基于飞思卡尔单片机的两轮车控制系统设计
基于飞思卡尔单片机自动循迹小车控制的设计

摘要随着我国的电子科技的不断发展,我们生活中的自动化设备越来越多,也为嵌入式在智能化上的研究提供了一个广阔的平台。
本系统以MK60DN512VMD100微控制器为核心控制单元,选用OV7620 CMOS 模拟摄像头检测赛道信息,高速AD转换芯片选用TCL5510,将提取后的灰度图像进行软件二值化,进而提取赛道信息;用光电编码器实时检测小车的实时速度,采用PID控制算法调节电机的速度以及舵机转向,从而实现速度和方向的闭环控制。
关键字:MK60DN512VMD100,OV7620 CMOS,软件二值化,PIDAbstractWith the continuous development of electronic technology, more and more automation equipment into the production life of the people, the rapid development of embedded intelligent study provides a broader platform.In this paper, the design of intelligent vehicle system MK60DN512VMD100 microcontroller as the core control unit, the selection of OV7620 CMOSanalog cameras to detect the track information, to using TCL5510 high-speed AD converter chip, software binarization image, extract the white guide line for identification of the track information; optical encoder to detect the real-time speed of the model car, using the PID control algorithm to adjust the speed of the drive motor and steering the angle of the steering gear, in order to achieve closed-loop control of velocity and direction of the model car. Keywords: MK60DN512VMD100,OV7620 CMOS,software binarization, PID目录摘要 (I)Abstract .................................................................................................................................. I I 1前言 (1)1.1 设计的背景以及意义 (1)1.2 智能小车国内外概况 (1)1.2.1国内研究的概况 (1)1.2.2 国外研究概况 (2)1.3智能小车的发展前景 (2)2 飞思卡尔单片机自动循迹小车系统设计总方案 (3)2.1 系统硬件部分 (3)2.2 系统软件部分 (4)3 智能车硬件系统 (5)3.1 单片机最小系统 (5)3.1.1 PIT定时器模块 (6)3.1.2 PWM 模块 (6)3.1.3 I/O模块 (7)3.1.4 时钟电路 (7)3.1.5 复位电路 (7)3.1.6 JTAG接口电路 (8)3.2 电机驱动模块 (8)3.3路径识别摄像头检测模块 (9)3.3.1 摄像头的选择 (9)3.3.2 摄像头简介 (10)3.4 速度检测模块 (10)3.5 舵机模块 (10)3.6电源管理模块 (10)3.6.1 3.3V电源 (11)3.6.2 5V电源 (11)4 软件系统的设计与实现 (12)4.1赛道信息的提取 (12)4.2 PID算法介绍 (12)4.2.1 位置式PID (13)4.2.2 增量式PID (14)4.2.3 PID 参数整定 (14)4.3转向舵机的控制方法 (15)4.3.1 舵机的工作原理 (15)4.3.2 舵机的PID 控制 (15)5 开发平台介绍 (19)5.1 IAR Embedded Workbench IDE简介 (19)5.2 IAR Embedded Workbench的功能及特点 (19)5.3 硬件开发平台Altium Designer (22)6结论 (23)参考文献 (24)致谢 .................................................................................................... 错误!未定义书签。
基于飞思卡尔单片机的智能小车设计

安徽建筑工业学院毕业设计(论文)专业:通信工程班级:08通信2班学生姓名:谢春林学号:课题:基于飞思卡尔单片机的智能小车设计与应用主控制板硬件设计指导教师:夏巍2012 年 6 月1日摘要本文的主要内容是利用飞思卡尔公司的32位单片机Kinetis10,设计能在特定跑道上循迹行驶的智能小车。
智能车系统以Kinetis10为核心,用它来进行信号采集、数据传输与运算等动作,并产生PWM波控制舵机和电机。
整个系统由单片机模块、路径识别模块、速度检测模块、舵机模块、直流电机驱动模块、电源模块等组成。
智能小车的硬件设计包括:双向控制的电机驱动,可同时对多模块供电的电源系统,3.3V PWM波形驱动舵机电路,与上位机通信的RS232通信模块等。
关键字:智能小车,Kinetis10,电源系统,双向控制。
AbstractThe main content of this paper is to use the 32-bit SCM freescale company Kinetis10, in particular the runway design can trace the car driving on intelligence. Intelligent car system to Kinetis10 as the core, and use it to signal acquisition, data transmission and computing such action and create PWM wave to control the steering gear and motor. The whole system of microcomputer module, path recognition module, speed detection module, steering gear module, dc motor driver module, power supply module.Intelligent car of hardware design including: two-way control motor drive, but at the same time for more power supply module of the power supply system, 3.3 V PWM waves of steering gear drive circuit, and the upper machine RS232 communication module of communication, etc.Key word: Intelligent vehicles, Kinetis10, Power system, Two-way control.目录1 绪论 (1)1.1选题意义 (1)1.2 国内外概况 (1)1.2.1国外概况 (1)1.2.2 国内概况 (2)1.3智能车的发展前景 (3)2 系统设计与方案论证 (3)2.1 系统设计要求 (3)2.2 系统设计方案 (3)2.2.1 主控芯片的选定 (4)2.2.2 传感器模块 (4)2.2.3 测速传感器模块 (5)2.2.4 转向舵机模块 (5)2.2.5电机驱动模块 (5)3 主控芯片简介 (6)3.1 Kinetis K10简介 (6)3.2 所用模块简介 (6)3.2.1 PWM 模块 (7)3.2.2 PIT模块 (7)3.2.3 I/O模块 (7)3.2.4 SCI模块 (7)4 智能车机械设计与安装 (7)4.1 舵机的安装 (8)4.2 前轮倾角的调整 (8)4.3 后轮差动轮的调整 (9)4.4 速度检测模块安装 (9)4.5 传感器的安装 (9)5 主板电路设计 (9)5.1 主控芯片电路 (9)5.2 外围电路 (11)5.2.1 电源管理模块 (11)5.2.3 速度检测电路 (15)5.2.4 舵机驱动电路 (16)5.2.5拨码开关电路 (17)5.2.5 RS232通信模块 (17)6 软件设计 (18)6.1 开发工具 (18)6.2 软件流程图 (18)7 总结 (20)8 致谢 (21)参考文献 (22)附录: (23)基于飞思卡尔单片机的智能小车设计————主控制电路设计电子与信息工程学院通信工程 2008级2班谢春林指导教师夏巍1 绪论1.1选题意义智能车辆( intelligent vehicles, IV)是智能交通系统( in2telligent transportation systems, ITS)的重要构成部分,其研究的主要目的在于降低日趋严重的交通事故发生率,提高现有道路交通的效率,在某种程度上缓解能源消耗和环境污染等问题。
基于飞思卡尔单片机控制的两轮平衡小车研制

