材料力学-扭转变形
材料力学扭转第5节 圆轴扭转时的变形
BA
T1l1 GI P1
180
0.8110
CB
T2l2 GI P 2
180
0.9810
CA CB BA 0.9810 (0.8110 ) 0.17 0
例4-4 如图,已知ABC轴结构尺寸为 lAB 1.6m, lBC 1.4m。材料切变模量 G 80GPa,轴上作用有外 力矩 M A 900 N·m,M B 1500 N·m,M C 600 N·m,试
求截面C的相对截面A的转角。
解: 1)用截面法求
各段扭矩
1
2
AB 段:
一、圆轴扭转时的扭转变形
• 扭转角:圆轴扭转时,两横
A
BO
截面相对转过的角度称为这
两截面的相对扭转角。
M
M
d
T (x) GIP
dx
l d
T (x)
l GIP
dx
若在圆轴的 l 长度内,T、G、
IP 均为常数,则圆轴两端截面的 相对扭转角为:
Tl
GIP
• 抗扭刚度:式中的 GIP 称为圆轴的抗扭刚度,它反 映了圆轴抵抗扭转变形的能力。
T1 MA 900 N m
BC 段:
T
600Nm
T2 M c 600 N m
画出扭矩图如图所示
900Nm
AB 截面 极惯性矩
I P1
d14
32
BC 截面 极惯性矩
2)C 截面相对于 A 截面的转角
IP2
d
4AB 段: BC 段:
材料力学 第五章扭转变形.强度、刚度条件(6,7,8)汇总
( 4)
例题 6-6
5. 实心铜杆横截面上任意点的切应力为 Ta Ga M e 0 ra ρa I pa Ga I pa Gb I pb 空心钢杆横截面上任意 点的切应力为
b
Tb Gb M e I pb Ga I pa Gb I pb
2
1 dV (dxdydz ) 2 dV dW v dV dxdydz 1 v 2
一、密圈螺旋弹簧
——螺旋角
F
O
d
d ——簧丝横截面的直径 D ——弹簧圈的平均直径
O D
密圈螺旋弹簧 ——螺旋角<5°时的圆柱形弹簧
§4.5
密圈螺旋弹簧的计算
O F
例题 6-6
Me Tb Ta
解: 1. 实心铜杆和空心钢杆横截面上的扭矩分别为Ta 和Tb(图b),但只有一个独立平衡方程 Ta+Tb= Me (1) 故为一次超静定问题。
例题 6-6
Me Tb Ta
2. 位移相容条件为实心杆和空心杆的B截面相对 于A截面的扭转角相等。在图b中都用表示(设 A端固定)。 Ba Bb ( 2)
a
b
ra
ra
a rb
切应力沿半径的变化 情况如图c所示。
ra
rb
(c)
§5-8非圆截面等直杆扭转的概念
圆截面杆扭转时的应力和变形公式,均建立在平 面假设 的基础上。对于非圆截面杆,受扭时横截面不 再保持为平面,杆的横截面已由原来的平面变成了曲 面。这一现象称为截面翘曲。因此,圆轴扭转时的应 力、变形公式对非圆截面杆均不适用。
(2)
材料力学 第03章 扭转
sin 2 , cos 2
由此可知:
sin 2 , cos 2
(1) 单元体的四个侧面( = 0°和 = 90°)上切 应力的绝对值最大; (2) =-45°和 =+45°截面上切应力为零,而 正应力的绝对值最大;
[例5-1]图示传动轴,主动轮A输入功率NA=50 马力,从 动轮B、C、D输出功率分别为 NB=NC=15马力 ,ND=20马 力,轴的转速为n=300转/分。作轴的扭矩图。
解:
NA 50 M A 7024 7024 1170 N m n 300 NB 15 M B M C 7024 7024 351 m N n 300 NC 20 M D 7024 7024 468N m n 300
第3章
扭
转
§3.1
一、定义 二、工程实例 三、两个名词
概
述
一、定义
Me Me
扭转变形 ——在一对大小相等、转向相反的外力偶矩
作用下,杆的各横截面产生相对转动的
变形形式,简称扭转。
二、工程实例
1、螺丝刀杆工作时受扭。
Me
主动力偶
阻抗力偶
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
公式的使用条件:
1、等直的圆轴, 2、弹性范围内工作。
圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面:
