基于Matlab的语音信号处理

合集下载

基于MATLAB的语音信号处理与识别系统设计与实现

基于MATLAB的语音信号处理与识别系统设计与实现

基于MATLAB的语音信号处理与识别系统设计与实现一、引言语音信号处理与识别是人工智能领域中的重要研究方向之一,随着深度学习和人工智能技术的不断发展,基于MATLAB的语音信号处理与识别系统设计与实现变得越来越受到关注。

本文将介绍如何利用MATLAB进行语音信号处理与识别系统的设计与实现。

二、MATLAB在语音信号处理中的应用MATLAB作为一种强大的科学计算软件,提供了丰富的工具箱和函数库,可以方便地进行语音信号处理。

在语音信号处理中,MATLAB可以用于语音信号的采集、预处理、特征提取、模型训练等各个环节。

通过MATLAB提供的工具,可以高效地对语音信号进行分析和处理。

三、语音信号处理流程1. 语音信号采集在语音信号处理系统中,首先需要对语音信号进行采集。

通过MATLAB可以实现对声音的录制和采集,获取原始的语音信号数据。

2. 语音信号预处理采集到的语音信号数据通常包含噪声和杂音,需要进行预处理以提高后续处理的准确性。

预处理包括去噪、降噪、滤波等操作,可以有效地净化语音信号数据。

3. 特征提取在语音信号处理中,特征提取是一个关键步骤。

通过MATLAB可以提取出语音信号的频谱特征、时域特征等信息,为后续的模式识别和分类打下基础。

4. 模型训练与识别利用MATLAB可以构建各种机器学习模型和深度学习模型,对提取出的特征进行训练和识别。

通过模型训练,可以实现对不同语音信号的自动识别和分类。

四、基于MATLAB的语音信号处理与识别系统设计1. 系统架构设计基于MATLAB的语音信号处理与识别系统通常包括数据采集模块、预处理模块、特征提取模块、模型训练模块和识别模块。

这些模块相互配合,构成一个完整的系统架构。

2. 界面设计为了方便用户使用,可以在MATLAB中设计用户友好的界面,包括数据输入界面、参数设置界面、结果展示界面等。

良好的界面设计可以提升系统的易用性和用户体验。

五、基于MATLAB的语音信号处理与识别系统实现1. 数据准备首先需要准备好用于训练和测试的语音数据集,包括正样本和负样本。

基于MATLAB的音频处理技术研究

基于MATLAB的音频处理技术研究

基于MATLAB的音频处理技术研究第一章引言音频处理技术是数字信号处理领域的一个重要分支,在音频信号采集、分析、增强和合成等方面有着广泛的应用。

随着数字信号处理技术的不断发展,基于MATLAB的音频处理技术也得到了快速的发展和应用。

本文将介绍MATLAB在音频处理领域的应用和研究,然后重点分析基于MATLAB的音频信号预处理和特征提取技术。

第二章 MATLAB在音频处理中的应用MATLAB是一种强大的数学仿真软件,其内置了丰富的数学分析工具和信号处理库,可以广泛应用于信号处理、数字通信、嵌入式系统设计等领域。

在音频处理领域,MATLAB提供了丰富的函数和工具箱,可以对音频进行采集、分析、合成和处理等任务。

2.1 音频采集MATLAB提供了嵌入式硬件支持包,可以连接各种类型的音频设备,如麦克风、音频接口等。

用户可以使用MATLAB编写程序,对音频进行实时采集和录制,并实时在MATLAB的界面上进行显示和处理。

2.2 音频分析MATLAB提供了许多用于音频信号分析的工具箱,如信号处理工具箱、音频工具箱和语音处理工具箱等。

用户可以利用这些工具箱进行频域分析、时域分析、滤波、FFT、STFT和解调等操作,以及进行各种音频信号的特征提取和分类。

2.3 音频合成MATLAB提供了各种音频合成的工具箱,如声学模型工具箱、可重复性工具箱和音频合成器等。

用户可以利用这些工具箱进行音频信号的合成和生成,例如混响效果、合成乐器音效等。

第三章基于MATLAB的音频信号预处理技术MATLAB提供了许多音频信号预处理的工具,这些工具可以在进行音频信号分析和特征提取之前对信号进行预处理,如降噪、去混响、去噪声,以及去掉杂音等。