基于飞思卡尔单片机控制的两轮平衡小车研制【摘要】本文研制了一种结合两轮式移动机器人和倒立摆系统的智能机电一体化机构。
通过飞思卡尔16位单片机进行控制。
在制作完成机械结构之后,进行了红外遥控的设计、对小车的传感器参数进行了整定。
由于其具有良好的可移动性和环境适应性,在现实生活中具有很高的实用价值。
比如作为个人交通工具,智能载运等。
【关键词】倒立摆;Pro/E建模;有限元分析;红外遥控倒立摆系统1.概述智能汽车是集环境监测、路径规划、多等级的辅助驾驶模块等功能于一体的系统。
它运用了计算机数据处理、传感器、通信等技术。
是一个具有很高科技技术含量的系统。
目前对智能汽车的研究主要体现在对汽车驾驶的安全性、舒适性等方面的提高。
2.两轮车系统理论研究通过对倒立摆系统进行研究,可以考察一个控制系统在解决非线性、不稳定系统方面的控制能力。
2.1 直线一级倒立摆的数学模型倒立摆系统是一个不稳定的系统,在进行建模时,有一定困难。
忽略到一些不太重要的细节之后,倒立摆系统其实就是一个刚性运动系统,可以在倒立摆的惯性力坐标系中使用经典力学分析进行建模。
下面采用经典的牛顿力学分析来进行直线一级倒立摆的数学模型建立。
2.2 两轮小车倒立摆模型简化重力场中使用细线悬挂着重物经过简化便形成理想化的单摆模型。
直立的小车可以近似看做可做水平移动的倒立摆系统。
3.结构方案设计在方案设计过程中,首先对小车轮子的安装方向进行了选择,以确保能够与之前确定的一级平面倒立摆数学模型进行吻合。
然后结合实际生产中的两轮自平衡小车产品,对整车机械零件和各种模块安装位置进行了方案设计和结构简化。
3.1 两轮位置关系的选择采用左右轮布置方式,采用双直流电机驱动小车的两个轮胎。
虽然是双直流电机,属于一级倒立摆系统。
因为从侧面观看小车前进方向,两个电机重合,对应着上一章倒立摆模型中的“单电机平面一级倒立摆”3.2 小车机械结构简化经过机械结构简化,最终小车的主要组成部分包括:轮胎、直流电机、联轴器、测速装置、车身倾覆姿态检测传感器、电池、控制电路等。
基于MC9S12XS128的双轮平衡车控制系统设计毕业设计

基于MC9S12XS128的双轮平衡车控制系统设计[摘要]本文主要介绍了双轮平衡车的控制系统设计方案。
采用MC9S12XS128作为核心控制器,在此基础上增加了各种接口电路板组成整个硬件系统,包括单片机最小系统,直流驱动电机控制模块,电源管理模块,测速编码模块,人机交互等模块。
软件调试部分依次对应硬件各模块进行程序设计,包括A/D模块,PWM模块,ECT模块,PID控制算法,人机交互控制等。
完成车模的制作和软件设计后对整个控制系统进行调试,先阐述了调试的策略,再分别就现有调试工具条件下的软件和硬件调试进行了分析,对相应的调试方法做了基本的介绍。
最后根据调试情况对整个系统做了修改,基本达到设计要求。
[关键词]双轮平衡车;MC9S12XS128;模块设计;调试策略Based On MC9S12XS128 of the Two-wheeled BalancingVehicle Control System DesignElectrical Engineering and Automation Specialty CHEN MingAbstract: This article mainly introduces the balance of the Two-wheeled balancing vehicle control system design scheme. The MC9S12XS128 as core controller, on the basis of interface circuit board of increasing the hardware system, including single chip minimize system, dc motor control module, power management module, code modules speed, man-machine interaction module. Software debugging session in the corresponding module design program, including A/D module, PWM module, ECT module, PID control algorithm, the man-machine interactive control, etc. Accomplish the production and the software design draw after the whole control system for debugging, first expounds the commissioning of the strategy, second,different debugging tools under the conditions of existing software and hardware debugging are analyzed, the corresponding debugging method basic introduction. According to the situation of the whole system debugging have modified, basic to meet the design requirements.Key words: the Two-wheeled balancing vehicle; MC9S12XS128; MODULAR DESIGN ; Debugging strategy目录1 引言 (1)1.1 双轮自平衡小车的研究意义 (1)1.2 双轮自平衡小车的发展历程和现状 (1)1.2.1国外的研究成果 (2)1.2.2国内的研究成果 (2)1.3 本课题的研究内容和关键问题 (2)2 双轮平衡小车系统的总体概述 (3)2.1 系统组成 (3)2.2 系统各模块的主要功能 (3)2.3 系统的主要特点 (4)3 双轮平衡小车硬件电路设计 (4)3.1 整体电路设计 (4)3.2 单片机最小系统 (5)3.3 直流驱动电机控制电路 (6)3.4 电源模块电路设计 (6)3.5 测速编码电路设计 (7)3.5.1 陀螺仪电路 (8)3.5.2 编码器电路 (8)3.6 人机交互接口电路设计 (9)3.6.1CAN总线与LIN总线设计 (9)3.6.2通信接口设计 (10)3.6.3人机交互电路设计 (10)4 双轮平衡小车软件设计 (11)4.1 软件模块功能与框架 (11)4.1 A/D模块 (12)4.1.1A/D转换原理 (12)4.1.2A/D转换模块功能结构 (12)4.1.3A/D转换模块的编程步骤 (13)4.2 PWM模块 (13)4.2.1PWM的主要特点 (13)4.2.2PWM应用及初始化 (14)4.3 ECT模块 (14)4.4 PID控制算法 (15)4.4.1PID控制原理 (15)4.4.2 PID参数的整定 (16)4.5 人机交互 (16)4.5.1 LCD液晶显示 (16)4.5.2 矩阵键盘按键识别 (17)4.5.3 串口与上位机的通讯 (17)5 双轮平衡小车的系统调试 (18)5.1 调试策略 (18)5.1.1硬件调试 (18)5.1.2软件调试 (18)5.1.3综合调试 (18)5.2 串口调试 (18)5.2 监控调试 (20)5.3 无线调试 (21)5.3.1无限遥控开关 (21)5.3.2无线通信模块 (21)6 结论 (23)参考文献 (24)附录1:单片机最小系统原理图 (25)附录2:单片机最小系统电路图 (26)附录3:单片机最小系统PCB图 (26)致谢 (27)1 引言本章简要的介绍了两轮自平衡小车的起源与发展、研究意义以及国内外的研究现状,并依此提出了本论文研究的主要内容。
毕业论文--基于飞思卡尔单片机的智能车设计(含外文翻译)