2 A
I p d A (2π d )
2
d 2 0
O
2 π(
4
d /2
4
)
0
πd 4 32
d
d A 2π d
材料力学-第三章扭转
3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件
0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析
圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16
强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3
4
3
d 0.886 d
2
Mn
a
2
Mn 0.208 0.886 d
b
6.913
材料力学-扭转
从圆轴中取一微小的正六面体(单元体), 其对称两面上的剪应力构成一个力偶,因此 另两个对称面上也必存在转向相反的、由 剪应力构成的力偶。由此得出, 剪应力互等定理: 两个相互垂直的截面上,在其相交处的 剪应力成对存在,且其数值相等而符号相反, 指向或背离交线。 剪应力符号规定: 使单元体产生顺时针方向转动趋势时的剪应力为正 使单元体产生反时针方向转动趋势时的剪应力为负
§7-4 圆轴扭转时的强度计算
要使圆轴杆件扭转时不致产生破坏,应满足各横截面上的最 大剪应力小于材料的许用剪应力,而最大剪应力发生在扭矩最大 的横截面上的边缘处。设圆周半径为R,则圆轴扭转的强度条件 为:
τmax
T = R ≤ [τ ] Ip
Wp =
Ip R
把与截面尺寸和形状有关的参量归到一个参量,令 T 则有:
T ρ ρ 由此,圆轴扭转时横截面上半径为 处的剪应力为:τ ρ = Ip 4、极惯性矩 I 的计算 p πD 4
dϕ T = dX GI p
I p = ∫ ρ dA
2 A
直径为D的实心轴圆截面: I p = 空心轴圆环截面:I p =
π (D 4 − d 4 )
32
32
例:一轴AB传递的功率为Nk=7.5kw, 转速n=360r/min,轴的AC段为实心圆截面, CB段为空心圆截面,如图。已知D=3cm, d=2cm.试计算AC段横截面边缘处的剪应力 以及CB段横截面上外边缘和内边缘处的剪应力。计算扭矩、惯性矩、应力
Wp
≤ [τ ]
Wp
, 称为抗扭截面系数
Wp = 0.2D3
实心圆:
许用剪应力的确定:料 [τ ] = (0.5 ~ 0.6)[σ] 塑 材 : 性 一般取 脆 材 :τ ] = (0.8 ~1.0)[σ] 性 料 [
材料力学中的四种基本变形举例
材料力学中的四种基本变形举例
材料力学是研究材料在外力作用下的变形和破坏行为的学科,其中变
形是材料力学中的重要研究对象。
材料在受到外力作用时,会发生各
种形式的变形,其中最常见的四种基本变形包括拉伸变形、剪切变形、扭转变形和压缩变形。
一、拉伸变形
拉伸变形是指某个物体在受到外拉力作用时,其长度沿着外力方向发
生增加的现象。
例如,当我们把一根橡皮筋两端分别固定在两个支架上,并对其施加外拉力时,橡皮筋就会发生拉伸变形。
二、剪切变形
剪切变形是指某个物体在受到剪切应力作用时,其内部不同位置之间
产生相对错位或滑动的现象。
例如,在我们使用剪刀剪纸时,纸张就
会发生剪切变形。
三、扭转变形
扭转变形是指某个物体在受到扭矩作用时,在其截面内不同位置之间
产生相对错位或旋转的现象。
例如,在我们使用螺丝钉旋入木板时,螺丝钉就会发生扭转变形。
四、压缩变形
压缩变形是指某个物体在受到外压力作用时,其体积沿着外力方向发生减小的现象。
例如,在我们使用千斤顶压实土壤时,土壤就会发生压缩变形。
总之,以上四种基本变形是材料力学中最常见的变形类型,它们在材料工程领域中有着广泛的应用和研究。
了解这些基本变形类型对于深入理解材料的性能和行为具有重要意义。
材料力学第3章扭转
τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx
令
dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy
故
τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理
材料力学 第4章_扭转
d x d z d y d y d z d x 0
返回
4. 切应力互等定理
切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。
纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T
dA
横截面上分布内力系对 圆心的矩等于扭矩T。
T d A A d d 2 G d A G d A A dx dx A
材料力学第4章扭转变形
1 1
T
1 1
T
1
Me
+
B
x
T Me
Me
B
T图 x
例 一传动轴如图,转速n = 300r/min; 主动轮输 入的功率P1= 500kW,三个从动轮输出的功率分 别为: P2= 150kW, P3= 150kW, P4= 200kW。 试作轴的扭矩图。
解: 首先必须计算作用在各轮上的外力偶矩
M2 1
2 T
1
1 T
1
材料不同),可见在两
杆交界处的切应力是不
同的。
d
D
§4. 7 非圆截面杆扭转的概念
对非圆截面杆的扭转问题,主要介绍矩形截面 杆的扭转。
试验现象
横向线变 成曲线
横截面发生 翘曲不再保 持为平面
平面假设不再 成立,可能产 生附加正应力
自由扭转 翘曲不受限制。 纵向纤维无伸长 横截面上无正应力
T
max
O
max
D
d
T
Ip
max
T Wp
圆截面的极惯性矩Ip和扭转截面系数Wp —几何性质 实心圆截面:
d
O
d
O
d D d
Ip
2 d A πd 4
A
32
Wp
Ip d /2
πd 3 16
Ip
2 d A πD4
A
32
1 4
Wp
Ip D /2
πD 3 16
1 4
4-4 圆轴扭转强度条件与合理设计
B 0
按叠加原理:
B BB BM 0
BB、BM分别为MB、Me 引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为
材料力学-第三章
21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:
u
n
n为安全系数。
强度条件为:
max
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量
材料力学—扭转变形(建筑力学)
§6.3 扭转
扭矩图
§6.3 圆轴扭转时的应力
T Ip
公式适用于:
1)圆杆
2) max
p
横截面上某点的切应力的方 向与扭矩方向相同,并垂直于 半径。切应力的大小与其和圆 心的距离成正比。
max
T Wt
令
Wt
Ip R
抗扭截面系数
在圆截面边缘上, 有最大切应力
§6.4 圆轴扭转时的强度计算
扭转强度条件:
max
Tmax Wt
1. 等截面圆轴:
2. 阶梯形圆轴:
max
Tmax Wt
max
ቤተ መጻሕፍቲ ባይዱ
(Tmax Wt
)max
§6.4 圆轴扭转时的应力
强度条件的应用
(1)校核强度
max
Tmax Wt
max
Tmax Wt
(2)设计截面
Wt
Tmax
(3)确定载荷
Tmax Wt
§补充 非圆截面杆扭转的概念
平面假设不成立。变形后横截面成为一个 凹凸不平的曲面,这种现象称为翘曲。
自由扭转 (截面翘曲不受约束)
约束扭转 (各截面翘曲不同)
§补充 非圆截面杆扭转的概念
杆件扭转时,横截面上边缘各点的切应力 都与截面边界相切。
§6.3 扭转
汽车传动轴
§6.3 扭转
汽车方向盘
§6.3 扭转
扭转受力特点 及变形特点:
杆件受到大小相等,方向相反且作用平 面垂直于杆件轴线的力偶作用, 杆件的横截 面绕轴线产生相对转动。
受扭转变形杆件通常为轴类零件,其横 截面大都是圆形的。
§6.3 扭转
1.外力偶矩 直接计算
§6.3 扭转
材料力学-第4章 扭转 ppt课件
dA
T
O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:
G
G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动
?