3.1 降噪降噪是去除音频信号中的噪音干扰,使得信号更加清晰的重要步骤。

MATLAB提供了多种降噪算法,例如小波阈值法、基于分量分析的降噪方法和基于统计学习的降噪方法等。

这些算法可以对音频信号进行有效的降噪,从而提高信号的质量,提高后续分析的准确性。

基于matlab的语音信号的基本处理

基于matlab的语音信号的基本处理

专题研讨四、信号与系统综合应用确定题目(根据个人兴趣、结合实际确定题目,可从下面参考题目中选择,也可自由确定):基于matlab的语音信号的基本处理参考题目:题目1:含噪信号滤波题目2:双音多频信号的产生与检测题目3:磁盘驱动系统仿真题目4:卡尔曼滤波器的应用题目5:应用反馈扩大放大器的带宽(以上只是本专题的部分题目)开题报告课题实施过程记录包括仿真程序、仿真结果、结果分析、方案完善等 ○1语音信号的制作及描述 1) 制作语音文件:用windows 录音机录制一小段语音文件"333.wav ”,内容为"信号与信息系统",由一同学播音. 2) 用matlab 播放”333.wav ”仿真程序:3) [y,Fs,bits]=wavread('333.wav'); sound(y,Fs);pause;4) 绘画出语音文件的时域和频域波形: 仿真程序:[y,Fs,bits]=wavread('333.wav'); plot(y);仿真结果:0123456789x 104-0.8-0.6-0.4-0.20.20.40.6结果分析:随着时间变化,声音能量图形 方案完善:1.时间轴有问题,与实际的时间不一样.2.语音信号的频域分析更清楚.仿真程序:[y,Fs,bits]=wavread('333.wav'); y=y(:,1);sLength=length(y); Y = fft(y,sLength);Pyy = Y.* conj(Y) / sLength; halflength=floor(sLength/2); f=Fs*(0:halflength)/sLength; figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)'); t=(0:sLength-1)/Fs; figure;plot(t,y);xlabel('Time(s)');仿真结果:0.51 1.52 2.5x 104Frequency(Hz)00.20.40.60.81 1.2 1.4 1.6 1.82-0.8-0.6-0.4-0.20.20.40.6Time(s)结果分析:频域分析是从另一个角度观察信号;语音信号的一般频域范围"200~2000"Hz ○2语音信号抽取及倍插仿真程序:[y,Fs,bits]=wavread('111.wav'); sound(y,Fs/2);pause;[y,Fs,bits]=wavread('111.wav'); sound(y,2*Fs);pause;仿真结果与分析:以Fs/2及2*Fs 播放的语音信号存在失真, 方案完善:需要做出波形,做更直观的观察. ○3语音信号的加噪1)语音信号加高频噪音及播放. 仿真程序:[y,Fs,bits]=wavread('333.wav'); y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.5;d=A*cos(2*pi*f*t)';y=y+d;sound(y,Fs);仿真结果:播放时伴有尖锐的”吱吱”声.结果分析:由于加入高频成分余弦信号,信号叠加后出现了尖锐的噪音.2)加噪后的语音信号的时域和频域波形.仿真程序:[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;sLength=length(y1);Y = fft(y1,sLength);Pyy = Y.* conj(Y) / sLength;halflength=floor(sLength/2);f=Fs*(0:halflength)/sLength;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');仿真结果:00.20.40.60.81 1.2 1.4 1.6 1.82-0.8-0.6-0.4-0.20.20.40.6Time(s)0.51 1.522.5x 10405101520253035404550Frequency(Hz)结果分析:时域波形跟加噪前没有什么明显的区别.在频域上我们发现有一个近6000Hz的高频成分,这是产生的噪音的根本所在.方案完善:运用subplot将加噪前和加噪后的时域和频域波形进行对比,效果会更好.○4数字滤波这一部分我们学习了函数BUTTER,进行了最简单的数字滤波.[b,a]=butter(N,wc);代表数字低通滤波器,wc代表归一化频率(0<wc<=1,等于一时为奈奎斯特频率);N为滤波器的阶数.y2=filter(b,a,y1);对信号y1进行巴特滤波,滤波器为[b,a]系统滤波后信号的效果播放.仿真程序:[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1);sound(y2,Fs);仿真结果:原先的噪声消失,语音信号变回原样.滤波器为低通滤波器,滤去高频成分.方案完善:1.画出滤波后的时域和频域波形2. 对滤波器进行系统分析1.画出滤波后的时域和频域波形仿真程序:[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;plot(t,y);xlabel('Time(s)');N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1); sLength1=length(y2); Y1 = fft(y2,sLength1);Pyy = Y1.* conj(Y1) / sLength1; halflength1=floor(sLength1/2); f1=Fs*(0:halflength1)/sLength1; figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)'); t=(0:sLength-1)/Fs; figure;plot(t,y2);xlabel('Time(s)');仿真结果:00.51 1.52 2.5x 1040.511.522.53Frequency(Hz)00.20.40.60.81 1.2 1.4 1.6 1.82-0.8-0.6-0.4-0.20.20.40.6Time(s)结果分析:基本效果良好,有少许失真. 2. 对滤波器进行系统分析 仿真程序:w=linspace(0,6000,10000); wc=[0.01 0.07]; N=2;[b,a]=butter(N,wc); H=freqz(b,a,w); plot(w,abs(H)); axis([0 2500 0 1.5]);仿真结果:010002000300040005000600000.511.5○3RC 模拟滤波(物理形式熟悉) [y,Fs,bits]=wavread('333.wav');%¶Á³öÐźţ¬²ÉÑùÂʺͲÉÑùλÊý¡£y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.5;d=A*cos(2*pi*f*t)';y1=y+d;RC=0.001;b=1/RC;a=[1,1/RC];sys=tf(b,a);y2=lsim(sys,y1,t);sound(y2,Fs);结果:效果良好,声音恢复.RC 滤波器的波特图RC=0.001;w=linspace(0,2,1024);b=1/RC;a=[1,1/RC];g=tf(b,a);bode(g);xlabel('w');ylabel('H(jw)');-40-30-20-100M a g n i t u d e (d B)101102103104105H (j w ) (d e g )Bode Diagramw (rad/sec)总结报告摘要:利用所学的知识对实际语音信号进行时域,频域分析;体会信号的抽样定理,即信号的抽取和倍插;运用信号叠加对信号进新加噪(高频),并用数字滤波器butter 滤去高频成分去噪;课题原理框图:课题最终仿真程序:○1语音信号的制作及描述; [y,Fs,bits]=wavread('333.wav');sound(y,Fs);pause;[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);Y = fft(y,sLength);Pyy = Y.* conj(Y) / sLength;halflength=floor(sLength/2);f=Fs*(0:halflength)/sLength;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');t=(0:sLength-1)/Fs;figure;plot(t,y);xlabel('Time(s)');○2语音信号抽取及倍插; [y,Fs,bits]=wavread('111.wav');sound(y,Fs/2);pause;[y,Fs,bits]=wavread('111.wav');sound(y,2*Fs);pause;○3语音信号的加噪;[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1);sound(y2,Fs);[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;sLength=length(y1);Y = fft(y1,sLength);Pyy = Y.* conj(Y) / sLength;halflength=floor(sLength/2);f=Fs*(0:halflength)/sLength;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');○4滤波器.[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1);sound(y2,Fs);[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;plot(t,y);xlabel('Time(s)');N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1);sLength1=length(y2);Y1 = fft(y2,sLength1);Pyy = Y1.* conj(Y1) / sLength1;halflength1=floor(sLength1/2);f1=Fs*(0:halflength1)/sLength1;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');t=(0:sLength-1)/Fs;figure;plot(t,y2);xlabel('Time(s)');w=linspace(0,6000,10000);wc=[0.01 0.07];N=2;[b,a]=butter(N,wc);H=freqz(b,a,w);plot(w,abs(H));axis([0 2500 0 1.5]);[y,Fs,bits]=wavread('333.wav');%¶Á³öÐźţ¬²ÉÑùÂʺͲÉÑùλÊý¡£y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.5;d=A*cos(2*pi*f*t)';y1=y+d;RC=0.001;b=1/RC;a=[1,1/RC];sys=tf(b,a);y2=lsim(sys,y1,t);sound(y2,Fs);RC=0.001;w=linspace(0,2,1024);b=1/RC;a=[1,1/RC];g=tf(b,a);bode(g);xlabel('w');ylabel('H(jw)');课题成果:1)了解了语音信号matlab处理的基本过程及思路,重点复习了波形绘制,系统响应;2)体会到理论与实践的结合,语音信号的处理和实际生活接近,趣味性强.本课题还存在哪些问题?1)对matlab的一些函数比较模糊,比如信号的长度估计,butter滤波函数的运用2)对于信号的滤波只是在很理想的高频情形下,过于单一简单,对实际的噪声滤波还有很多需要完善的.研究性学习自我体会与评价通过研究性学习你在哪些方面有所收获?(如学习方法、合作精神、探索精神、创新意识等)。

MATLAB语音信号采集与处理

MATLAB语音信号采集与处理

MATLAB课程设计报告课题:语音信号采集与处理目录一、实践目的 (3)二、实践原理: (3)三、课题要求: (3)四、MATLAB仿真 (4)1、频谱分析: (4)2、调制与解调: (5)3、信号变化: (8)快放: (8)慢放: (8)倒放: (8)回声: (8)男女变声: (9)4、信号加噪 (10)5、用窗函数法设计FIR滤波器 (11)FIR低通滤波器: (12)FIR高通滤波器: (13)FIR带通滤波: (14)一、实践目的本次课程设计的课题为《基于MATLAB的语音信号采集与处理》,学会运用MATLAB的信号处理功能,采集语音信号,并对语音信号进行滤波及变换处理,观察其时域和频域特性,加深对信号处理理论的理解,并为今后熟练使用MATLAB进行系统的分析仿真和设计奠定基础。

此次实习课程主要是为了进一步熟悉对matlab软件的使用,以及学会利用matlab对声音信号这种实际问题进行处理,将理论应用于实际,加深对它的理解。

二、实践原理:利用MATLAB对语音信号进行分析和处理,采集语音信号后,利用MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。

