,可以提高车辆的横向稳定性。
轮轨系统优化:通过轮轨系统的设计和优化,可以减少轮对与轨道之间的横向力,降低车辆的横向振动。
例如,采用合适的轮轨几何参数、轮胎材料和轮轨间隙等,可以改善列车在曲线轨道上的横向运动性能。
主动控制技术:采用主动控制技术,如主动悬挂和主动滚动补偿系统,可以实时监测和调整车辆的横向姿态,减少横向振动。
这些系统可以通过传感器和控制器对车辆的横向运动进行实时监测和反馈控制,从而提高车辆的横向稳定性。
车辆质量分布优化:通过合理分布车辆的质量,可以降低车辆的横向振动。
例如,在车辆设计和制造过程中,通过合理配置车辆的质量中心、减小质量偏心等措施,可以减少车辆在曲线轨道上的横向振动。
综合采用上述技术对策,可以有效减少高铁车辆的横向振动,提高列车的运行稳定性和乘坐舒适性,同时也有助于延长轨道的使用寿命。
这些技术对策在高铁设计、制造和运营中起着重要的作用,不断推动高速铁路的发展和进步。
高速列车轮轨耦合振动特性分析
高速列车轮轨耦合振动特性分析随着时代的发展,高速列车已经成为人们出行的重要交通工具之一。
高速列车的出现不仅解决了人们的出行问题,同时也有助于缓解日益严重的交通拥堵问题。
在高速列车的运行过程中,轮轨耦合振动不可避免地存在。
对于高速列车的轮轨耦合振动特性进行深入的分析,有助于强化人们对于高速列车的安全保障,同时也有助于提高高速列车的性能和舒适性。
一、轮轨耦合振动的基本特征轮轨耦合振动是机车车轮与轨道之间存在的一种复杂振动过程。
轮轨振动的主要特征包括振动频率、振动幅度和振动形态等。
具体来说,振动频率是指在轮轨耦合振动过程中,车轮与轨道之间发生振动所产生的周期数。
振动幅度是指在振动过程中所产生的振动位移。
振动形态则涉及到振动过程中的各种振动形状和振动模态。
二、轮轨耦合振动的危害轮轨耦合振动可能会给高速列车的运行和安全带来一定的危害。
首先,轮轨耦合振动可能会导致车轮、轨道的损伤。
长期以往,这些损伤会积累起来,甚至可能会引发事故。
其次,车厢内的乘客也可能会感受到轮轨耦合振动的不适。
加速度过大、震动幅度过大的振动会对人体内部器官产生极大影响,甚至导致身体不适、疲劳等症状。
三、轮轨耦合振动的测量方法为了对轮轨耦合振动特性进行有效评估和控制,我们需要一种可靠的测量方法。
测量轮轨耦合振动的方法有很多种,其中比较常见的方法包括轮轨维振器方法、声发射法、应变法等。
轮轨维振器方法是测量车轮与轨道之间耦合振动情况的一种常见方法,其基本原理是通过分析维振器所测量到的信号,来推断轮轨振动状态。
声发射法是通过在轮轨接触面上植入传感器,来监测车轮在高速行驶过程中产生的声音,从而对车轮的轮轨振动状态进行测量。
应变法是通过在轨道上植入测力元件,测量车轮与轨道之间产生的应变差异,来推断轮轨振动状态。
四、轮轨耦合振动的控制方法为了有效控制轮轨耦合振动,可以采取振动控制方法。
振动控制方法包括有源控制和无源控制两种。
有源控制是通过外界激励,对振动系统施加一定的控制力,从而使振动过程发生变化,达到控制振动的目的。
公路车辆与桥梁耦合振动分析研究的开题报告
公路车辆与桥梁耦合振动分析研究的开题报告
一、研究背景和意义
公路交通作为现代交通体系的重要组成部分,在人们的日常生活和经济发展中发挥着重要作用。
但长期以来,公路桥梁的安全问题一直备受关注,其主要原因在于桥梁的振动问题。
随着公路车辆的不断增多和速度的不断提高,极易引起桥梁的共振现象,损害桥梁结构,威胁行车安全。
因此,对公路车辆与桥梁耦合振动的研究具有重要的理论和实际意义。
二、研究目的
通过对公路车辆与桥梁耦合振动机理的分析和建模,探讨其振动现象的规律和性质,为公路桥梁的安全设计提供理论参考。
三、研究内容和方法
1. 建立公路车辆与桥梁耦合振动模型:研究路面、车辆、桥梁的耦合振动模型,考虑桥梁的结构特性及车辆的质量、速度、轮胎刚度等因素的影响。
2. 分析振动特性和规律:研究公路车辆与桥梁的振动频率、幅值、相位等特性,分析共振现象的原因及其规律。
3. 探究振动对桥梁结构的影响:研究桥梁结构在振动下的应变和变形特征,评估振动对桥梁结构的破坏性影响,并提出相应的安全防范措施。