主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me
P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)
材料力学——第三章 扭转
33
材 料 力 学
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
34
材 料 力 学
4、切应力分布规律假设
因为筒壁的厚度很小,可以认为沿筒壁厚度切应力均匀分布;
35
材 料 力 学
5、薄壁圆筒的扭转切应力
T
rm
2 rm t T
m1
m4
15.9(kN m)
A
P2 m2 m3 9.549 4.78 (kN m) n P4 m4 9.549 6.37 (kN m) n
17
B
C
D
材 料 力 学
2、求扭矩
m2
T1 m2 0
T1 4.78kN m
T2 m2 m3 0
材 料 力 学
三、切应变
纯剪切单元体的相对两侧面 发生微小的相对错动, a
´
c
´
b
d
t
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
圆筒两端的相对扭转角为υ,圆筒 的长度为L,则切应变为
L r
r L
39
材 料 力 学
四、剪切虎克定律:
当剪应力不超过材料的剪切比例
齿轮轴
9
材 料 力 学
§3-2、外力偶矩的计算 扭矩和扭矩图
一.外力偶矩的计算 ——直接计算
M=Fd
10
材 料 力 学
按输入功率和转速计算
已知 轴转速-n 转/分钟 输出功率-P 千瓦 计算:力偶矩M
电机每秒输入功: 外力偶作功:
W P 1000(N.m)
《材料力学》第四章 扭转
第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
4、钻井中的钻杆工作时受扭。
二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
轴:主要发生扭转变形的杆。
§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。
外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。
外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。
(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。
作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。
1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、切应变(角应变、剪应变):直角角度的改变量。
4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。
⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。
材料力学扭转教学课件PPT
(a)
P2
P3
P1
n
P4
B
C
D
A
例题3-2图
m P2 2
m P3 3
P1
m1
m n
4 P4
B
C
D
A
m2
m3
m1
m4
(b)
B
C
A
D
解:1.计算外力偶矩
m1
m2
9.55 P1 15.9kN .m
m3
n
9.55
P2
n
4.78kN
.m
m4
9.55 P4 n
6.37kN .m
2.由计算简图用截面法计算各段轴内的扭矩,然后画扭矩图
§3.1 扭转的概念和实例
➢ 扭转变形 ——作用在垂直于杆件轴线的平面内 的力偶矩,使得杆件的任意两个 横截面都发生了绕轴线的相对转 动。
➢ 扭转变形杆件的内力 ——扭矩(T )
➢ 轴 ——主要承受扭矩的构件
m A'
g
A
m B j B'
扭转的受力特征 :在杆件的两端作用两个大小相等、
转向相反、且作用平面垂直于杆件轴线的力偶。
dA
O r
dA
dA
O
A
G 2
dj
dx
dA
G
dj
dx
A
2dA
T
GI p
dj
dx
令 Ip A 2dA
dj
dx
T GI p
代入物理关系式
G
dj
dx
得:
T
Ip
T
Ip
—横截面上距圆心为处任一点剪应力计算公式。
材料力学 03章1-3扭转
TB
1210
Tn 2
x
Tn
-1590
A
B
C
19 TA 9549 1210 Nm 150 同样 TB =2800Nm, TC =1590Nm
Tn
-2800
x
-1590
接下来该讨论圆轴扭转时的应力问题了!
关于应力的三个问题:
存在什么应力 应力如何分布 应力如何计算 TK 先研究一个比较简单的问题 TK A
MA A
MD D x
PA 60kW , PB 10kW P C 20kW , P D 30kW
试画轴的扭矩图。
1面 MB
3面
T3
MD D x
解:求外力偶矩
B MB B
P 由M 9549 解得: n M A 1910 N m M B 318 N m M C 637 N m M D 955 N m
Me
Pk t Pk Pk M t
Me
e
Me
n r / min(转 / 分);
rad /(弧度 9549 Pk 2 n n M e 9549 60 n
2. 扭矩
横截面上的内力偶矩
确定方法:截面法 符号:T 由静平衡确定其大小 正负规定:右手法则
TK
y
dy o dx
a
,
b
c x
TK
( dy)
与
( dx)
,
z
d
组成一力偶,由力偶平衡得:
( dy)dx ( dx)dy 0
,
,
剪应力互等定理 :在相互垂直的两个面上,剪应力必然成 对出现,且大小相等,方向或指向、或背离两面的交线。
材料力学扭转变形
非圆截面杆扭转的研究方法:弹性力学的方法研究
非圆截面杆扭转的分类: 1、自由扭转(纯扭转), 2、约束扭转。