语音信号的“短时谱”对于非平稳信号, 它是非周期的, 频谱随时间连续变化, 因此由傅里叶变换得到的频谱无法获知其在各个时刻的频谱特性。

如果利用加窗的方法从语音流中取出其中一个短断, 再进行傅里叶变换, 就可以得到该语音的短时谱。

三、课题要求:○1利用windows 自带的录音机或者其它录音软件,录制几段语音信号(要有几种不同的声音,要有男声、女声)。

○2对录制的语音信号进行频谱分析,确定该段语音的主要频率范围,由此频率范围判断该段语音信号的特点(低沉or 尖锐)。

○3利用采样定理,对该段语音信号进行采样,观察不同采样频率(过采样、欠采样、临界采样)对信号的影响。

数字信号处理课程设计报告--基于MATLAB的语音去噪处理

数字信号处理课程设计报告--基于MATLAB的语音去噪处理

数字信号处理课程设计报告--基于MATLAB的语音去噪处理《数字信号处理》课程设计报告基于MATLAB的语音去噪处理专业: 通信工程班级: 通信1101班组次: 第7组姓名及学号: 胡政权(2011013825) 姓名及学号: 潘爽(2011013836)第1页组员承担任务负责程序的编写,并检验程序是否错误,利用课余时间去图书馆或上网查阅课题相关资料,深入理解课题含义及设计要求,注意材料收集胡政权与整理,对课程设计要求进行最后审核。

负责课程设计实验MATLAB仿真对实验结果进行分析,上网查阅材料对实验发表自己看法同时对实验要求进行扩展。

对论文进行抒写,排版潘爽使实验课程设计更加完善。

指导教师评价意见第2页基于MATLAB的语音去噪处理1、设计目的(1)巩固所学的数字信号处理理论知识,理解信号的采集、处理、加噪、去噪过程; (2)综合运用专业及基础知识,解决实际工程技术问题的能力; (3)学习资料的收集与整理,学会撰写课程设计报告。

2、设计任务(1)语音信号的录制。

(2)在MATLAB平台上读入语音信号。

(3)绘制频谱图并回放原始语音信号。

(4)利用MATLAB编程加入一段正弦波噪音,设计滤波器去噪。

(5)利用MATLAB 编程加入一段随机噪音信号,设计FIR和IIR滤波器去噪,并分别绘制频谱图、回放语音信号。

(6)通过仿真后的图像以及对语音信号的回放,对比两种去噪方式的优缺点。

其大概流程框图可如下表示:(图2-1)图2-1 课程设计的流程第3页3、设计原理3.1 去噪原理3.1.1 采样定理在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中,最高频率fmax的2倍时,即:fs.max>=2fmax,则采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5,10倍;采样定理又称奈奎斯特定理。

1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高大码元传输速率的公式: 理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度)为什么把采样频率设为8kHz?在数字通信中,根据采样定理, 最小采样频率为语音信号最高频率的2倍频带为F的连续信号 f(t)可用一系列离散的采样值f(t1),f(t1?Δt),f(t1?2Δt),...来表示,只要这些采样点的时间间隔Δt?1/2F,便可根据各采样值完全恢复原来的信号f(t)。

(完整word版)基于matlab的语音信号处理(2)

(完整word版)基于matlab的语音信号处理(2)

(完整word版)基于matlab的语音信号处理(2) 数字信号处理设计报告题目:基于Matlab的语音信号处理系别信息工程学院专业班级通信工程1342学生姓名范泉指导教师吉李满提交日期2016年6月10日(完整word版)基于matlab的语音信号处理(2)摘要数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。

因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现.而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。

数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。

数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。

本设计的具体内容是基于MATLAB的语音信号处理,核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。

然后添加噪声信号,选用合适的滤波器对噪声信号进行滤除,使数字信号处理从理论走向实用。

MATLAB功能强大,可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

用MATLAB来解算问题要比用其他语言简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。

在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。

可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

关键词:数字信号处理器;离散傅立叶变换;MATLAB目录第一章绪论 (1)1.1课题研究的目的 (1)1。

基于matlab语音信号的采集与分析

基于matlab语音信号的采集与分析

毕业论文(设计)题目:基于matlab语音信号的采集与分析姓名:学院:理学与信息科学学院专业:电子信息科学与技术班级:学号:指导教师:目录摘要 (I)ABSTRACT. .......................................................................................................................................... I I 1 绪论 (1)1.1选题的背景和意义 (1)1.2语音信号处理的进展 (2)2 系统设计的可行性研究 (4)2.1语音信号处理的概念 (4)2.2语音信号的特点 (4)2.3语音信号处理的要求及可行性 (5)2.4M ATLAB仿真软件简介 (5)3 系统设计 (7)3.1系统设计的理论依据 (7)3.2系统的详细设计 (9)3.2.1图形用户界面制作 (9)3.2.2 系统功能的实现 (10)4 系统调试及运行 (16)总结 (25)致谢 (27)参考文献: (28)基于matlab语音信号的采集与分析电子信息科学与技术专业马晓敏指导教师曹红波摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。

语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等[1]。

本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制一段声音,采集语音信号后,在MATLAB软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。

利用MATLAB来读入(采集)语音信号,将它赋值给某一向量。

再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波。

数字信号处理课程设计--基于 MATLAB 的语音去噪处理

数字信号处理课程设计--基于 MATLAB 的语音去噪处理

数字信号处理课程设计课程名称数字信号处理基于MATLAB 的语音去噪处理题目名称专业班级13级通信工程本一学生姓名学号指导教师二○一五年十二月二十七日引言滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR滤波器是滤波器设计的重要组成部分。

利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。

课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。

通过理论推导得出相应结论,再利用MATLAB 作为编程工具进行计算机实现。

在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB 作为辅助工具完成设计中的计算与图形的绘制。

通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。

关键词数字滤波器 MATLAB 窗函数法巴特沃斯切比雪夫双线性变换目录1 绪论 (4)2 课程设计内容 (5)3 课程设计的具体实现 (5)3.1 语音信号的采集 (4)3.2 语音信号的时频分析 (4)3.3 语音信号加噪与频谱分析 (6)3.4 利用双线性变换法设计低通滤波器 (8)3.5 用滤波器对加噪语音信号进行滤波 (9)3.6 分析滤波前后语音信号波形及频谱的变化 (10)3.7回放语音信号 (10)3.8小结 (11)结论 ···········································································错误!未定义书签。

(完整word版)基于matlab的语音信号分析与处理

(完整word版)基于matlab的语音信号分析与处理

基于matlab的语音信号分析与处理摘要:滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。

Matlab功能强大、编程效率高, 特别是Matlab具有信号分析工具箱,不需具备很强的编程能力,就可以很方便地进行信号分析、处理和设计。

基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。

使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR 数字滤波器,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。

关键词:数字滤波器;MATLAB;切比雪夫Abstract:Filter design in digital signal processing plays an extremely important role, FIR digital filters and IIR filter is an important part of filter design. Matlab is powerful, programming efficiency, Matlab also has a particular signal analysis toolbox, it need not have strong programming skills can be easily signal analysis, processing and design. MATLAB based on the noise issue speech signal processing design and implementation of digital signal processing integrated use of the theoretical knowledge of the speech signal plus noise, time domain, frequency domain analysis and filtering. The corresponding results obtained through theoretical derivation, and then use MATLAB as a programming tool for computer implementation.Implemented in the design process, using the windowfunction method to design FIR digital filters with Butterworth, Chebyshev and bilinear Reform IIR digital filter design and use of MATLAB as a supplementary tool to complete the calculation and graphic design Drawing.Keywords:digital filter; MATLAB; Chebyshev语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。