4. 计算模拟和实验验证:通过数值计算和实验验证,检验模型的准确性,并对研究成果进行分析和总结。
四、预期成果
1. 建立公路车辆与桥梁耦合振动的数学模型,掌握其振动规律和特性。
2. 研究振动对桥梁结构的影响,提出相应的安全防范措施。
3. 与该领域前沿研究成果接轨,为相关领域的研究和应用提供理论参考和技术支持。
公路桥梁与车辆耦合振动的研究
影 响效果 。
2 _ 2 车辆 模 型分析
Y i 一 代表 第 i 个 轮 组 在 车 辆运 动 中所 发 生 的 桥
梁 竖 向位移 ;
R i 一代 表 第i 个 轮组 在车 辆运 动 中 , 与桥梁 发 生 作 用所 存在 的不 平顺值 。
半 车模 型或者 单轮 车辆 模型 。线性 弹簧 和阻尼 器用 于 悬 架 模拟 、 线 性 弹 簧用 于 轮 胎 模 拟 , 所 有 的 质 量
都 在车 轴上 集 中。 随着计 算 机技 术 的发展 , 目前 多 运 用计算 机分 析技 术设 计空 间整 车振 动模 型 。
面 受 力 都 是确 定 的 , 那么 , 桥 梁 在 车 辆 负 荷 作用 的 影 响下 也存在 着确 定性 。
是 不容 忽视 的 。实 际操 作 中 , 车辆 在桥 面上 行驶 , 车 轮对 于桥 面 的作 用 力可 以是任 意位 置 的 。 而 且 如果 发 生 横 向振 型和 扭 曲振 型 的 时候 , 对 桥梁 动力 的影 响极 大 。因此 , 杆 系有 限元法 研究 桥梁 模 型 , 存在 着
凝 聚法 ” 对 自由度 进 行 有 效控 制 。 因此 而 形 成 一 定
的近 似性 。在 建立 杆 系模 型 的时 候 , 会将 桥 梁 结构
进行缩减 , 模 拟 为连 续 粱 或 者 简 支 梁 , 忽 略 扭 转 振
型 以及 侧 向振 型 的 存 在 。在 不 考虑 单 个 梁 的情 况 下 ,仅 限于对 车辆 沿 中心 线行 驶 的工 况进 行 模 拟 , 这 样 就可 以获得 精确 的结 果 。特 别是 对于跨 长 均匀
车桥耦合系统随机振动的时域显式解法
车桥耦合系统随机振动的时域显式解法车桥耦合系统是指由汽车和其所搭载的车轮组成的一个复杂机械系统。
在运动过程中,车轮与车桥的振动相互耦合,导致系统的动态行为产生很多问题,如振动、噪声和疲劳等。
因此,对车桥耦合系统的振动行为进行研究,有助于优化车辆的设计和改善乘坐舒适性。
在研究车桥耦合系统的随机振动问题时,我们常常使用时域显式解法来模拟系统的动态响应。
时域显式解法是一种基于运动微分方程的数值算法,通过离散化时间和空间域,将连续的变化转化为离散的数值计算,从而得到系统在任意时刻的状态。
时域显式解法的核心思想是将系统的运动微分方程转化为差分方程,然后通过迭代计算,得到系统随时间的演化过程。
在车桥耦合系统的研究中,我们通常需要考虑多个关键因素,如车辆的行驶速度、路面的不平度、车轮和车桥的刚度等。
这些因素会影响车辆的振动频率、振幅和相位差,因此在建立数学模型时需要充分考虑这些因素的影响。
在进行数值计算时,我们需要确定合适的时间和空间离散化步长,以保证计算结果的准确性和稳定性。
同时,我们还需要选择合适的数值方法,如欧拉法、Runge-Kutta法等,来对差分方程进行求解。
这些数值算法能够有效地模拟车桥耦合系统的振动行为,并提供详细的振动参数信息。
通过时域显式解法,我们可以得到车桥耦合系统在任意时刻的振动状态,进而分析振动的特征和规律。
这些信息对于优化车辆的设计和改善乘坐舒适性具有重要的指导意义。
例如,我们可以通过调整车辆的悬挂系统来降低振动的幅值和频率,从而提高车辆的乘坐舒适性。
此外,对于道路设计者来说,我们可以利用时域显式解法来评估不同路面的影响,从而为道路建设提供参考依据。
总之,时域显式解法是研究车桥耦合系统随机振动问题的重要方法,它能够提供详细的振动信息和参数,对于优化车辆设计和改善乘坐舒适性具有重要的指导意义。
通过深入研究和应用时域显式解法,我们可以不断改进车辆的设计和道路的建设,进一步提升车辆的性能和乘坐舒适度。