武汉纺织大学毕业设计(论文)任务书课题名称:基于飞思卡尔单片机的智能车设计完成期限:2009年12月 1日至2010年 5月 10日院系名称电子信息工程指导教师沈满德专业班级电信 0621 指导教师职称讲师学生姓名胡智院系毕业设计(论文)工作领导小组组长签字一、课题训练内容通过以全国大学生“飞思卡尔”杯智能车竞赛为背景,设计一台能够自主循迹的小车。
整个开发中,严格执行“飞思卡尔”杯智能车竞赛的比赛规则。
二、设计(论文)任务和要求(1)查阅课题相关参考文献、技术资料,做好备份,以便以后查找;(2)充分分析相关素材,比较多个方案,选择一种完成设计任务;(3)分析和选取完成任务的技术途径和实施方法,第四周前上交毕业设计开题报告一份。
开题报告内容与学校模板要求一致,字数不少于2000字;经指导老师检查合格后才能进行后续工作;(4)补充必要的理论和技术知识,查找相关的元件、器件的参数资料;(5)给出详细的系统设计说明书,画出原理电路图,分析各部分电路功能及原理;(6)根据系统要求,进行硬件设计以及理论数据计算,给出相关参数;(7)根据系统要求,给出系统控制的流程图,编写详细程序;(8)根据系统要求,制作实物和安装调试;(9)撰写毕业设计论文,内容和格式按学校要求执行,(具体要求在学校教务网的下载专区下载:设计论文规范、格式模板、任务书、开题报告、成绩记录等9个文件)。
三、毕业设计(论文)主要参数及主要参考资料主要参数:(1)赛道为普通白色板,宽度为60cm,赛道正中间为2.5cm的黑色普通胶带,铺设赛道地板颜色不作要求,它和赛道之间可以但不一定有颜色差别,跑道最小曲率半径不小于 50 厘米,跑道可以交叉,交叉角为90 °,赛道有一个长为1米的出发区,计时起始点两边分别有一个长度10厘米黑色计时起始线,赛车前端通过起始线作为比赛计时开始或者结束时刻。
(2)须采用飞思卡尔半导体公司的 8 位、 16 位处理器 ( 单核 ) 作为唯一的微控制器,推荐使用 9S12XS128 ,9S08AW60 微控制器;(3)比赛车模采用官方规定的本成品车模;(4)模型车的电源采用官方的7.2V/2000mA的电池,舵机采用制定的s3010;(5)车模改装完毕后,尺寸不能超过:250mm 宽和400mm长;参考资料:[1] 谭浩强.C程序设计(第三版).北京:清华大学出版社.2006.3[2] 卓晴,黄开胜,邵贝贝.学做智能车——挑战“飞思卡尔”杯.北京:北京航空航天大学出版社. 2007年3月[3] 刘瑞新主编 Protel DXP实用教程北京:机械工业出版社.2003[4] 王威等编著 HCS12微控制器原理及应用北京:航空航天大学出版社.2007[5]刘林,杨理,龙叶虹.重庆邮电大学AUTO-2第二届全国大学生智能汽车竞赛技术报告.四、毕业设计(论文)进度表武汉纺织大学毕业设计(论文)进度表注:1.本任务书一式两份,一份院(系)留存,一份发给学生,任务完成后附在说明书内。
基于飞思卡尔智能车控制系统的设计

汽车工业研究·季刊2021年第1期基于飞思卡尔智能车控制系统的设计▶◀……………………………………………………………………………马岩王伟军张辉唐国坤引言在21世纪智能化的发展或将成为未来的一种大趋势,近年来,它提高了技术机构的速度和微型计算机的生产效率,在集成智能控制的条件下,传感器系统是集成智能的,集成智能的机电产品能够模仿人类的智能,具有一定的判断力和智能。
从技术上讲,它取代了人脑的一部分。
汽车的发展距今也有100多年了,从上个世纪80年代开始直到今天,在智能控制方面的应用是越来越广泛,社会发展得越来越快,汽车的智能化也越来越受人们的青睐。
所谓智能就是用一些现代控制方法实现无人驾驶或者其他的动作。
智能车辆(Intelligent Vehicle ,简称IV ),又称轮式移动机器人,也被人们称为无人驾驶汽车。
它是可以自主决定的一种机器人,也是一个自动驾驶、自动决策、自动感知于一身的高级系统。
除了一些特殊用途,还被一些西方国家的重点关注。
很多的西方国家早在几个世纪以前就已经开始研究智能汽车而且也把他们当成重点来研究,例如“智能车辆系统”(Intelligent Vehicle Highway Systems ,简称IVHS )、“智能运输系统”(Intelligent Transporta⁃tion Systems ,简称ITS )。
在智能系统开发中,会彻底地改变原有汽车的一些基本的技术。
随着科学发展的速度,特别是在计算机、信息和现代科学的研究,所以目前的智能车系统终于取得了一定的成就。
在轿车和重型汽车上主要应用于碰撞预警系统、防撞及辅助驾驶系统、智能速度适应、自动操作等主要智能车辆技术,此技术的应用在军事上更为重要。
硬件设计智能小车的设计分为五个模块:单片机最小系统、红外导航、胡须导航、驱动电源模块、电机驱动模块。
(1)驱动电源模块电源模块这里采用LM7805、5V 电压调节器。
调压器工作的前提条件,是锂电池放出7.5V 电压。
两轮自平衡小车控制系统的设计

两轮自平衡小车控制系统的设计摘要:介绍了两轮自平衡小车控制系统的设计与实现,系统以飞思卡尔公司的16位微控制器MC9S12XS128MAL作为核心控制单元,利用加速度传感器MMA7361测量重力加速度的分量,即小车的实时倾角,以及利用陀螺仪ENC-03MB测量小车的实时角速度,并利用光电编码器采集小车的前进速度,实现了小车的平衡和速度控制。
在小车可以保持两轮自平衡前提下,采用摄像头CCD-TSL1401作为路径识别传感器,实时采集赛道信息,并通过左右轮差速控制转弯,使小车始终沿着赛道中线运行。
实验表明,该控制系统能较好地控制小车平衡快速地跟随跑道运行,具有一定的实用性。
关键词:控制;自平衡;实时性近年来,随着经济的不断发展和城市人口的日益增长,城市交通阻塞以及耗能、污染问题成为了一个困扰人们的心病。
新型交通工具的诞生显得尤为重要,两轮自平衡小车应运而生,其以行走灵活、便利、节能等特点得到了很大的发展。
但是,昂贵的成本还是令人望而止步,成为它暂时无法广泛推广的一个重要原因。
因此,开展对两轮自平衡车的深入研究,不仅对改善平衡车的性价比有着重要意义,同时也对提高我国在该领域的科研水平、扩展机器人的应用背景等具有重要的理论及现实意义。
全国大学生飞思卡尔智能车竞赛与时俱进,第七届电磁组小车首次采用了两轮小车,模拟两轮自平衡电动智能车的运行机理。
在此基础上,第八届光电组小车再次采用两轮小车作为控制系统的载体。
小车设计内容涵盖了控制、模式识别、传感技术、汽车电子、电气、计算机、机械及能源等多个学科的知识。
1 小车控制系统总体方案小车以16位单片机MC9S12XS128MAL作为中央控制单元,用陀螺仪和加速度传感器分别检测小车的加速度和倾斜角度[1],以线性CCD采集小车行走时的赛道信息,最终通过三者的数据融合,作为直流电机的输入量,从而驱动直流电机的差速运转,实现小车的自动循轨功能。
同时,为了更方便、及时地观察小车行走时数据的变化,并且对数据作出正确的处理,本系统调试时需要无线模块和上位机的配合。
基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]基于单片机的两轮自平衡车控制系统设计摘要两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。
本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。
系统选用STC公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。
整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。
通过蓝牙,还可以控制小车前进,后退,左右转。
关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波 PID算法Design of Control System of Two-Wheel Self-Balance Vehicle based onMicrocontrollerAbstractTwo-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravityaccelerometer gyroscope sensor MPU6050 for the inclination angle of vehicle, and using complementary filter for the data fusion of gyroscope and accelerometer. We choose an 8-bit microcontroller named STC12C5A60S2 from STC Company as main controller of the control system. The main controller output control signal, which is based on the data from the sensors, to the motor drive chip named TB6612FNG forcontrolling two motors of vehicle, and keeping the vehicle in balance. After the completion of the control system, the vehicle can achieve autonomous balance under the conditions of unmanned intervention, the vehicle can adjust automatically and restored to a stable statequickly in the case of giving appropriate interference as well. In addition, we can control the vehicle forward, backward and turn around. Key words: Two-Wheel Self-Balance Vehicle; Accelerometer; Gyroscope; Data fusion;Complementary filter; PID algorithm1 绪论自平衡小车的研究背景近几年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前机器人研究领域的一个重要组成部分,并且其应用领域日益广泛,其所需适应的环境和执行的任务也更复杂,这就对移动机器人提出了更高的要求。
基于飞思卡尔单片机的智能车设计