基于matlab语音信号合成与处理课程设计

基于matlab语音信号合成与处理课程设计

摘要语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴学科,是目前发展最为迅速的学科之一,通过语音传递信息是人类最重要,最有效,最常用和最方便的交换信息的手段,所以对其研究就显得尤为重要。

Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以讲声音文件变成离散的数据文件,然后用其强大的矩阵运算能力处理数据。

这为本次课程设计提供了强大并良好的环境。

本设计要求自己通过手机清唱一段歌曲,并用windows自带的录音机录制下来,保存格式为.wav格式,而且要求对所录的语音进行频率均衡和加入混响效果。

从网上下载相应的歌曲伴奏,经过截取、加噪、消噪后,与混响后的清唱语音进行合成,制作成一首歌曲。

采用语音合成可帮助学生加强理解,MATLAB里面有很多应用示波器滤波,利用这些滤波器可以很容易地实现语音信号的消噪过程,利用MATLAB的声音处理函数设计一组语音合成实验,配合Windows操作系统支持的语音媒体播放器可以很方便地将经过数字处理后的语音效果直观地体现出来,对于学生深刻理解数字信号处理中抽象数学运算的现实物理意义很有帮助。

关键字:信号处理语音合成加噪混响一、设计目的与任务录制各自的一段清唱歌曲语音信号,并对其进行频谱分析;然后在时域用数字信号处理的方法将信号加入延时与混响。

然后从网上下载一段该歌曲的伴奏,对伴奏进行截取、格式转换、加噪和去噪后,与伴唱歌曲进行合成,制作成一首歌曲,在分析其频谱,并与原始伴唱语音信号频谱进行比较。

通过数字信号处理的课程设计,巩固和运用数字信号处理课程中的理论知识和实践技能,掌握最基本的运用Matlab软件处理信号的理论和方法,培养发现问题,分析问题和解决问题的能力。

二、设计的基本要求1.录制的语音清晰,分析语音信号的特点;2.探讨语音分析、加噪、去噪、混响以及合成的基本方法;3.写出各个步骤的Matlab的程序代码;4.分析录制的语音信号的时域波形与频谱;分析加噪、去噪与合成前后的语音信号波形与频谱;5.熟悉加强滤波器的设计原理和滤波的过程;三、设计思路图-1语音合成的方案设计方框图整体设计思路:将录制的语音信号进行频谱分析,并进行频率均衡和加入混响效果。

基于MATLAB语音信号检测分析及处理

基于MATLAB语音信号检测分析及处理

第一章绪论Matlab是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括Matlab和Simulink两大部分。

1.1 Matlab简介MATLAB是英文MATrix LABoratory(矩阵实验室)的缩写。

早期的MATLAB 是用FORTRAN语言编写的,尽管功能十分简单,但作为免费软件,还是吸引了大批使用者。

经过几年的校际流传,在John Little。

Cleve Moler和Steve Banger 合作,于1984年成立MathWorks公司,并正式推出MATLAB第一版版。

从这时起,MATLAB的核心采用C语言编写,功能越来越强大,除原有的数值计算功能外,还新增了图形处理功能。

MathWorks公司于1992年推出了具有划时代意义的4.0版;1994年推出了4.2版扩充了4.0版的功能,尤其在图形界面设计方面提供了新方法;1997年春5.0版问世,5.0版支持了更多的数据结构,使其成为一种更方便、更完善的编程语言;1999年初推出的MATLAB5.3版在很多方面又进一步改进了MATLAB语言的功能,随之推出的全新版本的最优化工具箱和Simulink3.0达到了很高水平;2000年10月,MATLAB6.0版问世,在操作页面上有了很大改观,为用户的使用提供了很大方便,在计算机性能方面,速度变的更快,性能也更好,在图形界面设计上更趋合理,与C语言接口及转换的兼容性更强,与之配套的Simulink4.0版的新功能也特别引人注目;2001年6月推出的MATLAB6.1版及Simulink4.1版,功能已经十分强大;2002年6月推出的MATLAB6.5版及Simulink5.0版,在计算方法、图形功能、用户界面设计、编程手段和工具等方面都有了重大改进;2004年,MathWorks公司推出了最新的MA TLAB7.0版,其中集成了最新的MATLAB7编译器、Simumlink6.0仿真软件以及很多工具箱。

基于MATLAB的有噪声的语音信号处理的课程设计要点

基于MATLAB的有噪声的语音信号处理的课程设计要点

DSP实验课程设计实验报告姓名:学号:班级:1.课程设计题目:基于MATLAB的有噪声的语音信号处理的课程设计。

2.课程设计的目的:综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应的结论,再利用MATLAB做为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。

3.课程设计的要求:(1)熟悉离散信号和系统的时域特性。

(2)掌握序列快速傅里叶变换FFT方法。

(3)学会MATLAB的使用,掌握MATLAB的程序设计方法。

(4)利用MATLAB对语音信号进行频谱分析。

(5)掌握MATLAB设计各种数字滤波器的方法和对信号进行滤波的方法。

4.课程设计的内容:录制一段语音信号,对语音信号进行频谱分析,利用MATLAB中的随机函数产生噪声加入到语音信号中,使语音信号被污染,然后进行频谱分析,设计FIR和IIR数字滤波器,并对噪声污染的语音信号进行滤波,分析滤波后的信号的时域和频域特征,回放语音信号。

5.课程设计的步骤:(1)语音信号的获取通过录音软件录制一段语音“数字信号处理”,命名为“OriSound”,时长大约1到2秒,在MATLAB中,通过使用wavread函数,对语音进行采样:[y,fs,nbits]=wavread('OriSound'); %语音信号的采集采样值放在向量y中,采样频率为fs,采样位数为nbits。

(2)语音信号的频谱分析画出语音信号的时域波形,然后对语音信号进行频谱分析,在MATLAB中,通过使用fft 函数对信号进行快速傅里叶变换,得到信号的频谱特性。

因此采集语音并绘出波形和频谱的模块程序如下:[y,fs,nbits]=wavread('OriSound'); %语音信号的采集sound(y,fs,nbits); %语音信号的播放n=length(y) ; %计算语音信号的长度Y=fft(y,n); %快速傅里叶变换figure;subplot(2,1,1); %绘出时域波形plot(y);title('原始信号波形','fontweight','bold');axis([ 00000 80000 -1 1]); %通过尝试确定合适的坐标参数grid;subplot(2,1,2); %绘出频域频谱plot(abs(Y));title('原始信号频谱','fontweight','bold');axis([ 0 150000 0 4000]); %通过尝试确定合适的坐标参数grid;结果如下:可以看到,语音信号的频率集中在低频部分。

基于MATLAB的语音信号去噪(完整版)

基于MATLAB的语音信号去噪(完整版)

基于MATLAB的语音信号去噪基于MATLAB的语音信号去噪h(n)= hd(n)(n)( 1-2 )(4)验算技术指标是否满足要求。

1]1.2.2窗函数法设计FIR滤波器的要求在使用窗函数法设计FIR滤波器时要满足以下两个条件:(1)窗谱主瓣尽可能地窄,以获得较陡的过渡带;(2)尽量减少窗谱的最大旁瓣的相对幅度,也就是使能量尽量集中于主瓣,减小峰肩和纹波,进而增加阻带的衰减。