公路桥梁与车辆耦合振动研究综述
公路桥梁与车辆耦合振动研究综述1 前言车辆以一定的速度通过桥梁,桥梁受到车辆荷载的激励会产生振动,反过来桥梁的振动对于车辆来说也是一种激励,因此车辆和桥梁的振动是一个相互影响,相互耦合的过程,我们称之为车桥耦合振动问题。
随着交通事业的迅猛发展,车载重量和运行速度不断提高,而桥梁结构则日趋轻型化,车辆和桥梁之间的动力问题日益引起人们的重视。
对于桥梁工作者而言,车桥耦合振动问题的对应点即为桥梁在移动车辆荷载作用下的强迫振动问题。
2主要研究成果自十九世纪末,各国学者就相继对车桥耦合振动进行了大量研究,称其研究为古典理论。
古典理论对车桥模型进行了大幅简化,桥梁模型均是连续的,主要是对车辆荷载的模拟有了一定的发展进步。
实际上,由于实际桥梁和车辆耦合振动系统本身的复杂性,并且车型和桥型种类繁多,以及引起振动的各种激振源的随机性,古典理论显然不能全面合理地模拟车桥耦合振动问题。
直到二十世纪六、七十年代,随着电子计算机的应用以及有限元技术的发展,使得车桥耦合振动的研究有了飞速的进步。
自70年代起的现代桥梁车辆振动分析理论,以考虑更接近真实的车辆模型和将桥梁理想化为多质量的有限元或有线条模型为主要特点,同时着重研究公路桥面平整度对荷载动力效应的影响。
主要的理论有:多轴车辆模型的作用、有限条法及模态分析法等。
谭国辉、巴梅特.GH、汤比勒.DP提出将二维的格栅桥梁与三维的汽车组合起来模拟二者之间的相互作用。
采用格栅比拟方法,将桥梁结构比拟成一个网格的集合,由纵向主梁和横向隔板组成。
从动力学分析的角度推导出三维汽车模型。
汽车的运动由只发生刚体运动的刚性底盘描述,汽车有各种非线性悬挂系统和弹性轮胎,每个轮轴都有垂直自由度。
该理论从空间结构着手分析了车桥系统的相互作用,能有效地反映系统相互作用的真实特性。
2000年,我国学者林梅、肖盛燮以结构动力学为基础,分析了连续梁桥结构在汽车荷载作用下的动态性能,并运用计算机模拟,讨论了不同车速、车型情况下的桥梁动态响应变化,以此分析出影响结构动态性能的主要因素。
车桥耦合振动事故案例
车桥耦合振动事故案例2013年12月13日,一辆满载着铜矿石的重型货车在山东滨州一处车桥上行驶时发生侧翻,货车的货物散落一地,险些引发车祸。
经过初步调查,事故的原因是车桥一侧的地基下沉,导致车桥与地面之间的距离缩小,货车在上面行驶时发生了强烈的振动,最终失控翻车。
这是一起典型的车桥耦合振动事故。
所谓车桥耦合振动,是指车轮和桥梁相互作用,引起桥梁运动的一种振动。
当车轮驶过车桥时,车轮与桥梁之间就会形成振动力,这些力会向桥梁传递,引起桥梁的振动。
如果桥梁受到的振动力超过了其耐受程度,就会出现碎裂、倒塌等情况。
车桥耦合振动事故多发生在桥梁设计不合理或施工工艺不规范等原因下。
本次事故的原因主要在于车桥设计不合理,加之道路基础沉降,导致车桥与地面之间的距离缩小,车辆在上面行驶时发生强烈的振动,最终导致侧翻事故。
为了避免车桥耦合振动事故发生,需要从多方面加强管理和维护:一、加强桥梁设计和施工管理。
要保证桥梁的坚固稳定,合理设计桥梁结构,自重和荷载应均匀分布于桥面上,在给定荷载条件下,保证桥梁的承载能力和刚度。
二、加强路面维护。
道路基础如有沉降等问题应及时修复,避免因路面基础不良而导致桥梁振动。
三、定期进行车桥耦合振动检测。
要及时发现和处理车桥耦合振动问题,确保车辆安全通行。
四、加强法律法规监管。
政府部门应加强对车桥耦合振动事故的监管,制定和实施相关法律法规,保证车桥运行的安全性和稳定性,维护公共交通运输的顺畅和安全。
车桥耦合振动事故的发生对行车安全造成了极大威胁,应引起我们的高度重视。
我们应加强对车桥耦合振动的监测和管理,发现问题及时处理,确保车桥运行的安全性和稳定性,为公众行车安全保驾护航。
车桥系统的耦合振动
图 1 车轿系统模型
在[0 , L ] 上积分 ,注意振型的正交性和 δ函数的性质 ,可得
¨qi + 2ξi pi qi + p2iqi = Ui ( vt) [ ( m + m1) g + m¨z + m1 ¨z1 ] ,
