考试固体物理
固体物理试题分析及答案
固体物理试题分析及答案一、单项选择题(每题2分,共10分)1. 固体物理中,晶体的周期性结构是由哪种原子排列形成的?A. 金属原子B. 非金属原子C. 金属原子和非金属原子D. 任意原子答案:C解析:晶体的周期性结构是由金属原子和非金属原子按照一定的规律排列形成的,这种排列方式使得晶体具有长程有序性。
2. 哪种类型的晶体具有各向异性?A. 立方晶体B. 六角晶体C. 单斜晶体D. 等轴晶体答案:C解析:单斜晶体属于三斜晶系,其三个轴的长度和夹角均不相同,因此具有各向异性。
3. 固体物理中,电子的能带结构是由什么决定的?A. 原子核B. 电子C. 原子核和电子D. 晶格答案:C解析:电子的能带结构是由原子核和电子共同决定的,它们之间的相互作用导致了电子能级的分裂和能带的形成。
4. 哪种类型的晶体具有完整的布里渊区?A. 立方晶体B. 六角晶体C. 单斜晶体D. 等轴晶体答案:A解析:立方晶体具有完整的布里渊区,这是因为立方晶体的晶格常数相等,使得布里渊区的形状为正八面体。
5. 固体物理中,哪种类型的晶体具有最高的对称性?A. 立方晶体B. 六角晶体C. 单斜晶体D. 等轴晶体答案:A解析:立方晶体具有最高的对称性,这是因为立方晶体的晶格常数相等,且晶格中的原子排列具有高度的对称性。
二、填空题(每题2分,共10分)1. 晶体的周期性结构是由______和______共同决定的。
答案:原子核、电子解析:晶体的周期性结构是由原子核和电子共同决定的,原子核提供了晶格的框架,而电子则填充在晶格中,形成了晶体的周期性结构。
2. 晶体的对称性可以通过______来描述。
答案:空间群解析:晶体的对称性可以通过空间群来描述,空间群是描述晶体对称性的数学工具,它包含了晶体的所有对称操作。
3. 电子的能带结构是由______和______共同决定的。
答案:原子核、电子解析:电子的能带结构是由原子核和电子共同决定的,它们之间的相互作用导致了电子能级的分裂和能带的形成。
初中固体物理试题及答案
初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物质的分子排列特点是:A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B2. 固体物质的分子间作用力是:A. 引力B. 斥力C. 引力和斥力D. 无作用力答案:C3. 下列物质中,属于晶体的是:A. 玻璃B. 橡胶C. 食盐D. 沥青答案:C4. 晶体与非晶体的主要区别在于:A. 颜色B. 形状C. 熔点D. 分子排列答案:D5. 固体物质的熔化过程需要:A. 吸收热量B. 放出热量C. 保持热量不变D. 无法判断答案:A6. 固体物质的硬度与下列哪项因素有关:A. 分子间作用力B. 分子质量C. 分子体积D. 分子形状答案:A7. 固体物质的导电性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:C8. 晶体的熔点与下列哪项因素有关:A. 晶体的纯度B. 晶体的颜色C. 晶体的形状D. 晶体的密度答案:A9. 固体物质的热膨胀现象说明:A. 分子间距离不变B. 分子间距离减小C. 分子间距离增大D. 分子间距离先增大后减小答案:C10. 固体物质的热传导性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:A二、填空题(每空1分,共20分)1. 固体物质的分子排列特点是________,而非晶体物质的分子排列特点是________。
答案:规则排列;无规则排列2. 固体物质的熔化过程中,分子间________,分子间距离________。
答案:作用力减弱;增大3. 晶体的熔点与________有关,而非晶体没有固定的熔点。
答案:晶体的纯度4. 固体物质的硬度与分子间________有关,分子间作用力越强,硬度越大。
答案:作用力5. 固体物质的热膨胀现象是由于温度升高,分子间距离________。
答案:增大三、简答题(每题10分,共30分)1. 简述晶体与非晶体的区别。
(完整word版)固体物理考试
)2(sin 422aq m βω=24aq m sin βω=m β42271()(cos cos 2)88E k ka ka ma =-+k a π=ma a E 22)( =π晶态, 非晶态, 准晶态在原子排列上各有什么特点? 答: 晶体是原子排列上长程有序)、非晶体(微米量级内不具有长程有序)、准晶体(有长程取向性, 而没有长程的平移对称性) 晶体:长程有序, 有固定的熔点 单晶体: 分子在整个固体中排列有序。
多晶体: 分子在微米量级内排列有序 非晶体:多晶体:分子在微米量级内排列有序, 整个晶体是由这些排列有序的晶粒堆砌而成的。
准晶体:有长程取向性, 而没有长程的平移对称性。
长程有序:至少在微米量级以上原子、分子排列具有周期性。
晶体结构周期性, 晶体: 基元+布拉维格子 实际的晶体结构与空间点阵之间有何关系? 晶体结构=空间点阵+基元。
原胞和晶胞的区别? 原胞是晶体的最小重复单元, 它反映的是晶格的周期性, 原胞的选取不是唯一的, 但是它们的体积都是相等的, 结点在原胞的顶角上, 原胞只包含1个格点;为了同时反映晶体的对称性, 结晶学上所取的重复单元, 体积不一定最小, 结点不仅可以在顶角上, 还可以在体心或者面心上, 这种重复单元称为晶胞。