中文题目:基于飞思卡尔单片机的智能车设计外文题目:FREESCALE MCU-BASED DESIGN OF INTELLIGENT VEHICLE毕业设计(论文)共71页(其中:外文文献及译文5页)图纸共1 张完成日期2013年6月答辩日期2013年6月摘要本设计主要讨论了基于Freescale公司的MC9S12XS128芯片制作的自主巡线智能车的设计方案和原理。
本文将从机械结构设计,硬件电路设计和软件算法设计等几个方面全面介绍智能车的制作及调试过程。
根据第八届“飞思卡尔”杯全国大学生智能汽车竞赛的技术要求,赛车以检测通以20KHZ、100mA的导线的电磁场为基础,通过单片机采集到的磁感应电压信号,实现对赛车的转向控制,进而识别赛道达到路径寻迹的目的。
本设计针对控制要求对智能车模型的机械结构进行设计和调整,同时对智能车运行中产生侧滑的原因进行分析,并对智能车的质量和重心位置进行优化调整。
在硬件方面,系统由控制核心(MCU)模块、电源管理模块、路径识别模块、电机驱动模块、舵机控制模块、速度检测模块以及LCD显示模块等组成。
在软件方面,主要编写了主程序、转速检测程序、电机和舵机驱动程序等相关程序。
本设计在原有智能车系统的基础上,对硬件电路进行了改进,提高了路径检测的前瞻性与抗干扰性。
结果表明,智能车在速度、稳定性和可靠性上都达到良好的状态。
关键词:智能车控制;电磁传感器;路径识别;软件设计AbstractThis design focuses MC9S12XS128 based on Freescale's chip production line inspection autonomous intelligent vehicle design and principles. This article from the mechanical design, hardware design and software algorithm design and other aspects of comprehensive introduction smart car production and debugging process.According to the eighth "Freescale" Cup National Undergraduate Smart Car Competition technical requirements, in order to detect the car pass by 20KHZ, 100mA wire EMF-based microcontroller collected through magnetic induction voltage signal, steering control of the car, thus identify the track reaches the path tracing purposes. The design requirements for the control of the smart car model design and the mechanical structure adjustment, while the smart car running analyze the causes of skidding, and the quality and smart car adjustments to optimize the center of gravity position. In terms of hardware, the system controlled by the core (MCU) modules, power management module, the path identification module, the motor drive module, servo control module, the speed detection module and LCD display modules and other components. On the software side, the main compiled main program, speed detection procedures, motors and servo drivers and other related procedures.The design of the original smart car system, based on the hardware circuit has been improved to improve the prospective path detection and interference. The results show that the smart car in terms of speed, stability and reliability have reached a good state.Key words: Intelligent car control; The electromagnetic sensor; Software Design; Path recognition目录0前言.......................................... 错误!未定义书签。
毕业设计(论文)--基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计摘要两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。
本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。
系统选用STC公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。
整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。
通过蓝牙,还可以控制小车前进,后退,左右转。
关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波PID算法Design of Control System of Two-WheelSelf-Balance Vehicle based on MicrocontrollerAbstractTwo-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravity accelerometer gyroscope sensor MPU6050 for the inclination angle of vehicle, and using complementary filter for the data fusion of gyroscope and accelerometer. We choose an 8-bit microcontroller named STC12C5A60S2 from STC Company as main controller of the control system. The main controller output control signal, which is based on the data from the sensors, to the motor drive chip named TB6612FNG for controlling two motors of vehicle, and keeping the vehicle in balance. After the completion of the control system, the vehicle can achieve autonomous balance under the conditions of unmanned intervention, the vehicle can adjust automatically and restored to a stable state quickly in the case of giving appropriate interference as well. In addition, we can control the vehicle forward, backward and turn around.Key words: Two-Wheel Self-Balance Vehicle; Accelerometer; Gyroscope; Data fusion; Complementary filter; PID algorithm1 绪论 (1)1.1自平衡小车的研究背景 (1)1.2 自平衡小车研究意义 (1)1.3 论文的主要内容 (2)2 课题任务与关键技术 (2)2.1 主要任务 (2)2.2关键技术 (2)2.2.1 系统设计 (2)2.2.2 数学建模 (2)2.2.3姿态检测 (3)2.2.4 控制算法 (3)3 系统原理分析 (3)3.1 控制系统任务分解 (3)3.2 控制原理 (4)3.3 数学模型 (5)4 系统硬件设计 (6)4.1 STC12C5A60S2单片机介绍 (7)4.2 电源管理模块 (8)4.3 车身姿态感应模块 (9)4.3.1 加速度计 (10)4.3.2 陀螺仪 (12)4.4 电机驱动模块 (14)4.5 速度检测模块 (16)5 系统软件设计 (16)5.1 软件系统总体结构 (17)5.2 单片机的硬件资源配置 (18)5.2.1定时/计数器设置 (18)5.2.2 PWM输出设置 (20)5.2.3 串行通信设置 (23)5.2.4 中断的开放与禁止 (26)5.3 MPU6050资源配置 (27)5.3.1 普通IO口模拟IIC通讯 (28)5.3.2 MPU6050资源配置 (32)5.4 系统控制算法设计 (34)5.4.1 PID算法 (34)5.4.2 互补滤波算法 (35)5.4.3 角度控制与速度控制 (35)5.4.4 输出控制算法 (36)6 总结与展望 (37)6.1 总结 (37)6.2 展望 (37)参考文献 (38)1 绪论1.1自平衡小车的研究背景近几年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前机器人研究领域的一个重要组成部分,并且其应用领域日益广泛,其所需适应的环境和执行的任务也更复杂,这就对移动机器人提出了更高的要求。
基于飞思卡尔单片机的两轮车控制系统设计

基于飞思卡尔单片机的两轮车控制系统设计
1.前言
本文以飞思卡尔的小车模型为对象,设计了以飞思卡尔单片机
MC9S12XS128 为核心,自主循迹的两轮车自平衡控制系统。
实验证明该方案在摄像头导航的两轮车系统中具有准确、快速、稳定的自主寻迹效果。
2.系统设计与原理
本系统以飞思卡尔公司生产的MC9S12XS128 单片机为控制核心,主要由电源管理模块、路径检测模块、车速检测块、加速度检测模块、角速度检测模块、直流电机驱动模块、液晶显示模块、串口调试等功能模块构成。
在电源管理模块为系统提供稳定电源的基础上,单片机把加速度和角速度检测模块获得的小车姿态信息、路径信息检测模块获得的小车前进方向信息、车速检测模块返回的车速信息通过PID 算法控制直流电机驱动模块,以使得小车在保持直立的前提下快速地行驶。
液晶显示模块可以实时地显示系统相关参数,串口调试模块把接收到单片机的数据送往上位机,方便相关参数及波形的实时观察和调试。
系统框图如图1 所示。
3.系统硬件设计
3.1 主控制器模块
本系统的主控制器是飞思卡尔公司生产的16 位MC9S12XS128 单片机,它负责对智能车所采集到的信号进行处理并向各个功能模块发送控制信号。
MC9S12XS128 单片机最高总线频率可达40MHz,片内资源包括8KRAM、8K。
两轮自平衡小车毕业设计!!_修改