在实际工程中常用的窗函数有五种,即矩形窗(Retangular)、三角窗(Triangular)、汉宁窗(Hanning)、汉明窗(Haing)及凯塞窗(Kaiser)。

.2.3常用窗函数的性质和特点(1)矩形窗矩形窗属于时间变量的零次幂窗。

矩形窗使用最多,习惯上不加窗就是使信号通过了矩形窗。

这种窗的优点是主瓣比较集中,缺点是旁瓣较高,并有负旁瓣,导致变换中带进了高频干扰和泄露漏,甚至出现负谱现象。

(2)三角形窗三角形窗又称费杰窗,是幂窗的一次文形式。

与矩形窗比较,主瓣宽约等于矩形窗的两倍,但旁瓣小,而且无负旁瓣。

(3)汉宁窗汉宁窗又称升余弦窗,汉宁窗可以看作是3个矩形时间窗的频谱之和。

汉宁窗优于矩形窗,但汉宁窗主瓣加宽,相当于分析带宽加宽,频率分辨力下降。

(4)哈明窗哈明窗与汉宁窗都是余弦窗,只是加权系数不同,哈明窗加权的系数能使旁瓣达到更小,所以哈明窗又称为改进的升余弦窗。

它的能量更加集中在主瓣中主瓣的能量约占99.96%第一主瓣的峰值比主瓣小dB,但主瓣宽度和汉宁窗相同仍为8*π/N,哈明窗与汉宁窗都是很有用的窗函数。

(5)凯塞窗以上几种窗函数是各以一定主瓣加宽为代价,来换取某种程度的旁瓣抑制,窗函数的主瓣宽度和旁瓣峰值衰耗是矛盾的,一项指标的提高总是以另一项指标的下降为代价,窗口选择实际上是对两项指标作权衡。

而两项指标是跳变的,于是有人提出可调整窗,适当修改参数,可在这两项指标间作连续的选择。

常用的可调整窗是凯塞(Kaiser)窗。

基于MATLAB的音频信号处理与语音识别系统设计

基于MATLAB的音频信号处理与语音识别系统设计

基于MATLAB的音频信号处理与语音识别系统设计一、引言音频信号处理与语音识别是数字信号处理领域的重要研究方向,随着人工智能技术的不断发展,语音识别系统在日常生活中得到了广泛应用。

本文将介绍如何利用MATLAB软件进行音频信号处理与语音识别系统的设计,包括信号预处理、特征提取、模式识别等关键步骤。

二、音频信号处理在进行语音识别之前,首先需要对音频信号进行处理。

MATLAB提供了丰富的信号处理工具,可以对音频信号进行滤波、降噪、增益等操作,以提高后续语音识别的准确性和稳定性。

三、特征提取特征提取是语音识别中至关重要的一步,它能够从复杂的音频信号中提取出最具代表性的信息。

常用的特征包括梅尔频率倒谱系数(MFCC)、线性预测编码(LPC)等。

MATLAB提供了丰富的工具箱,可以方便地实现这些特征提取算法。

四、模式识别模式识别是语音识别系统的核心部分,它通过对提取出的特征进行分类和识别,从而实现对不同语音信号的区分。

在MATLAB中,可以利用支持向量机(SVM)、人工神经网络(ANN)等算法来构建模式识别模型,并对语音信号进行分类。

五、系统集成将音频信号处理、特征提取和模式识别整合到一个系统中是设计语音识别系统的关键。

MATLAB提供了强大的工具和函数,可以帮助我们将各个部分有机地结合起来,构建一个完整的语音识别系统。

六、实验与结果分析通过实际案例和数据集,我们可以验证所设计的基于MATLAB的音频信号处理与语音识别系统的性能和准确性。

通过对实验结果的分析,可以进一步优化系统设计,并提高语音识别系统的性能。

七、结论基于MATLAB的音频信号处理与语音识别系统设计是一个复杂而又具有挑战性的任务,但是借助MATLAB强大的功能和工具,我们可以更加高效地完成这一任务。

未来随着人工智能技术的不断发展,基于MATLAB的语音识别系统将会得到更广泛的应用和进一步的优化。

通过本文对基于MATLAB的音频信号处理与语音识别系统设计进行介绍和讨论,相信读者对该领域会有更深入的了解,并能够在实际应用中灵活运用所学知识。

基于matlab语音去噪课程设计

基于matlab语音去噪课程设计

基于matlab语音去噪课程设计一、教学目标本课程的目标是使学生掌握基于MATLAB的语音去噪技术,能够运用该技术进行实际的语音信号处理。

具体目标如下:知识目标:使学生了解语音信号去噪的基本理论和技术,理解MATLAB在语音去噪中的应用。

技能目标:培养学生使用MATLAB进行语音去噪的实践能力,能够独立完成语音去噪的实验。

情感态度价值观目标:培养学生对信号处理的兴趣,提高学生运用科学知识解决实际问题的能力。

二、教学内容教学内容主要包括三部分:语音信号去噪理论、MATLAB基本操作、基于MATLAB的语音去噪实践。

第一部分,语音信号去噪理论,包括噪声的类型、噪声的特性、语音信号去噪的基本方法等内容。

第二部分,MATLAB基本操作,包括MATLAB的安装和使用、MATLAB的基本语法、MATLAB的图形界面设计等内容。

第三部分,基于MATLAB的语音去噪实践,包括噪声的估计和消除、语音信号的去噪处理、去噪效果的评价等内容。

三、教学方法教学方法采用讲授法、实验法、讨论法相结合的方式。

讲授法用于讲解语音信号去噪理论和MATLAB的基本操作。

实验法用于让学生动手实践,进行基于MATLAB的语音去噪。

讨论法用于引导学生思考和探讨,提高学生对语音去噪技术的理解和应用能力。

四、教学资源教学资源包括教材、实验设备、多媒体资料等。

教材:《MATLAB语音去噪教程》实验设备:计算机、语音信号处理器多媒体资料:教学PPT、实验指导视频教学评估主要通过以下几个方面进行:1.平时表现:包括课堂参与度、提问回答、小组讨论等,占总评的30%。

2.作业:包括课后练习和实验报告,占总评的40%。

3.考试:包括期中和期末考试,占总评的30%。

评估方式将采用客观、公正的原则,全面反映学生的学习成果。

六、教学安排教学进度将按照教材《MATLAB语音去噪教程》的章节进行,共安排12周,每周2课时。

教学时间:每周二下午2:00-4:00教学地点:实验室教学安排将考虑学生的实际情况和需要,尽量安排在学生较为空闲的时间段,同时兼顾学生的兴趣爱好。

基于MATLAB语音信号处理(语音信号处理的综合仿真)

基于MATLAB语音信号处理(语音信号处理的综合仿真)

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 基于MATLAB语音信号处理(语音信号处理的综合仿真)摘要:针对目前在嘈杂的环境中手机接听电话时人声不清楚的缺点,本文介绍了一个基于MATLAB的算法来对语音信号进行处理。

该算法通过计算机录音系统来实现对语音信号的采集,并且利用MATLAB的计算和信号处理能力进行频谱分析和设计滤波器,最终通过仿真得到滤波前后的波形,从而达到保留语音信号中的大部分人声并且滤除掉嘈杂噪声的目的。