式中
p2i
=
EI
ρ
iπ
L
4
,
2ξi pi
= ρμ·
车体和轮胎的频率和阻尼分别为
355
(2) (3)
(4)
(5) (6) (7) (8)
356
车桥系统的耦合振动
1
γ/ γ1 0 0 … 0
0
1
0 γU1 1 0 … 0 ,
- ργ1 U2 - ργU2 0 1 … 0
⁝ 2ζ1 p1Ω1
⁝ ⁝⁝⁝⁝
0
2ζ1 p1Ω1 U1 2ζ1 p1Ω1 U2 …
可见耦合振动的影响是巨大的其原因是轻车通过时产生的静挠度非常小使得很大约为110vt成为方程8的序参量对系统振动起决定性作用统的振动影响很小由此可知桥面不平度对车桥耦合振动的影响不能忽略同时也说明了不平度的确定对车桥系统振动研究有重要意义与车速系数的关系13760382kg此时最大挠度曲线只有一个峰值共振临界车速发生在比前例大为减小这是因为重车通过时静挠度比较大从而较小不平度对车桥振动的影响较前例大大减低vt对车桥振动的影响则逐步增加共振临界车速也不是一个固定值所以在进行振动控制时应求出共振参数区域而不能单从临界车速系数一个方面进行控制同样公路设计车速的确定以及桥梁强度的制订除安全因素外应考虑桥梁振型和桥面不平的影响以及考虑桥梁基频与车辆基频的关系车速不能过大以免引起不安全也不能过低以免落入共振参数区域设计行车速度应选在共振临界车速前方a曲线已经下降到较平缓的曲线区域倍可见车桥系统振动的模型对研究结果影响极大本文的研究表明车桥系统模型也不能忽略振型其导数的影响因为一旦车辆进入桥梁桥梁便已开始变形则桥的振型对于汽车来说成为随时间变化的位移约束必然会产生阻尼从而影响车桥系统的振动忽略了这一因素的模型只有在建立了切合实际的车桥系统振动模型考虑了桥面不平及桥梁振型对系统振动的影响研究结果表明它们对车桥耦合振动的影响非常大轻型车通过桥梁时桥面不平是系统演变的序参量这是因为方程8中驱动项值变大所致桥梁最大变形曲线存在3个峰值即存在共振临界车速和亚临界车速临界车速时的最大位移可达最大静位移的279
车辆与桥梁耦合系统振动理论浅析
车辆与桥梁耦合系统振动理论浅析[摘要]随着桥梁结构的轻型化以及车辆载重、车速的提高,车辆加速度的存在,车辆过桥引起的车桥振动问题越来越引起工程界的关注。
【关键词】耦合振动;简支梁;模型;冲击系数1.车桥振动的的特点车辆通过桥梁时将引起桥梁结构的振动,而桥梁的振动又反过来影响车辆的振动,这种相互作用、相互影响的问题就是车辆和桥梁之间振动耦合的问题。
车桥之间的振动是一种司耦合振动,它具有时变、自激、随机的特点。
2.车桥耦合动力问题的历史与现状车桥振动的研究已有100多年的历史,最先开展研究的是铁路桥梁的车振问题,随着铁道工程建设的发展,移动荷载对桥梁结构的动力作用问题引起人们普遍地关注。
铁路桥梁车激振动的主要特征是列车荷载的轴重大,轴距排列规律性较强,钢轮在钢轨上运行具有蛇行特征,因此,车辆过桥除了激起桥梁竖向振动外,还有较大的横向振动,因此铁路桥梁除了研究竖向振动外,还需研究桥梁横向振动,其主要研究的内容为桥梁的动态响应和车辆过桥的动态响应,如桥梁的冲击系数、横向振幅、以及桥梁的竖横向加速度、桥梁的合理竖向、横向的刚度限值和车辆过桥的加速度以及平稳性等;公路桥梁的车激振动的特征主要表现为过桥车辆的轴重、轴距的多样性和随机性,公路桥梁主要关心的是桥梁的竖向振动,研究的内容主要为桥梁的动态响应如冲击系数等,由于轮胎与路面的作用与钢轮与钢轨作用不同,公路桥梁的车激横向振动不太剧烈,因此,车激桥梁的横向振动基本上不予考虑。
尽管铁路与公路桥梁的车激振动的研究范围有些差别,但是,车桥振动研究的主要原理和基本方法是相同的,都具有时变、自激,随机性的特点。
回顾100多年来车桥振动研究的历程,可以大致的分为两个阶段,即车桥振动研究古典理论阶段和车桥振动研究现代理论阶段。
3.车桥振动的古典理论3.1古典理论的实桥试验研究1907年1910年期间,美国第一次进行了规模比较大的现场实测工作,用各种类型的机车以不同速度通过21根板梁和24座析梁桥,测定桥梁的最大动力响应,第一次提出了冲击系数的关系,通过试验得出了跨度、车速和冲击作用间的关系,制订了冲击系数曲线,并得出了明确的概念:对于蒸汽机车来说,移动荷载的动力作用主要是由动轮偏心块的周期力所引起的。