自平衡小车设计摘要这些年来,两轮自平衡车的应用获得了十分快速的应用和发展。
本文提出了一种两轮的自平衡小车的设计,采用陀螺仪ENC-03以及MEMS加速度传感器MMA7260构成小车姿态检测装置,使用卡尔曼滤波完成陀螺仪数据与加速度计数据的数据融合。
系统选用飞思卡尔16位单片机MC9S12XS128为控制核心,完成了传感器信号的处理,滤波算法的实现及车身控制,人机交互等。
整个系统在制作完成后,各个模块之间能够协调工作,小车也可以在无人干预的条件下达到自主平衡。
同时在引入适量的干扰情况下小车也能够自主调整状态并迅速恢复稳定的状态。
小车可以被控制实现前进、后退、左右转向等动作。
关键词:自平衡stm32 姿态滤波IDesign of Self-Balance VehicleAbstractIn recent years, the application of two wheeled self balancing vehicle has been very rapid application and development. In this paper, we propose a two rounds of self balance car design, car attitude detection device by gyroscope enc-03 and MEMS accelerometer MMA7260 and Kalman filtering is used to complete data of a gyroscope and accelerometer meter data fusion. The system selects the flying thought Carle 16 bit single chip microcomputer MC9S12XS128 as the control core, completed the sensor signal processing, the filter algorithm realization and the vehicle body control, human computer interaction and so on.After the completion of the entire system, the various modules can work in coordination, the car can also be under the conditions of unmanned intervention to achieve self balancing. At the same time in the introduction of the amount of interference in the case of the car can also adjust the state and quickly return to a stable state. The car can be controlled to achieve forward, backward, left and right steering and so on.Key Words: Two-Wheel Self-Balance; Gyroscope; Gesture detection; Kalman filter; Data fusionII目录1.绪论 (1)1.1研究背景与意义 (1)1.3本文主要研究目标与内容 (1)1.4论文章节安排 (2)2.系统原理分析 (3)2.1控制系统要求分析 (3)2.2平衡控制原理分析 (3)2.3自平衡小车数学模型 (4)2.3.1两轮自平衡小车受力分析 (4)2.3.2自平衡小车运动微分方程 (7)2.4 PID控制器设计 (8)2.4.1 PID控制器原理 (8)2.4.2 PID控制器设计 (9)2.5姿态检测系统 (10)2.5.1陀螺仪 (10)2.5.2加速度计 (11)2.5.3基于卡尔曼滤波的数据融合 (12)2.6本章小结 (14)3.系统硬件电路设计 (15)3.1 MC9SXS128单片机介绍 (15)3.2单片机最小系统设计 (17)3.3 电源管理模块设计 (19)3.4倾角传感器信号调理电路 (20)3.4.1加速度计电路设计 (20)3.4.2陀螺仪放大电路设计 (20)3.5电机驱动电路设计 (21)3.5.1驱动芯片介绍 (22)3.5.2 驱动电路设计 (22)III3.6速度检测模块设计 (23)3.6.1编码器介绍 (23)3.6.2 编码器电路设计 (24)3.7辅助调试电路 (25)3.8本章小结 (25)4.系统软件设计 (26)4.1软件系统总体结构 (26)4.2单片机初始化软件设计 (26)4.2.1锁相环初始化 (26)4.2.2模数转换模块(ATD)初始化 (27)4.2.3串行通信模块(SCI)初始化设置 (28)4.2.4测速模块初始化 (29)4.2.5 PWM模块初始化 (30)4.3姿态检测系统软件设计 (30)4.3.1陀螺仪与加速度计输出值转换 (30)4.3.2卡尔曼滤波器的软件实现 (32)4.4平衡PID控制软件实现 (34)4.5两轮自平衡车的运动控制 (35)4.6本章小结 (37)5. 系统调试 (38)5.1系统调试工具 (38)5.2系统硬件电路调试 (38)5.3姿态检测系统调试 (39)5.4控制系统PID参数整定 (41)5.5两轮自平衡小车动态调试 (42)5.6本章小结 (43)6. 总结与展望 (44)6.1 总结 (44)6.2 展望 (44)参考文献 (45)IV附录 (46)附录一系统电路原理图 (46)附录二系统核心源代码 (47)致谢 (50)V常熟理工学院毕业设计(论文)1.绪论1.1研究背景与意义近应用意义。
基于“飞思卡尔”单片机的智能车

哈尔滨工业大学华德应用技术学院毕业设计(论文)开题报告题目:基于“飞思卡尔”单片机的智能车(硬件部分设计)系(部)应用电子与通信技术系专业电子信息工程学生刘晓磊学号1089212211班号0892122指导教师赵建新开题报告日期2011-10-17哈工大华德学院说明一、开题报告应包括下列主要内容:1.通过学生对文献论述和方案论证,判断是否已充分理解毕业设计(论文)的内容和要求2.进度计划是否切实可行;3.是否具备毕业设计所要求的基础条件。
4.预计研究过程中可能遇到的困难和问题,以及解决的措施;5.主要参考文献。
二、如学生首次开题报告未通过,需在一周内再进行一次。
三、开题报告由指导教师填写意见、签字后,统一交所在系(部)保存,以备检查。
指导教师评语:指导教师签字:检查日期:一、课题背景车与我们的社会生活息息相关,然而当今车的智能化发展还不是很发达,特别是在安全性,智能化,车与路之间交互信息等方面。
当今的车辆技术与未来的智能车辆技术还存在着巨大的差距。
今天的汽车工程师面临着巨大的挑战,需要在新旧技术之间建立一座桥梁,通过应用先进的电子技术,信息技术,电子通信技术推动车辆技术的革新与进步。
本课题小组在履带车模的基础上,使用飞思卡尔公司的MC9S12XS128 单片机作为控制核心,自行设计并制作了相关电路以和检测到道路周围的黑线信号处理以及对舵机、电机的控制。
最终实现车模在赛道上通过自身控制以最短时间独立完成行驶和自动超车的功能。
二、目的意义智能小车的应用越来越广泛,几乎渗透到所有领域。
智能小车的发展体现了一个国家技术水平的高低,现代智能小车从其诞生到现在,已经发展到了第三代。
第一代智能小车是示教再现型智能小车。
它们装有记忆存储器,由人将作业的各种操作要求示范给智能小车,使之记住操作的程序和要领。
当它接到再现命令时,则自主地再现示教的动作。
第二代智能小车是装有简单计算机和简单传感器的离线编程的工业智能小车。
基于单片机的两轮平衡车设计