仿真实验表明,采用低通滤波器保留人声的效果显著,失真较少。

本算法具有操作简单,运行速度快等优点。

关键词:语音信号;MATLAB;滤波;低通;噪声Speech Signal Processing Based on MATLAB1 / 17Abstract: At present, in view of the shortcomings of that the voice is not clear when people answering the phone in a noisy environment, this paper introduces a algorithm for speech signal processing based on MATLAB. The algorithm realizes the acquisition of the speech signal through a computer recording system. And the software can realize the capabilities of frequency spectrum analysis and filter design by the use of calculation and signal processing capabilities of MATLAB. Finally it can get the waveform before and after filtering through the simulation. So that we can retain most of the voices in the speech signal and at the same time remove noisy noise through filter. Simulation results show that the low pass filter has a remarkable effect of keeping voices and the distortion is little. This algorithm has the advantages of simple to operate and fast.Key Words: Speech signal; MATLAB; Filtering; Low pass; Noise目录---------------------------------------------------------------范文最新推荐------------------------------------------------------ 摘要1引言11.研究意义及研究现状21.1研究意义21.2研究现状22. 语音信号处理的总体方案2.1 研究的主要内容本课题主要介绍的是的语音信号的简单处理,目的就是为以后在手机上的移植打下理论基础。