车辆动力总成悬置系统振动耦合及解耦理论详解
动力总成悬置系统振动耦合及解耦理论详解动力总成悬置系统作为汽车振动系统的一个重要子系统,其振动的传递特性对汽车的NVH性能有很大影响。
多自由度振动中的耦合振动扩大了引起共振的频率范围,增加了振动的响应方向,不利于控制系统的振动,因此谈到悬置系统设计都绕不过解耦的问题,这篇文章就来详细介绍一下这两个概念。
耦合是指两个振动模态在某一振动模态下(或在某一广义坐标方向上)的振动输入,导致另一振动模态下(或另一广义坐标方向上)的响应。
使耦合分离称为解耦。
解耦的目的是使各个自由度上(即各振动模态)的振动相对独立或分离,这样可对隔振效果不佳的自由度独立采取措施而不影响其他自由度方向上的有关性能。
当各自由度独立后,可能产生共振的频率比存在耦合时要小,特别在激振能量大的方向上要保证解耦。
振动耦合不利于隔振,因为两个耦合振动的模态可能产生相互激励,导致振动放大,并使某些自由度的振动频带变宽,从而使隔振性能下降。
例如四缸发动机在怠速工况下产生的扭矩波动可能同时激起动力总成俯仰(Pitch)和垂向(Z)振动,这将导致车身振动增加,并且俯仰(Pitch)运动(Pitch)又可能和其它刚体运动模态相互耦合,从而引发车身振动变形,造成整车噪声增大、舒适性变差、零部件早期损坏等现象。
对于动力总成悬置系统来说,耦合振动可以在多个自由度之间发生,如果在合理的位置和方向上布置动力总成悬置以及设计合适的悬置系统的刚度可以减小或消除耦合振动。
悬置系统能量法解耦分析理论1、动力总成悬置系统坐标系统如图1所示,把发动机动力总成视为一个具有六自由度的刚体,它通过悬置支撑在车架上,悬置被视为具有三向刚度的弹性阻尼组件。
图1 动力总成悬置系统动力学模型图2为悬置件简化模型,一般可将悬置件简化为三个沿主轴方向的弹簧-阻尼系统,并且每一主轴与动坐标轴之间存在图中所列的夹角关系。
图2 悬置动力学模型2、动力总成悬置系统动力学方程根据自由振动的Lagrange方程:(1)式中T为系统动能;V为系统势能;qj为系统的广义坐标。
高速列车轮轨耦合振动控制技术研究
高速列车轮轨耦合振动控制技术研究现代交通工具的发展离不开轨道交通,其中高速列车的快速、安全、舒适是其在交通领域中的重要优势。
高速列车的速度越快,对于轮轨的耦合效应就越明显,也就越容易导致振动。
因此,轮轨耦合振动的研究和控制一直是高速列车研究的重要方向。
一、高速列车轮轨耦合振动的实现机理在高速列车行进过程中,由于轮子和轨道接触,会产生一系列过程中的干扰和相互作用。
在这一相互作用中,轮与轨发生接触,产生弹性形变和塑性变形。
轮子接触后,车体有弹性变形和各向异性扭转变形,而轨道发生根据车轮的作用方式,分布在一定的区域内,形成了振动传递的机理特征。
实际上,高速列车列车的轮轨作用中,车轮与轨道之间存在两种振动形式,一种是车轮的横向振动,一种是轨道的纵向振动。
这两种振动形式都会产生相应的振动功率,从而影响行车的稳定性和安全性。
二、高速列车轮轨耦合振动控制技术的研究现状为了解决高速列车轮轨耦合振动问题,学者和科研工作者们已经进行了大量的探索和实验研究。
目前,国内外在高速列车轮轨耦合振动控制技术研究中取得了不俗的成果。
1. 车体动力学建模法技术车体动力学建模法技术是一种基于力学原理,通过建立动力学模型来分析车体振动的技术。
这种技术通常基于车轮的动力学模型和车体模型,并且常常会考虑轮轨耦合效应和外部扰动的影响因素。
2. 主被动控制技术主被动控制技术是一种可以通过制动器,液压缸等装置来对车辆进行控制的技术。
这种技术通常将车辆划分为两个不同的部分:主动部分和被动部分。
其中,主动部分是指控制系统,被动部分是指车体。
3. 车载主动力学隔离技术车载主动力学隔离技术通过利用主动控制技术改进车辆的悬挂系统,可以有效地减少轮轨耦合效应的影响。