自由扭转:各横截面翘曲程度不受任何约束(可自由凹凸), 任意两相邻截面翘曲程度相同。
约束扭转:由于约束条件或受力限制,造成杆各横截面翘 曲程度不同。
矩形截面杆自由扭转时应力分布特点
1 2 0
§3-5 扭转变形和刚度计算
1、扭转变形:(相对扭转角)
d T 扭转变形与内力计算式
dx GI P
d T dx
GI P
T dx
L GI P
扭矩不变的等直轴
Tl
GI p
各段扭矩为不同值的阶梯轴
Tili
扭转角单位:弧度(rad)
d T
dx GI P
d
dx
2
T2 GIp
因 T1 T2
故
max
d
dx max
1
T1 GIp
max
180 N m
180
(80 109 Pa)(3.0 105 10-12 m4 ) π
0.43 () / m [ ]
轴的刚度足够
例2 传动轴的转速为n=500r/min,主动轮A 输入功率P1=400kW, 从动轮B,C 分别输出功率P2=160kW,P3=240kW。已知 [τ]=70MPa, [ ]=1º/m ,G=80GPa。
试求:两者的最大扭转切应力与扭转变形,并进行比较。
解:1)圆截面 circular
d
a
c max
16T
d 3
,
c
32Tl
材料力学第三章扭转
材料力学
中南大学土木工程学院
三、扭 矩
x 扭矩的矢量表示
Me
Me
Me
T
定义:扭转内力偶矩, 1、定义:扭转内力偶矩,用T表示 大小: 2、大小:可用截面法取局部平衡求出 扭矩大小= 截面一侧所有外扭转力偶矩之代数和 T =ΣMe 正负号: 3、正负号:扭矩矢与截面外法线一致为正 (图中T为正,必须按“设正法”画扭矩) 为正,必须按“设正法”画扭矩) 单位: 4、单位:N·m 或 kN·m
τ =τ′
切应力互等定理
在单元体相互垂直的两个平面上, 在单元体相互垂直的两个平面上,切应力必然成对出 且数值相等,两者都垂直于两平面的交线, 现,且数值相等,两者都垂直于两平面的交线,其方 向则共同指向或共同背离该交线。 向则共同指向或共同背离该交线。
材料力学
中南大学土木工程学院
单元体的四个侧面上只有切应力而无正应 纯剪切应力状态。 力作用,这种应力状态称为纯剪切应力状态 力作用,这种应力状态称为纯剪切应力状态。
O
定义内径与 外径的比值
d α= D
D d
πD πD 4 Ip = (1 − α 4 ) 32
I p π(D 4 − d 4 ) πD 3 Wp = = = (1 − α 4 ) D 16 D 16 2
特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。 特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。
材料力学 中南大学土木工程学院
分布如图所示。 横截面上各点处的切应力τ 分布如图所示 取微面积dA,则横截面上的分布 的合成其主矢为零, 力系τ dA的合成其主矢为零,主矩就 是扭矩T。
δ
r0
O
τ
∫
材料力学第3章-扭转
第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。
2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。
又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。
规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。
3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。
(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。
γτG = G 为比例常数,称为材料的切变模量。
弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。
dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。
则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.37(kN.m)
②求扭矩(扭矩按正方向设) 11
mx 0 ,
T1 m2 0 T1 m2 4.78kN m T2 m2 m3 0 , T2 m2 m3 (4.78 4.78)
9.56kN m
T3 m4 0 , T3 m4 6.37kN m
13
14
2、变形规律:
圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动 了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、平面假设:变形前的横截面,变形后仍为平面,且形状、大 小、间距不变,半径仍为直线。
4、定性分析横截面上的应力
(1) 0 0
(2) 0 0
m1
9549
P1 n
9549
500 300
15.9103(N m)
15.9(kN.m)
m2
m3
9549
P2 n
9549 150 300
4.78 103
(N m)
4.78(kN.m)
m4
9549
P4 n
9549
200 300
6.37 103(N m)
τ T
τ
20
五、Ip, Wp 的确定 :
d
Ip A 2dA
1、实心圆截面——
IP
2dA
A
2 2d
A
D
2 2 3d
1
D4
0
32
Wp IP max IPLeabharlann D1 D3
16
2
2、空心圆截面——
IP
2dA
A
D
2 d
三、公式的使用条件:
max
T ( Wp
)max
1、等直的圆轴, 2、弹性范围内工作。
19
四、薄壁圆管(圆筒)扭转切应力
dA r
A
0
r0
dA
A
r0
(2π
r0
t)
T
T 2πr02
t
T 2 πR0 2
薄壁筒扭转时横截面上的切应力均匀分布,与半径垂直,
指向与扭矩的转向一致.