语音信号处理实验报告.doc

语音信号处理实验报告.doc

语音信号处理实验班级:学号:姓名:实验一基于MATLAB的语音信号时域特征分析(2 学时)1)短时能量( 1)加矩形窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32;for i=2:6h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为 2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2) ,legend('N=32' );elseif(i==3), legend('N=64' );elseif(i==4) ,legend('N=128' );elseif(i==5) ,legend('N=256' );elseif(i==6) ,legend('N=512' );endend1-10.5 1 1.5 2 2.54 x 102N=32 0 0.5 1 1.5 2 2.55 x 10N=64 0 0.5 1 1.5 2 2.510 x 1050.5 1 1.5 2 2.5 N=128 020 x 10100.5 1 1.5 2 2.5 N=256 040 x 1020N=5120 0.5 1 1.5 2 2.5x 10( 2)加汉明窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32; 3 43 43 43 43 43 4for i=2:6h=hanning(2.^(i-2)*N);% 形成一个汉明窗,长度为 2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2), legend('N=32' );elseif(i==3), legend('N=64' );elseif(i==4) ,legend('N=128' );elseif(i==5) ,legend('N=256' );elseif(i==6) ,legend('N=512' );endend1-10.5 1 1.5 2 2.52 x 101N=32 0 0.5 1 1.5 2 2.54 x 102N=64 0 0.5 1 1.5 2 2.54 x 102N=128 0 0.5 1 1.5 2 2.510 x 105N=256 0 0.5 1 1.5 2 2.520 x 1010N=5120 0.5 1 1.5 2 2.5x 102)短时平均过零率a=wavread('mike.wav');a=a(:,1);n=length(a);N=320;subplot(3,1,1),plot(a);h=linspace(1,1,N);En=conv(h,a.*a); %求卷积得其短时能量函数Ensubplot(3,1,2),plot(En);for i=1:n-1if a(i)>=0 3 43 43 43 43 43 4elseb(i) = -1;endif a(i+1)>=0b(i+1)=1;elseb(i+1)= -1;endw(i)=abs(b(i+1)-b(i)); %求出每相邻两点符号的差值的绝对值endk=1;j=0;while (k+N-1)<nZm(k)=0;for i=0:N-1;Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+N/2; % 每次移动半个窗endfor w=1:jQ(w)=Zm(160*(w-1)+1)/(2*N); %短时平均过零率endsubplot(3,1,3),plot(Q),grid;1-100.51 1.52 2.5 34x 10201000.51 1.52 2.5 34x 100.50204060801001201401601803)自相关函数N=240y=wavread('mike.wav');y=y(:,1);x=y(13271:13510);x=x.*rectwin(240);R=zeros(1,240);for k=1:240for n=1:240-kR(k)=R(k)+x(n)*x(n+k);endendj=1:240;plot(j,R);grid;2.521.510.5-0.5-1-1.5050100150200250实验二基于 MATLAB 分析语音信号频域特征1)短时谱cleara=wavread('mike.wav');a=a(:,1);subplot(2,1,1),plot(a);title('original signal');gridN=256;h=hamming(N);for m=1:Nb(m)=a(m)*h(m)endy=20*log(abs(fft(b)))subplot(2,1,2)plot(y);title('短时谱 ');gridoriginal signal10.5-0.5-100.51 1.52 2.5 34x 10短时谱10.500.20.40.60.81 1.2 1.4 1.6 1.8 22)语谱图[x,fs,nbits]=wavread('mike.wav')x=x(:,1);specgram(x,512,fs,100);xlabel('时间 (s)');ylabel('频率 (Hz)' );title('语谱图 ');语谱图50004000)zH3000(率频200010000.51 1.5 2时间 (s) 3)倒谱和复倒谱(1)加矩形窗时的倒谱和复倒谱cleara=wavread('mike.wav',[4000,4350]);a=a(:,1);N=300;h=linspace(1,1,N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title( '加矩形窗时的倒谱')subplot(2,1,2)plot(c);title( '加矩形窗时的复倒谱')加矩形窗时的倒谱1-1-2050100150200250300加矩形窗时的复倒谱105-5-10050100150200250300(2)加汉明窗时的倒谱和复倒谱 cleara=wavread('mike.wav',[4000,4350]);a=a(;,1);N=300;h=hamming(N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title( '加汉明窗时的倒谱')subplot(2,1,2)plot(c);title( '加汉明窗时的复倒谱')加汉明窗时的倒谱1-1-2-3050100150200250300加汉明窗时的复倒谱105-5-10050100150200250300实验三基于 MATLAB 的 LPC 分析MusicSource = wavread('mike.wav');MusicSource=MusicSource(:,1);Music_source = MusicSource';N = 256; % window length, N = 100 -- 1000;Hamm = hamming(N); % create Hamming windowframe = input( '请键入想要处理的帧位置= ' );% origin is current frameorigin = Music_source(((frame - 1) * (N / 2) + 1):((frame - 1) * (N / 2) + N));Frame = origin .* Hamm';%%Short Time Fourier Transform%[s1,f1,t1] = specgram(MusicSource,N,N/2,N);[Xs1,Ys1] = size(s1);for i = 1:Xs1FTframe1(i) = s1(i,frame);endN1 = input( '请键入预测器阶数= ' ); % N1 is predictor's order[coef,gain] = lpc(Frame,N1); % LPC analysis using Levinson-Durbin recursionest_Frame = filter([0 -coef(2:end)],1,Frame); % estimate frame(LP)FFT_est = fft(est_Frame);err = Frame - est_Frame; % error% FFT_err = fft(err);subplot(2,1,1),plot(1:N,Frame,1:N,est_Frame,'-r');grid;title('原始语音帧 vs.预测后语音帧 ')subplot(2,1,2),plot(err);grid;title('误差 ');pause%subplot(2,1,2),plot(f',20*log(abs(FTframe2)));grid;title('短时谱 ')%%Gain solution using G^2 = Rn(0) - sum(ai*Rn(i)),i = 1,2,...,P%fLength(1 : 2 * N) = [origin,zeros(1,N)];Xm = fft(fLength,2 * N);X = Xm .* conj(Xm);Y = fft(X , 2 * N);Rk = Y(1 : N);PART = sum(coef(2 : N1 + 1) .* Rk(1 : N1));G = sqrt(sum(Frame.^2) - PART);A = (FTframe1 - FFT_est(1 : length(f1'))) ./ FTframe1 ; % inverse filter A(Z)subplot(2,1,1),plot(f1',20*log(abs(FTframe1)),f1',(20*log(abs(1 ./ A))),'-r');grid;title('短时谱 ');subplot(2,1,2),plot(f1',(20*log(abs(G ./ A))));grid;title( 'LPC谱 ');pause%plot(abs(ifft(FTframe1 ./ (G ./ A))));grid;title('excited')%plot(f1',20*log(abs(FFT_est(1 : length(f1')) .* A / G )));grid;%pause%%find_pitch%temp = FTframe1 - FFT_est(1 : length(f1'));%not move higher frequncepitch1 = log(abs(temp));pLength = length(pitch1);result1 = ifft(pitch1,N);% move higher frequncepitch1((pLength - 32) : pLength) = 0;result2 = ifft(pitch1,N);%direct do real cepstrum with errpitch = fftshift(rceps(err));origin_pitch = fftshift(rceps(Frame));subplot(211),plot(origin_pitch);grid;title( '原始语音帧倒谱 (直接调用函数 )');subplot(212),plot(pitch);grid;title( '预测误差倒谱 (直接调用函数 )');pausesubplot(211),plot(1:length(result1),fftshift(real(result1)));grid;title('预测误差倒谱 (根据定义编写,没有去除高频分量)');subplot(212),plot(1:length(result2),fftshift(real(result2)));grid;title('预测误差倒谱 (根据定义编写,去除高频分量 )');原始语音帧 vs. 预测后语音帧0.40.2-0.2-0.4050100150200250300误差0.20.1-0.1-0.2050100150200250300短时谱50-50-100010203040506070LPC 谱100806040010203040506070原始语音帧倒谱(直接调用函数)0.5-0.5-1050100150200250300预测误差倒谱(直接调用函数)0.5-0.5-1050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300实验四基于 VQ 的特定人孤立词语音识别研究1、mfcc.mfunction ccc = mfcc(x)bank=melbankm(24,256,8000,0,0.5,'m' );bank=full(bank);bank=bank/max(bank(:));for k=1:12n=0:23;dctcoef(k,:)=cos((2*n+1)*k*pi/(2*24));endw = 1 + 6 * sin(pi * [1:12] ./ 12);w = w/max(w);xx=double(x);xx=filter([1 -0.9375],1,xx);xx=enframe(xx,256,80);for i=1:size(xx,1)y = xx(i,:);s = y' .* hamming(256);t = abs(fft(s));t = t.^2;c1=dctcoef * log(bank * t(1:129));c2 = c1.*w';m(i,:)=c2';enddtm = zeros(size(m));for i=3:size(m,1)-2dtm(i,:) = -2*m(i-2,:) - m(i-1,:) + m(i+1,:) + 2*m(i+2,:);enddtm = dtm / 3;ccc = [m dtm];ccc = ccc(3:size(m,1)-2,:);2、vad.mfunction [x1,x2] = vad(x)x = double(x);x = x / max(abs(x));FrameLen = 240;FrameInc = 80;amp1 = 10;amp2 = 2;zcr1 = 10;zcr2 = 5;maxsilence = 8; % 6*10ms = 30msminlen = 15; % 15*10ms = 150msstatus = 0;count = 0;silence = 0;tmp1 = enframe(x(1:end-1), FrameLen, FrameInc);tmp2 = enframe(x(2:end) , FrameLen, FrameInc);signs = (tmp1.*tmp2)<0;diffs = (tmp1 -tmp2)>0.02;zcr = sum(signs.*diffs, 2);amp = sum(abs(enframe(filter([1 -0.9375], 1, x), FrameLen, FrameInc)), 2); amp1 = min(amp1, max(amp)/4);amp2 = min(amp2, max(amp)/8);x1 = 0;x2 = 0;for n=1:length(zcr)goto = 0;switch statuscase {0,1}if amp(n) > amp1x1 = max(n-count-1,1);status = 2;silence = 0;count= count + 1;elseif amp(n) > amp2 | ...zcr(n) > zcr2status = 1;count = count + 1;elsestatus = 0;count= 0;endcase 2,if amp(n) > amp2 | ...zcr(n) > zcr2count = count + 1;elsesilence = silence+1;if silence < maxsilence count = count + 1;elseif count < minlenstatus = 0;silence = 0;count= 0;elsestatus = 3;endendcase 3,break;endendcount = count-silence/2;x2 = x1 + count -1;3、codebook.m%clear;function xchushi= codebook(m) [a,b]=size(m);[m1,m2]=szhixin(m);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m15,m16]=szhixin(m8);[m13,m14]=szhixin(m7);[m11,m12]=szhixin(m6);[m9,m10]=szhixin(m5);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);chushi(1,:)=zhixinf(m1);chushi(2,:)=zhixinf(m2);chushi(3,:)=zhixinf(m3);chushi(4,:)=zhixinf(m4);chushi(5,:)=zhixinf(m5);chushi(6,:)=zhixinf(m6);chushi(7,:)=zhixinf(m7);chushi(8,:)=zhixinf(m8);chushi(9,:)=zhixinf(m9);chushi(10,:)=zhixinf(m10);chushi(11,:)=zhixinf(m11);chushi(12,:)=zhixinf(m12);chushi(13,:)=zhixinf(m13);chushi(14,:)=zhixinf(m14);chushi(15,:)=zhixinf(m15);chushi(16,:)=zhixinf(m16);sumd=zeros(1,1000);k=1;dela=1;xchushi=chushi;while(k<=1000)sum=ones(1,16);for p=1:afor i=1:16d(i)=odistan(m(p,:),chushi(i,:));enddmin=min(d);sumd(k)=sumd(k)+dmin;for i=1:16if d(i)==dminxchushi(i,:)=xchushi(i,:)+m(p,:);sum(i)=sum(i)+1;endendendfor i=1:16xchushi(i,:)=xchushi(i,:)/sum(i); endif k>1dela=abs(sumd(k)-sumd(k-1))/sumd(k); endk=k+1;chushi=xchushi;endreturn4、 testvq.mclear;disp('这是一个简易语音识别系统,请保证已经将您的语音保存在相应文件夹中') disp('正在训练您的语音模版指令,请稍后...')for i=1:10fname = sprintf(海儿的声音\\%da.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);m = mfcc(x);m = m(x1:x2-5,:);ref(i).code=codebook(m);enddisp('语音指令训练成功,恭喜!)?'disp('正在测试您的测试语音指令,请稍后...')for i=1:10fname = sprintf(海儿的声音\\%db.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);mn = mfcc(x);mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endsumsumdmax=0;sumsumdmin=0;disp('对训练过的语音进行测试')for w=1:10sumd=zeros(1,10);[a,b]=size(test(w).mfcc);for i=1:10for p=1:afor j=1:16d(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);sumd(i)=sumd(i)+dmin; %×üê§??endendsumdmin=min(sumd)/a;sumdmin1=min(sumd);sumdmax(w)=max(sumd)/a;sumsumdmin=sumdmin+sumsumdmax;sumsumdmax=sumdmax(w)+sumsumdmax;disp('正在匹配您的语音指令,请稍后...')for i=1:10if (sumd(i)==sumdmin1)switch (i)case 1fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'前 ', '前 ');case2fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'后 ', '后 ');case3fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'左 ', '左 ');case4fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'右 ', '右 ');case5fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'东 ', '东 ');case6fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'南 ', '南 ');case7fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'西 ', '西 ');case8fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'北 ', '北 ');case9fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'上 ', '上 ');case10fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'下 ', '下 ');otherwisefprintf( 'error');endendendenddelamin=sumsumdmin/10;delamax=sumsumdmax/10;disp('对没有训练过的语音进行测试')disp('正在测试你的语音,请稍后...')for i=1:10fname = sprintf(o£ ?ùμ ?éùò?\\%db.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);mn = mfcc(x);mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endfor w=1:10sumd=zeros(1,10);[a,b]=size(test(w).mfcc);for i=1:10for p=1:afor j=1:16d(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);sumd(i)=sumd(i)+dmin; %×üê§??endendsumdmin=min(sumd);z=0;for i=1:10if (((sumd(i))/a)>delamax)||z=z+1;endenddisp('正在匹配您的语音指令,请稍后...')if z<=3for i=1:10if (sumd(i)==sumdmin)switch (i)case 1fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'前 ', '前 ');case2fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'后 ', '后 ');case3fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'左 ', '左 ');case4fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'右 ', '右 ');case5fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'东 ', '东 ');case6fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'南 ', '南 ');case7fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'西 ', '西 ');case8fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'北 ', '北 ');case9fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'上 ', '上 ');case10fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'下 ', '下 ');otherwisefprintf( 'error');endendendelsefprintf( '您输入的语音无效?\n'£)?endend(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。