2016年第8淛y信息疼甲文章编号=1009 -2552 (2016)08 -0025 -04 DOI:10.13274/ki.hdzj.2016. 08. 007基于单片机的两轮平衡车设计孙传开,罗飞(华南理工大学自动化科学与工程学院,广州510640)摘要:采用单片机MC9S12XS128作为控制器,结合陀螺仪ENC-03、三轴加速度计MMA7260 芯片,设计一个运行稳定、体积小、可匀速运动的两轮自平衡车。
通过介绍平衡车的平衡原理、系统架构以及软硬件设计,阐明两轮自平衡车的设计要点。
最后,通过系统理论分析以及实验 测试表明了这种设计方式的合理性和应用的可行性。
关键词:单片机;两轮自平衡;加速度计;陀螺仪;飞思卡尔中图分类号:TP368. 1文献标识码:AD e s ig n o f tw o-w h e e l c a r s y s te m b a s e d o n m ic r o c o n tr o lle rS U N C h u a n-k a i,L U O F e i(School of Automation Science and Engineering,South China University of Technology,Guangzhou510640,China) Abstract :This article mainly discusses design ol a small two-wheel sell-balancing car which can run stably in uniform motion,with microcontroller MC9S12XS128 as the controller and integrating an ENC-03 gyroscope as well as three-axis accelerometer MMA7260 chip.By introducing the balance principle of two-wheeled car control system,the overall structure of instrument and hardware as well as software design,it explains the design point of two-wheeled car control system.Finally,through the theoretical analysis and experimental tests it shows the feasibility and rationality of this design approach.Key words:microcontroller;two-wheeled car system;accelerometer;gyroscope;freescale0引言从交通工具到机器人研究,两轮车一直都广受 人们的关注,它不但可以大幅减少硬件成本而且对 空间以及能源的占用量也很少,具有很高的使用价 值和很大的应用前景。
基于飞思卡尔单片机的智能汽车设计

基于飞思卡尔单片机的智能汽车设计摘要本智能车系统设计以 MC9S12DG128B 微控制器为核心,通过一个CMOS 摄像头检测模型车的运动位置和运动方向,使用LM1881视频分离芯片对图像进行处理,用光电传感器检测模型车的速度并使用PID 控制算法调节驱动电机的转速和舵机的方向,完成对模型车运动速度和运动方向的闭环控制。
为了提高智能车的行驶速度和可靠性,采用了自制的电路板,在性能和重量上有了更大的优势,对比了各种方案的优缺点。
实验结果表明,系统设计方案可行关键词:MC9S12DG128,CMOS 摄像头,PIDThe Research of Small and Medium-sized Electric Machines in Fuan CityAuthor:Yao fangTutor:Ma shuhuaAbstractFujian Fuan City industry of electric motor and electrical equipment is the one of the most representative phenomenon of industry cluster in Fujian Province mechanical industry. Its output value of small and medium-sized electric machines accounts for 20% of the whole province’s electrical equipment indu stry. The output amount of small and medium-sized electric machines from this region takes up 1/3 of that of the whole nation. Fuan electric motor and electrical equipment industry plays a significant role in the development of local national economy, being considered to be the main growth point of local economy and called "the Chinese electric motor and electrical equipment city ".This paper launched a research on small and medium- sized electric machines in Fuan city from two angles. The first one inferred the situation of Fuan electric machine industrial cluster as well as the analysis of the temporary existed problems, and then propose a few of suggestions on the part of local government. The second part focus on the improvement of the competitiveness of Fuan electric machine enterprises, through the application of Michael Porter's Five Forces Model into the local industry of electric machine, consequently carried out some strategies local enterprises should take.Key Words: small and medium-sized electric machines, Five Forces Model, industrial cluster目录1 绪论 (1)1.1智能车竞赛背景介绍 (1)1.2智能车系统设计思路及方案分析 (2)1.3系统整体设计结构图 (3)2 机械结构的调整与设计 (4)2.1机械安装结构调整 (4)2.2舵机安装方式的调整 (4)2.3摄像头的安装 (5)2.4测速码盘的安装 (5)2.5前轮倾角的调整 (6)2.6地盘高度的调整 (7)2.7齿轮传动机构及后轮差速的调整 (7)3 硬件电路的设计与实现 (8)3.1硬件电路设计方案 (8)3.2硬件电路的实现 (8)3.2.1 以S12为核心的单片机最小系统 (8)3.2.2 主板 (13)3.2.3 电机驱动电路 (18)3.2.4 摄像头 (23)3.2.5 速度传感器 (24)3.2.6 加速度传感器 (24)3.2.7 去抖动电路 (25)4 软件系统设计与实现 (28)4.1软件系统结构方案选择 (28)4.2软件主流程 (28)4.3端口分配 (29)4.4底层驱动程序设计 (30)4.4.1 时钟模块 (30)4.4.2 PWM模块 (31)4.4.3 外部中断模块 (31)4.4.4 ECT模块 (32)4.4.5 AD模块 (32)4.4.6 串口模块 (33)4.4.7 普通IO模块 (33)4.4.8 实时中断 (34)4.5图像信息处理及道路识别程序设计 (34)4.5.1 赛道提取算法 (35)4.5.2 有一定抗干扰和抗反光能力的黑线提取算法 (37)4.5.3 道路识别算法 (39)4.6起跑线识别程序设计 (40)4.7车体控制程序设计 (41)4.7.1 舵机控制算法 (42)4.7.2 速度控制算法 (43)结论 (44)致谢 (45)参考资料 (46)附录 (47)附录A (47)1 绪论1.1 智能车竞赛背景介绍全国大学生飞思卡尔杯智能车竞赛是教育部主办的面向全国大学生的五大赛事之一(另外四个:数学建模、电子设计、机械设计、结构设计)。
基于飞思卡尔单片机的智能车及其调试系统设计

基于飞思卡尔单片机的智能车及其调试系统设计基于飞思卡尔单片机的智能车及其调试系统设计摘要:本文介绍了一种基于飞思卡尔单片机的智能车设计方案,并详细阐述了其调试系统的设计和实现过程。
通过对传感器、驱动器和控制算法的整合与优化,实现了智能车对环境的感知、路径规划和自主导航功能。
调试系统包括软件调试和硬件调试两个方面,通过实验验证了系统的可行性和稳定性。
实验结果表明,该智能车具备了较高的精确性和响应速度,能够在复杂的环境中实现准确导航。
关键词:飞思卡尔单片机;智能车;调试系统;感知;路径规划;自主导航1.引言智能车作为人工智能领域的一个重要应用方向,在交通运输、环境监测等许多领域有着广泛的应用价值。
随着单片机技术的不断发展和普及,基于飞思卡尔单片机的智能车设计方案逐渐成为研究的热点。
本文旨在利用飞思卡尔单片机开发一种具备感知、控制和规划等功能的智能车,并设计相应的调试系统来验证其工作状态和性能。
2.智能车硬件设计智能车的核心是以飞思卡尔单片机为主控制器的控制系统。
该系统由多个模块组成:传感器模块、驱动器模块、通信模块和电源管理模块。
传感器模块用于感知环境,包括超声波传感器、红外传感器等。
驱动器模块用于控制车轮的转动,实现车辆的前进、后退和转向功能。
通信模块用于与外部设备进行数据交互,电源管理模块用于管理车辆的电力供应和充放电管理。
3.智能车软件设计智能车的软件系统主要包括感知模块、控制模块和规划模块。
感知模块利用传感器获取环境信息,并将其转化为数字信号。
控制模块根据感知模块的数据进行判断和决策,控制车辆的运动。
规划模块根据车辆当前位置和目标位置,采用路径规划算法计算最优路径,并通过控制模块实现车辆的导航功能。
4.智能车调试系统设计智能车的调试系统包括软件调试和硬件调试两个方面。
软件调试主要涉及程序的编写、调试和验证,通过仿真、调试和测试等手段,确保软件系统的正确性和稳定性。
硬件调试主要涉及电路连接、传感器的调试和驱动器的测试,通过检查电路连通性、校准感知模块和测试驱动器的工作状况来验证硬件系统的可靠性和性能。
毕业设计任务书-(基于单片机的两轮平衡车控制系统设计)