掌握立方晶系3个布拉维格子的原胞、晶胞基失导法。
简单立方晶胞基失: 二者一样, 因为格点均在立方体顶角上。
原胞基失: a1=ai a2=bj=aj a3=ck=ak 体心立方除顶角格点外, 还有一个格点在位于立方体的中心。
晶胞基失a=a b=aj c=ak 原胞基失: a1=a/2(-i+j+k ) a 2=a/2(i-j+k ) a 3=a/2(i+j-k) 面心立方除顶角格点外: B 面的中心还有6个格点, (每个格点为相邻晶胞所共有) 原胞基失: a=ai b=aj c=ak 晶胞基失 a 1=a/2(j+k )a 2=a/2(k+i) a 3=a/2(i+j) 常见实际晶体的结构 ①氯化钠的结构: 由Na+和Cl-相间排列组成。
固体物理期末考试题及答案
固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。
晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。
例如,立方晶系的晶格常数a是指立方体的边长。
7. 简述能带理论的基本概念。
能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。
在固体中,电子的能量不是连续的,而是分成一系列的能带。
价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。
8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。
在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。
三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。
求该链的声子频率。
解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。
解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。
大学固体物理试题及答案
·考试时间120 分钟试题Array班级学号姓名一、简答题(共65分)1.名词解释:基元,空间点阵,复式格子,密堆积,负电性。
(10分)2.氯化钠与金刚石是复式格子还是单式格子,各自的基元中包含多少原子?分别是什么原子?(6分)3.在固体物理中为什么要引入“倒空间”的概念?(5分)4.在晶体的物相分析中,为什么使用X光衍射而不使用红外光?(5分)5.共价键的定义和特点是什么?(4分)6.声子有哪些性质?(7分)7.钛酸锶是一种常见的半导体材料,当产生晶格振动时,会形成多少支格波,其中声学支和光学支格波各多少支?(5分)8.晶格振动的Einsten模型在高温和低温下都与实验定律符合吗?为什么?(5分)9.试画出自由电子和近自由电子的D~En关系图,并解释二者产生区别的原因。
(8分)10.费米能级E f的物理意义是什么?在绝缘体中费米能级处在导带、禁带、价带的哪个中?两块晶体的费米能级本来不同,E f1≠E f2,当两块晶体紧密接触后,费米能级如何变化?(10分)二、计算题(共35分)1.铜靶发射λ=0.154nm的X射线入射铝单晶(面心立方结构),如铝(111)面一级布拉格反射角θº,试据此计算铝(111)面族的面间距d与铝的晶格常数a。
(10分)2.图示为二维正三角形晶格,相邻原子间距为a。
只计入最近邻相互作用,使用紧束缚近似计算其s能带E(k)、带中电子的速度v(k)以及能带极值附近的有效质量m*。
(15分)提示:使用尤拉公式化简3.用Debye模型计算一维单式晶格的热容。
(10分)参考答案一、简答题(共65分)1. (10分)答:基元:组成晶体的最小结构单元。
空间点阵:为了概括晶体结构的周期性,不考虑基元的具体细节,用几何点把基元抽象成为一点,则晶体抽象成为空间点阵。
复式格子:晶体由几种原子组成,但各种原子在晶体中的排列方式都是相同的(均为B格子的排列),可以说每一种原子都形成一套布拉菲子格子,整个晶体可以看成是若干排列完全相同的子格子套构而成。
固体物理学考试题及答案
固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。
A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。
A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。
A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。
A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。
A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。
A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。
A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。