基于MATLAB的语音处理

基于MATLAB的语音处理

基于MATLAB的语音滤波实验实验目的:1.在Matlab环境下对语音的频谱进行处理(数字滤波)并试听效果;2.在Matlab环境下对语音的抽样率进行处理(语音压缩)并试听效果实验步骤:一、音频文件的压缩(抽取)。

1.利用windows附件中的录音机功能录制8~10秒的.wav语音文件,并以lei为文件名保存到Matlab/work的文件夹中。

a.打开开始/程序/附件/娱乐/录音机;b.用windows media player播放一首音乐并用MIC对着耳机录音或自已说话录音(按键),到10秒时停止(按键);c.将录制的文件加存为C:/Matlab/work中,文件名为leii.wav;2.打开Matlab并新建一.m文件;3.在.m文件中用y=wavread(‘lei.wav’)命令读入语音文件。

4.语音压缩:在m命令窗中输入如下命令:5.运行sample2.m之后会在work文件夹中生成一个名为lei2的.wav文件,如下图:6.双击lei2音频文件,用耳机试听效果,并跟lei1的效果比较。

7.在sample2.m文件中改变抽取倍率s (必须为正整数),重复4、5、6步,观察在不同抽取倍率s下的音频质量,(注意:在运行sample2.m之前必须将work中名为lei2的.wav音频文件删除,或在.m文件中wavwrite()中的保存文件名改为其它的名字。

)二、音频信号的时域滤波(音频数据的时域卷积)。

(一)、低通滤波1.打开Matlab并新建一.m文件,在.m文件中用y=wavread(‘lei.wav’)命令读入语音文件。

2.在m命令窗中输入如下命令,并加存为sample3.m,运行该m文件。

3.双击lei3音频文件,用耳机试听效果,并跟lei1的效果比较。

4.再加一级h(n)的低通滤波,重复2、3步,如下图:(注意:在运行lei2.m之前必须将work中名为lei3的.wav音频文件删除,或在.m文件中wavwrite()中的保存文件名改为其它的名字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对语音信号的一部分进行傅里叶变换, 并进行倒谱分析,得到如图
从上面的倒谱图可以看出.当读 “主人,信息收到了”时,所对应的 频率大概在200Hz左右。这与人的语 音信号频率集中在200 Hz到4.5 kHz 之间是相一致的。而在未发声的时间 段内,相对的小高频部分(200500Hz) 应该属于背景噪声。
2、信号调整包括信号的幅度和频率的任意倍 数变化
3、信号的滤波采用了四种滤波方式
四、语音信号的处理设计
1 语音信号的Байду номын сангаас取
其中声音的采样频率Fs=22050Hz,y为采样 数据,NBITS表示量化阶数。 部分程序如下: fn=input(' Enter WAV filename:','s'); %获取一个*.wav的文件 [x,fs,nb]=wavread(fn); ms2=floor(fs*0.002); ms10=floor(fs*0.01); ms20=floor(fs*0.02); ms30=floor(fs*0.03);• • •• t=(0:length(x)-1)/fs; %计算样本时刻 subplot(2,1,1); %确定显示位置 plot(t,x); %画波形图 legend('Waveform'); xlabel( 'Time(s)'); ylabel('Amplitude');
语音信号的波形图
2 语音信号的调整
• 语音信号的频率调整
信号周期变为原来的1/2
• 语音信号的振幅调整
3 语音信号的傅里叶变换

• • • • • • • • • • • • • • • • • • • • • • • •
傅里叶变换的部分程序如下: x=y(44101:55050,1); %提取原语音信号的一部分 t=(0:length(x)-1)/fs; %计算样本时刻 subplot(3,1,1); %确定显示位置 plot(t,x); %画波形图 legend('波形图'); xlabel( 'Time(s)'); ylabel('Amplitude'); Y=fft(x,hamming(length(x))); %做加窗傅里叶变换 fm=5000*length(Y)/fs; %限定频率范围 f=(0:fm)*fs/length(Y); %确定频率刻度 subplot(3,1,2); plot(f,20*log10(abs(Y(1:length(f)))+eps)); legend('频谱图'); %画频谱图 ylabel('幅度(db)'); xlabel('频率(Hz)'); c=fft(log(abs(x)+eps)); %倒频谱计算 ms1=fs/1000; ms20=fs/50 q=(ms1:ms20)/fs; %确定倒频刻度 subplot(3,1,3); plot(q,abs(c(ms1:ms20))); %画倒谱图 legend('倒谱图'); xlabel('倒频(s)'); ylabel('倒频谱幅度(Hz)');
4 语音信号的滤波
幅频特性
经过低通滤波器处理后,比较处理前后 的波形图的变化
低通滤波后,声音稍微有些发闷、低沉,原因是高频分量被低通滤 波器衰减。但是很接近原来的声音
三、语音信号处理应用
• • • • 语音识别技术 语音合成技术 语音编码技术 语音理解技术
谢谢大家!
基于Matlab的语音信号处理
英才实验宁博宇
一、系统框架及实现
1)语音信号的采集 2)语音信号的处理
语音信号处理包括:信号的提取、信号的调整、信号的变换 和滤波 Ⅰ.语音信号的时域分析
提取:采集电脑设备上的一段音频信号,完成音频信号的频率,幅 度等信息的提取,并得到该语音信号的波形图。 调整:在设计的用户图形界面下对输入的音频信号进行各种变化, 如变化幅度、改变频率等操作,以实现对语音信号的调整。
Ⅱ.语音信号的频域分析 变换:在用户图形界面下对采集的语音信号进行Fourier等 变换,并画出变换前后的频谱图和变换后的频谱图。 滤波:滤除语音信号中的噪音部分,可采用低通滤波、高通 滤波、带通滤波和帯阻滤波,并比较各种滤波后的效果。
3)语音信号的效果显示
二、系统初步流程图
1、语音信号处理系统的工作流程:
相关文档
最新文档