任务书填写要求
1.毕业设计任务书由指导教师根据各课题的具体情况填写,经学生所在学院的负责人审查、负责人签字后生效。
此任务书应在毕业设计开始前一周内填好并发给学生;
2.任务书内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,不得随便涂改或潦草书写,禁止打印在其它纸上后剪贴;
3.任务书内填写的内容,必须和学生毕业设计完成的情况相一致,若有变更,应当经过所在专业及学院领导审批后方可重新填写;
4.任务书内有关“学院”、“专业”等名称的填写,应写中文全称,不能写数字代码。
学生的“学号”要写全号(如020*******,为10位数),不能只写最后2位或1位数字;
5.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。
如“2004年3月15日”或“2004-03-15”。
毕业设计任务书
毕业设计任务书。
基于飞思卡尔单片机的智能车控制系统设计

毕业设计(论文)基于飞思卡尔单片机的智能车控制系统设计系别自动化工程系专业自动化班级5060418姓名王皓明指导教师赵一丁2010年6月16日基于飞思卡尔单片机的智能车控制系统设计摘要本文以第四届全国大学生智能车竞赛为背景,介绍了智能赛车控制系统的软硬件结构和开发流程。
该比赛采用组委会规定的标准车模,以Freescale半导体公司生产的16位单片机MC9S12DG128为核心控制器,在CodeWarrior 4.7开发环境中进行软件开发,要求赛车在未知道路上完成快速寻线。
本智能车采用双排光电传感器对赛道进行检测,工作电压能与最小系统工作电压相同,可共用一个电源模块。
通过光电传感器提取获得黑线位置,用PID方式对舵机进行反馈控制。
同时通过速度传感器获取当前速度,实现速度闭环控制,根据赛道类型预判信息和当前速度信息对速度进行合理控制。
整个硬件系统包括车模机械结构调整、稳压电源设计、核心控制电路板设计、后轮电机驱动模块设计和上位机通信设计等等。
经过查看各种相关资料,对硬件进行了大量的优化,如针对对各种稳压芯片的测试,确定最优电源电路;测试各种测速方式,最终选用光电管作为测速模块;并在智能车调试过程中不断改进机械结构,使小车运行更加稳定、迅速。
软件系统包括程序初始化、数据采集和车体控制的算法。
为了提高智能赛车的行驶速度和可靠性,经过多次机械结构调整及电路板设计,并经过不断试验,最终确定了现有的系统机械结构和各项控制的PID参数。
关键词:MC9S12DG128 ,智能车,双排光电传感器,PIDIntelligent vehicle control system design based on freescale MCUAuthor :Wang HaomingTutor :ZhaoYidingAbstractBased on the 4th China university of intelligent car race for background, introduces the hardware and software of the control system of intelligent car structure and development process. The game using the standards prescribed by the organizing committee to Freescale semiconductor company models, the production 16-bit single chip MC9S12DG128 for core controller, in CodeWarrior 4.7 development environment in software development and requirement on the road on unknown quick line.This intelligent vehicle using double row of photoelectric sensor, voltage can work with minimal systems can share the same voltage, a power supply module. Through the intelligent vehicle, with black extracted on the way to the PID feedback control. And through the velocity sensor for current velocity, realize speed closed-loop control circuit, according to the type of information and the speed of anticipation to speed control information. The hardware system including mechanical models ,structure adjustment, manostat design, the core control circuit design, rear motor driver module design and computer communication design etc. After check all relevant information on the hardware, the large amounts of optimization, such as all kinds of pressure in the test chip and the optimum power supply circuit, Testing various ways, finally chooses phototube module as a type of cell, And in the intelligent vehicle commissioning process improvement, the mechanical structure is more stable operation, quick. Software system including the initial procedure, the data acquisition and control algorithm. In order to improve the speed of intelligent cars and reliability, and after many mechanical structure adjustment and circuit design, and finally determined through continuous test, the existing system of the mechanical structure and PID control parameters.Key words:MC9S12DG128, intelligent vehicle, double row photoelectric sensor, PID目录1 绪论 (1)1.1智能车的背景及意义 (1)1.2智能车竞赛的研究现状 (2)1.2.1 国外智能车竞赛现状 (2)1.2.2 国内智能车竞赛现状 (3)1.3本文的概况及结构安排 (7)2 智能车方案设计 (8)2.1智能车设计的基本要求 (8)2.2智能车的双排传感器循迹策略方案设计 (8)2.2.1 双排传感器的优势 (8)2.2.2 传感器阵列布局 (9)2.2.3 直道识别方式控制策略 (9)2.2.4 直线稳定控制策略 (13)2.2.5 弯道控制策略 (13)2.2.6 实测结果和现象分析 (14)2.3车模参数 (15)3 硬件设计 (18)3.1智能车整体结构 (18)3.2MC9SDG128B的最小系统及接口设计 (19)3.3电源管理及分布 (20)3.4光电传感器布局 (21)3.4.1 赛道识别传感器模块 (21)3.4.2 测速模块 (22)3.5电机驱动模块 (23)3.6舵机驱动模块 (24)3.7拨码开关模块 (25)4 机械结构调整 (27)4.1一些重要参数对赛车的影响 (27)4.2车模底盘参数调整 (28)4.3重心位置对汽车性能的影响 (30)4.4汽车侧滑的处理 (31)4.5底盘离地间隙 (32)4.6齿轮传动间距调整 (32)4.7后轮差速机构调整 (32)5 智能车软件开发环境及软件设计 (34)5.1智能车软件开发环境 (34)5.1.1 软件调试软件Code Warrior (34)5.1.2 无线调试模块 (36)5.2软件设计 (37)5.2.1 初始化模块 (37)5.2.2 智能车系统的控制策略的设计及实现 (41)5.2.3 PID参数的整合 (45)结论 (48)致谢 (50)参考文献 (51)附录 (52)附录A:智能车硬件连接图 (52)附录B:智能车最终实物图 (53)附录C:PID CONTROLLER (54)1 绪论1.1 智能车的背景及意义智能车系统以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械、车辆运动学等多个学科;主要由路径识别、角度控制及车速控制等功能模块组成。
基于飞思卡尔XS128单片机的双车追逐控制系统设计