T
Ip
圆轴扭转时横截面上任一点的切应力计算式。 18
二、圆轴中τmax的确定
横截面上——
max
Tmax
IP
IP
T
max
T Wp
Ip—截面的极惯性矩,单位: m4 mm4
Wp (WT ) —抗扭截面模量,单位:m3 mm3 。
整个圆轴上——等直杆:
max
Tm ax Wp
变直杆:
外力偶矩: m 9549 P (N m) n
2、已知:功率 P马力(Ps),转速 n转/分(r/min;rpm)。
外力偶矩: m 7024 P (N m) n
8
二、内力:T(扭矩)
1、内力的大小:(截面法) m
m
mx 0 T m 0
T m
x
T
2、内力的符号规定:以变形为依据,按右手螺旋法则判断。
F F
M
M M
3
3、机器中的传动轴工作时受扭。
4
5
6
二、扭转的概念 受力特点:杆两端作用着大小相等方向相反的力偶,且作用 面垂直杆的轴线。 变形特点:杆任意两截面绕轴线发生相对转动。 轴:主要发生扭转变形的杆。
7
§4—2 外力偶矩、扭矩
一、外力:m (外力偶矩) 1、已知:功率 P千瓦(KW),转速 n转/分(r/min; rpm)。
2
2
3d
1
32
(D4
d
4)
1 D4 (1 4 )
d
32
Wp
IP
D
1 D3(1 4 )
16
2
d
D
O
d
O
D
D
21
六、切应力互等定理
1、在单元体左、右面(杆的横截面)上 只有切应力,其方向与 y 轴平行. 由平衡方程
Fy 0
可知,两侧面的内力元素 dy dz
(空心截面)
17
三)静力关系:
A dA dA dA
T A dA
A G 2
d
dx
dA
A τ ρ dA
O
G
d
dx
A
2dA
令 Ip A 2dA
T
GI
p
d
dx
d
dx
T GI p
代入物理关系式
G
d
dx
得:
因为同一圆周上切应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
τ τ2
τ
1
A
O
15
5、切应变的变化规律:
d
dx
二)物理关系:弹性范围内工作时 max P
G
→
G →
G
d
dx
方向垂直于半径。
16
应力分布
(实心截面)
动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
m2
m3
m1
m4
n
10
A
B
C
D
[例] 已知:一传动轴, n =300r/min,主动轮输入 P1=500kW,从 动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
解:①计算外力偶矩
m 9549 P n
③绘制扭矩图
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
m2 T1
T3 m4
m2
m3 T2
T(kN.m)
–
4.78
– 9.56
6.37
x
12
§4—3 圆轴扭转时的应力、强度计算
一、圆轴扭转时横截面上的应力(超静定问题) 几何关系:由实验通过变形规律→应变的变化规律 物理关系:由应变的变化规律→应力的分布规律 静力关系:由横截面上的扭矩与应力的关系→应力的计算公式。 一)、几何关系: 1、实验:
1
第四章 扭转
§4—1 工程实例、概念 §4—2 外力偶矩、扭矩 §4—3 圆轴扭转时的应力、强度计算 §4—4 圆轴扭转时的变形、刚度计算 §4—5 等直圆杆的扭转超静定问题 §4—6 非圆截面杆的扭转 §4—7 开口和闭合薄壁截面在自由扭转时的应力
扭转变形小结
2
§4—1 工程实例、概念
一、工程实例 1、螺丝刀杆工作时受扭。 2、汽车方向盘的转动轴工作时受扭。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若 其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
+
T
9
3、注意的问题
(1)、截开面上设正值的扭矩方向。 (2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。 作法:同轴力图:
[例] 已知:一传动轴, n =300r/min,主动轮输入 P1=500kW,从
大小相等,方向相反,将组成 z
一个力偶。