该技术采用多个阻尼器和电机等装置组成的悬挂系统,可以对车辆整体进行控制。
三、高速列车轮轨耦合振动控制技术的前景展望随着国内外科技的迅猛发展和高速列车行业的发展,高速列车轮轨耦合振动控制技术将会在未来取得更好的发展。
高速列车轮轨耦合振动分析与控制
高速列车轮轨耦合振动分析与控制随着交通运输的不断发展,高速列车作为一种高效、可靠、快速的交通工具,被广泛应用于各个国家和地区。
然而,高速列车在运行过程中会受到轮轨耦合振动的影响,这种振动不仅会影响列车的乘坐舒适性,还会对轨道和车辆的安全性产生潜在的威胁。
因此,对于高速列车轮轨耦合振动的分析与控制显得尤为重要。
1. 轮轨耦合振动的成因高速列车轮轨耦合振动是指列车车轮与轨道之间的相互作用所引起的振动现象。
其主要成因可以归结为以下三个方面:1.1 轨道不平顺度:轨道表面的不平顺度会导致列车发生振动,进而引起轮轨耦合振动。
1.2 轮对非线性特性:列车的车轮不会完全保持刚体运动,其横向刚度和纵向刚度的非线性特性会使轮轨耦合振动变得复杂。
1.3 运行速度频率共振:高速列车在一定速度下,容易与轨道固有频率发生共振,导致振动加剧。
2. 轮轨耦合振动的分析方法目前,对于高速列车轮轨耦合振动的分析,主要采用数值模拟和实验测试的方法。
2.1 数值模拟方法:通过建立列车运动学模型、动力学模型和轮轨接触力模型,采用数值计算的方式对列车的振动特性进行分析。
这种方法可以有效地预测列车在不同条件下的振动响应,且成本较低。
2.2 实验测试方法:通过在实际运行中对列车进行振动测试,获取振动数据,并进行分析。
这种方法可以较真实地反映列车的振动情况,但成本较高且受到现场环境的限制。
3. 轮轨耦合振动的控制方法为了减小高速列车轮轨耦合振动对乘车质量和系统安全性的影响,需要采取相应的控制措施。
3.1 引入主动控制系统:通过在列车车轮或轨道上设置传感器和执行器,对列车的振动进行实时监测和控制。
当检测到振动超过一定的阈值时,主动控制系统会自动调节轮轨间的力学参数,以减小振动的幅值和频率。
3.2 轮对减振技术:通过提高轮对的刚度和阻尼系数,减小轮对的共振响应,从而减小轮轨耦合振动。
常见的轮对减振技术包括液体减振装置和弹簧减振装置。
3.3 轨道修复和维护:及时修复和保养轨道,消除轨道的凹凸不平和其他缺陷,减小轨道对列车振动的影响。
车辆与道路耦合振动的仿真与验证
图1 车 一 耦 合 模 型 路
面平 整 度对 冲 击 系数 的影 响 ;文 献
把 车辆 荷 载 看作
图 1 ,ms y、0分 别 为 簧 载 的 质 量 、转 动 惯 中 …I s 。
是随机 荷 载 ,研究 了车 辆 随机 荷载 及其 激励 下地 面 动 力
车辆与道路耦合振动的仿真与验证
● 曾凡 森
( 建 省 交 通 规 划 设 计 院 ,福 州 福
300 ) 5 0 4
摘
要 车辆 采 用4 自由度 的12 / 车辆模 型 。公路路 基路 面用 粘 弹性地 基 上 的E e梁 d Lr
模 拟 ,建 立 了车 一 耦 合模 型 。 利 用振 型分 解 法 和 快速 积 分 法编 制 了车 一 耦合 振 动仿 路 路 真 程序 ,将 车一 耦 合 模 型仿 真 结 果 与解 析 结 果进 行 了比较验 证 。结果 表 明 :基 于 车一 路 路耦 合 模 型 的路 面竖 向动 位 移 能与 解析 结果 较好 地 吻 合 ,验证 了车一 耦合 模 型 以及 其 路
真 结果 与解 析 结果进 行 了比较 验 证 。
2 力 学模型 及基 本方 程
车辆 采 用4 自由度 的 12 / 车辆 模 型 ,公 路 路基 路面 用 粘 弹 性 地 基 上 两 端 简 支Ed r 模 拟 ,并 假 设 路 面 材 料 Le梁 为线 弹 性 且 各 向 同性 的 。所建 的车 一路 耦 合 系统 、道 路看 成一 个整 体 系 统
来考虑 ,实际 上车 辆在 道路 行驶 过 程 中 。车辆 的振 动本
质是 一个 与 道路 耦 合振 动 的过 程 。文 献 _ 认 为 如 果车 6 ] 辆 振 动 比 较 剧 烈 ,就 必 须 考 虑 车 一 的耦 合 作 用 。 为 路 此 ,本 文车 辆 采用 4 自由度 的12 辆 模 型 . 路 路 基路 /车 公