基于飞思卡尔XS128单片机的双车追逐控制系统设计
黄润烨;吕海涛;舒文江;方童童;罗世昌;雷钧
【期刊名称】《机电技术》
【年(卷),期】2016(000)003
【摘要】设计一个能自动识别路线的智能车系统,以Freescale公司的16位单片机MC9S12XS128为核心,传感器采用电感构成,智能车通过感应赛道导线上方的磁场,在赛道上稳定行驶;利用超声波模块实现两辆智能小车追逐行驶。
实验证明该系统能够精准地识别赛道,控制小车稳定运行。
【总页数】3页(P66-67,74)
【作者】黄润烨;吕海涛;舒文江;方童童;罗世昌;雷钧
【作者单位】湖北汽车工业学院电气与信息工程学院,湖北十堰 442002;湖北汽车工业学院电气与信息工程学院,湖北十堰 442002;湖北汽车工业学院电气与信息工程学院,湖北十堰 442002;湖北汽车工业学院电气与信息工程学院,湖北十堰 442002;湖北汽车工业学院电气与信息工程学院,湖北十堰 442002;湖北汽车工业学院电气与信息工程学院,湖北十堰 442002
【正文语种】中文
【中图分类】TP273;TP242.6
【相关文献】
1.基于飞思卡尔单片机的智能车设计 [J], 程锦星;赵春锋;陈扬;方国好;叶超
2.基于飞思卡尔单片机的智能车金属检测与控制方案 [J], 叶亮;时锐;孙小杰;卫驰;
毛人杰;李志伟
3.基于飞思卡尔单片机的平衡车设计 [J], 富文军;孔令超;方四明;刘新磊;王培金
4.基于飞思卡尔单片机的两轮车控制系统设计 [J], 王悦;杨文超;陈晓琴;赵思蕊;武丽
5.基于飞思卡尔S12单片机的智能车系统设计与实现 [J], 刘允峰;韩建群
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
婴塞……………………….
基于飞思卡 尔单 片机 的两轮车控制 系统设计
西南科技 大学信 息工程 学院 王 悦 杨文超 陈晓琴 赵 思蕊
W AN G Yue, YAN G W e n—c ha o, CH EN Xi a o—qi n, ZH A O Si —r ui , i Li
块 、加 速度 检测 模 块 、角 速 度检 测 模块 、 直流 电机 驱 动模 块 、 液 晶显 示模 块 、 串 口 调 试 等 功能 模块 构 成 。在 电源管 理 模块 为 系统 提 供稳 定 电源 的 基础 上 ,单 片 机把 加 速 度 和 角速 度检 测 模 块获 得 的 小车 姿态 信 息 、路 径信 息检 测 模 块获 得 的 小车 前进 方 果。 向信 息 、车 速检 测 模 块返 回的车 速 信 息通 2 . 系统 设计与 原理 过 PI D 算 法控 制 直 流 电机 驱 动模 块 , 以使 本 系 统 以 飞 思 卡 尔 公 司 生 产 的 得 小 车 在保 持 直立 的 前提 下 快速 地 行 驶 。 M C 9 S 1 2 X S I 2 8 单 片机为 控制核 心 ,主要 由 电 液 晶显 示模 块 可 以实 时地 显 示 系统 相 关参 源 管 理模 块 、 路径 检测 模 块 、车 速 检测 模 数 ,串 口调 试模 块 把 接收 到 单 片机 的 数据 送 往 上 位机 ,方便 相 关参 数 及波 形 的 实时 观 察和调 试 。系统框 图如 图1 所示。 3 . 系统 硬件设 计 3 . 1主控制 器模块 本 系 统 的主 控制 器 是 飞思 卡 尔公 司生 产 的l 6 位M C 9 S 1 2 X S 1 2 8 单 片机 ,它负 责对 智 能车 所 采集 到 的信 号 进 行处 理 并 向各 个功 图 1系 统 框 图 能模块 发送 控制信 号 。M C 9 S 1 2 X S 1 2 8 单片机 7 . 2 v 电池 最高 总线频 率可 达4 0 M H z ,片 内资源包 括8 K R A M 、8 K E E P R O M 和1 2 8 K F l a s h ,拥有 4 路8 L 9 4 o _ 5 v 1 3 1 7 v 位或 2 路I 6 位 脉宽 调 制模 块 ( P W M)、 2 个8 路1 0 位A / D 转 换器 和 带有 l 6 位 计数 器 的8 通 道定 时器 、U A R T 、P I T 、I 2 C 、F T M 等 外部接 口模块 。 3 . 2 电源管 理模块 可 靠 的 电源 是系 统 稳定 运 行 的前 提 。 本系 统 采用 额 定 电压 7 .2 V、 额 定 容 量 2 0 0 0 m A h 的镍镉 电池 作为动 力源 。为减 小 电 图2 系统 电源管理模块框 图 源纹 波 ,获 得 更稳 定 的供 电 电压 ,本 系统 选用 串联线 性稳 压 芯 片L M 2 9 4 0 搭 建5 v 稳压 厂 — 电路 ,并 分 别 向主控 制 器模 块 、 路径 信 息 检测 模 块 、 车速 检测 模 块 、加 速 度检 测模 块 、角 速度 检 测 模块 、液 晶显 示 模块 和 串
i nf or ma i t on t O c o nt rol he t d i r e c ion t oft he c a r . Fi n a l l y, t he C O X‘ S s pe e d a nd d i r e c u on a t e c ont r o l l e d b y a D C mo t or dr i ve mod u l e t hr ou g h he t PI D a l g o r i t hm t a ke p l a c e b y t x l r n i n a n a l t e ma t e l y ix f e d c y c l e, t O ma ke s u r e he t C a t C n a t r a ve l a I o “g a ny d e f a ul t r out e s . Ke yw or ds : Fr e e s c a l e; mi c r oc o nt r oH e r ;t wo- whe de d; ba l a n c e; c a me r a
主 控 制 器 模 块
武
丽
加 速 度 检 测 模 块 角 速 度 检 测 模 t u n i v e r s i t y o f s c i e n c e a n d t e c h n o l o g y,M i a n y a n g 6 2 1 0 1 0 ,C h i n a)
S t ud y o f Tw o。 _ 。 w he e l e d Ca r S y s t e m Ba s e d o n Fr e e s c a l e Mi c r oc o nt r o l l e r
径 信 息 检 测 模 块 车 速 检 测 模 块
【 摘要 】本文设计 了一种基于 飞思卡尔单片机的两轮车控 制系统。该系统 以飞思卡 尔单片机为核心 ,采用加速 度传 感器和 陀螺仪来检 测小车当前姿态 ,结合 互补 滤波算法控制小 车的平衡 ;然后 由摄像 头检 测路 况信息,控制小车的行驶方 向;最后采用P I D算法通过直流 电机驱动 电路在固定的周期 内交替地控制小车的平衡和 行驶方 向,使小 车按预设轨道行进 。
串 口 调 试 模 块
【 关键词 】飞思卡 尔;单 片机 ;两轮 ;平衡 ;摄像 头
Ab s t r a c t :T h i s a r d d e d e s i g n s a t wo - wh e e l e d C a t " c o n t r o l s y s t e m b a s e d o n F r e e s c a l e mi c r o c o n ro t l l e r . T h i s s y s t e m t a k e s F r e e s c a l e mJ . c r o c o n t r o l e r a S c o r e ,u s e s t h e a c c e l e r a i t o n s e n s o r a n d g y r o s c o p e t o d e t e c t he t c a r ’s c u r r e n t p o s t u r e ,c o mb ne i s wi h t he t c o mp l e me n t a r y i f l t e r a l g o r i hm t t o c o n ro t l he t c a r ’ S b a l a n c e . T h e n ,t h i s s y s t e m u s e s c a me r a t O d e t e c t he t p a h t