车桥耦合振动方法评述
车桥耦合振动方法评述车辆通过桥梁时将引起桥梁结构的振动,而桥梁的振动又反过来影响车辆的振动,这种相互作用,相互影响的问题就是车辆与桥梁之间的车桥耦合振动问题,利用车辆荷载作为激励,研究车桥耦合从而获得桥梁振动响应,逐渐被应用到工程领域中。
标签:车桥耦合;桥梁评估近年来,随着中国交通运输系统的不断完善,交通高速化、重载化以及结构轻型化趋势日益增强,车辆与结构(道路、桥隧结构等)相互之间的动力耦合问题变得尤为突出。
对车辆与结构耦合系统进行科学系统地综合分析研究,对于承受移动荷载作用的交通土建工程结构物的设计、建造、运营养护与检测均具有十分重要的意义。
1、车桥耦合振动研究经典理论及研究1.1国外方面1)匀速移动常量力理论:1905年,俄国学者Krylov A N[1]首次研究了在匀速恒定力作用下简支梁的振动问题,由于当时的局限性,他的理论中车桥系统无耦合,相对较为简单。
2)匀速移动简谐力理论:1922年,Timoshenko S[2]研究了一个简谐力匀速通过简支梁的情况,能够反应出车辆荷载的一些基本特点。
3)匀速滚动质量理论:1937年,Schauenkamp[3]开辟思路,考虑到质量惯性力的移动荷载影响,来分析简支梁的动力响应问题,并得出了理论解。
4)匀速移动质量一弹簧模型:1954年,Biggs[4]提出了将车辆分解为一个由质量和弹簧组成的系统,极大地推动了车桥耦合振动研究的进展。
1.2国内方面1941年,李国豪[5]教授首次研究了悬索桥在铁路列车荷载作用下的强迫振动问题和拱桥的车辆振动问题,此后,国内随即展开了对车桥耦合振动的研究。
80年代初,铁道部科学研究院程庆国院士、潘家英研究员[6]指导其博士生们对车桥耦合振动进行了研究。
1983年,张健峰[7]探讨了大跨度斜拉桥的横向刚度问题。
80年代中期,西南交通大学沈锐利[8]详细研究了刚桁梁桥的车桥空间耦合问题;北方交通大学夏禾、阎贵平[9]等研究了考虑车-桥-墩-基础系统的相互作用、车桥系统动力可靠性等问题,得到了许多有价值的结论。
车—桥耦合系统振动性能评价标准研究
车—桥耦合系统振动性能评价标准研究随着我国轨道交通高速重载的发展趋势,桥梁工程作为线路的咽喉,其车-桥耦合分析对于保证桥梁的安全和车辆的舒适至关重要,针对各国不同的车-桥耦合评价标准,做出了详细的总结和对比,为后续车-桥耦合系统的分析提供依据。
标签:车-桥耦合;振动性能;评价标准0 引言隨着我国“一路一带”战略的不断深入,轨道交通业得到了迅速的发展,而桥梁工程在线路工程中的比例也不断增加,桥梁作为其咽喉工程,面对频发的铁路安全事故,为保证人民的生命和财产安全,桥梁的安全性以及车辆的舒适性能至关重要。
列车通过桥梁时将引起桥梁结构振动,而这种振动会反作用于车辆的振动,这种相互作用与影响称之为车-桥耦合振动[1]。
这种相互作用,不仅与桥梁自身特性有关,而且还取决于车辆行驶速度、类型、编组情况、轮轨接触以及线路状况[3]。
车-桥耦合系统包括桥梁子系统和车辆子系统,用轮轨相互作用进行连接。
车辆过桥时将产生振动,若这种振动超过一定的允许范围,则会影响列车的运行安全性和稳定性。
如果正常的轮轨关系被破坏,将造成脱轨甚至车辆倾覆。
对于桥梁结构,如果车辆过桥时发生共振,将会导致桥梁垮塌,造成严重的危害。
现在各个国家对于车-桥耦合系统的评价执行各自的标准,本文旨在对各个标准进行比较,从而能够针对某一座桥梁的车-桥耦合系统进行分析时提供评判标准,不仅保证了桥梁的安全和稳定也对车辆安全和行车舒适提供了依据[2]。
1 车-桥耦合评价系统分类整个耦合系统可以分为桥梁振动评价指标和车辆运行评价指标,其中桥梁振动评价指标又包括桥梁动力响应评价和桥梁自振特性评价,车辆运行评价指标包括车辆安全性与平稳性评价。
2 桥梁动力性能评定及标准桥梁作为车辆通行的重要工具,其安全性直接影响到车辆的通行安全,不同国家都颁布了相关规范、准则对车辆通过桥梁时的动力性能进行评价,如欧洲铁路联盟(UIC)的“EUROCODE”规范,日本的《铁路结构设计标准》、《铁道构造物设计标准》(铁道综合技术研究所),德国的铁路设计规范,我国的《铁路桥梁检定规范》(铁运函[2004]120号)、《铁路桥涵设计基本规范》(TB10002.1-99)、《高速铁路设计规范(试行)》(TB10621-2009)等规范都提出了相应的规定和限值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车辆耦合振动课程报告
2016年3月
随着我国经济的飞速发展,大跨度桥梁越来越多,由于柔度很大,所以在风和上面的车辆作用下,会产生较大的变形和振动会对
上面的行人以及桥梁产生较大的危险。
因而对风 - 车 - 桥耦合振动的研究也越来越重要。
在此简要介绍国内和国外风 - 车 - 桥耦合振动发展的概况
1 国内风车桥耦合振动研究概况
我国学者以结构动力学为基础,分析了连续梁桥结构在汽车荷载作用下的动态性能,并运用计算机模拟、讨论了不同车速、车型情况下的桥梁动态响应变化,以此分析出影响结构动态性能的主要因素。
为简化分析的过程,在他们的研究中将桥梁简化为线性系统,略去了桥面和横梁的约束,在计算中采用设计中常用的截面换算法,将钢筋换算成混凝土,同时将截面折算成等面积的矩形,且仅考虑梁的弯曲振动,而不计梁的转动惯量和剪切变形的效应[4]。
2005 年,王解军等采用 2 轴车辆分析模型与梁单元,建立了适应于大跨桥梁车辆振动计算的车桥耦合单元模型,基于功率谱密度函数生成随机路面粗糙度,分析阻尼对行车荷载作用下桥梁振动性能的影响。
北方交通大学等研究了考虑车 - 桥 - 基础相互作用系统的结构动力可靠性问题桥梁结构在多种随机荷载作用下车桥系统动力可靠性问题、脉动风与列车荷载同时作用下桥梁的动力响应问题,分析了地震荷载对桥上列车运行平稳性的影响得到了许多有价值的结论。
2 国外风车桥耦合振动研究概况
20 世纪 60;70 年代西欧和日本开始修建高速铁路对桥梁动力分析提出了更高的要求同时电子计算机的出以及有限元技术的发展使得车桥振动研究具备了强有力的分析手段这极大地促进了车桥耦合振动研究的向前发展。
美国伊利诺理工学院的 K.H.Chu 等人最早采用复杂的车辆模型来分析铁路车桥系统的振动响应问题即将机车车辆简化为由车体、前后转向架、各轮对等部件组成各部件看成刚体在空间具有 6 个自由度之间通过弹簧与阻尼联系起来[7]。
以轨道横向与竖向不平顺为激励源将整个车桥系统划分成车辆与桥梁两个子系统分别建立车辆与桥梁的运动方程以轮轨相互作用将这两个运动方程联系起来 K.H.Chu 等人所建立的多刚体多自由度车辆分析模型得到了后来各国研究人员的广泛采纳对现代车桥振动研究理论产生了深远影响。
在此前后欧洲的法国、意大利、丹麦等国研究者也进行了类似的甚至更深入的研究工作。
G.Diana 探讨了大跨度悬索桥的列车走行问题以及列车在已经发生变形的大跨度悬索桥上运行时的动力响应 M.Olsson采用有限元 - 模态技术求解车桥动力响应 Green 和 Cebon 提出了在频域内求解分离的车桥系统方程的新方法,他们利用模态脉冲响应函数与模态激扰力采用模态迭加法并结合 FFT 和 IFFT 技术来求解桥梁的动力响应。
Yeong-Bin yang 采用动态凝聚法求解车桥系统的
动力响应问题。
由于将所有与车体有关的自由度在单元级进行凝聚使得计算效率大为提高 ,Bogaert 采用简化的车辆模型 , 研究高速列车通过肋式拱桥的竖向振动冲击效应 , 并给出了冲击系数的简化表达式。
3.讨论和感悟
在这次的学习中,我深切的认识到了车辆耦合振动的发展前景和特点,更重要的是,通过这门课程,我们从单纯的理论上的学习一步步地过渡到了产业以及在现实中的应用。
毕竟,我们即将毕业,也行有的同学会选择继续深造,很多的同学需要面向社会,步入工作岗位,而这门课程的开设,正是为这样的一种转变而开设的。
并且,老师丰富的授课内容以及生动的授课方式,更进一步实现了这种过渡。
可以说,这门课程就是学校中的虚拟工作实践。