A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。
A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。
答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。
答案:带隙3. 金属导电的原因是金属原子的价电子可以______。
固体物理学考试试题及答案
固体物理学考试试题及答案题目一:1. 介绍固体物理学的定义和基本研究对象。
答案:固体物理学是研究固态物质行为和性质的学科领域。
它主要研究固态物质的结构、形态、力学性质、磁学性质、电学性质、热学性质等方面的现象和规律。
2. 简述晶体和非晶体的区别。
答案:晶体是具有有序结构的固体,其原子、离子或分子排列规则且呈现周期性重复的结构。
非晶体则是没有明显周期性重复结构的固体,其原子、离子或分子呈现无序排列。
3. 解释晶体中“倒易格”和“布里渊区”的概念。
答案:倒易格是晶体中倒格矢所围成的区域,在倒易格中同样存在周期性的结构。
布里渊区是倒易格中包含所有倒格矢的最小单元。
4. 介绍固体中的声子。
答案:声子是固体中传递声波和热传导的一种元激发。
它可以看作是晶体振动的一种量子,具有能量和动量。
5. 解释“价带”和“能带”之间的关系。
答案:价带是材料中的电子可能占据的最高能量带。
能带是电子能量允许的范围,它由连续的价带和导带组成。
6. 说明禁带的概念及其在材料中的作用。
答案:禁带是能带中不允许电子存在的能量范围。
禁带的存在影响着材料的导电性和光学性质,决定了材料是绝缘体、导体还是半导体。
题目二:1. 论述X射线衍射测定晶体结构的原理。
答案:X射线衍射利用了X射线与晶体的相互作用来测定晶体结构。
当X 射线遇到晶体时,晶体中的晶格会将X射线发生衍射,衍射图样可以提供关于晶体的结构信息。
2. 解释滑移运动及其对晶体的影响。
答案:滑移运动是晶体中原子沿晶格面滑动而发生的变形过程。
滑移运动会导致晶体的塑性变形和晶体内部产生位错,影响了晶体的力学性质和导电性能。
3. 简述离子的间隙、亚格子和空位的概念。
答案:间隙是晶体结构中两个相邻原子之间的空间,可以包含其他原子或分子。
亚格子是晶体结构中一个位置上可能有不同种类原子或离子存在的情况。
空位是晶体结构中存在的缺陷,即某个原子或离子缺失。
4. 解释拓扑绝缘体的特点和其应用前景。
答案:拓扑绝缘体是一种特殊的绝缘体,其表面或边界上存在不同于体内的非平庸的拓扑态。
高校物理专业固体物理期末试卷及答案
高校物理专业固体物理期末试卷及答案一、选择题(每题5分,共30分)1. 以下哪个不是固体物理的研究对象?A. 电荷的导体中的传播B. 物质的晶体结构C. 电子的运动D. 液体的流动性质答案:D2. 在固体物理中,布拉格方程是用来描述什么现象的?A. 光的干涉现象B. 电子的散射现象C. 磁场的分布现象D. 热传导现象答案:A3. 阻塞模型是固体物理中用来解释材料导电性的模型,它主要考虑了以下哪些因素?A. 电子的散射和杨氏模量B. 电子的散射和晶格缺陷C. 杨氏模量和晶体结构D. 晶格缺陷和电子的能带结构答案:B4. 下列哪个参数不是用来描述固体物理中晶格振动的特性?A. 固体的杨氏模量B. 固体的居里温度C. 固体的声速D. 固体的谐振子频率答案:A5. 铁磁体和反铁磁体的主要区别在于它们的:A. 热传导性质B. 磁化曲线形状C. 磁化方向D. 磁化温度答案:C6. 固体物理中的光栅是一种重要的实验工具,它主要用来:A. 进行晶体的结构分析B. 测定材料的电导率C. 测量固体的磁性D. 研究固体的光学性质答案:D二、填空题(每题10分,共40分)1. 固体物理中用于描述材料导电性的基本参量是电阻率和______。
答案:电导率2. 布拉格方程为d*sin(θ) = n*λ中,d表示晶格的______。
答案:间距3. 固体物理中描述材料磁性的基本参量是磁矩和______。
答案:磁化强度4. 固体物理研究中,振动频率最低的模式被称为______模式。
答案:基态5. 根据阻塞模型,材料的电导率与温度的关系满足______定律。
答案:维恩三、简答题(每题20分,共40分)1. 什么是固体物理学中的费米面?它对材料的性质有什么影响?答案:费米面是能带理论中的一个重要概念,表示能量等于费米能级的电子所占据的状态的集合,它将占据态与未占据态分界开来。
费米面对材料的性质有很大影响,如电导率、热导率等。
带有较高电子密度的材料,其费米面形状趋于球形;而低电子密度材料,费米面呈现出不规则的形状。
固体物理考试试卷
固体物理考试试卷一、选择题(每题3分,共30分)1. 固体物理中,描述原子间相互作用的势能函数通常采用:A. 谐振子势能函数B. 库伦势能函数C. 量子势能函数D. 线性势能函数2. 以下哪种晶体结构不属于立方晶系?A. 简单立方B. 体心立方C. 面心立方D. 六角密堆积3. 在固体中,电子的能带结构是由以下哪个因素决定的?A. 原子核的电荷B. 电子的自旋C. 原子的排列方式D. 外部磁场4. 金属导电性的微观机制是什么?A. 电子的热运动B. 电子的跃迁C. 自由电子的定向运动D. 电子的无规则热振动5. 半导体材料的导电性介于金属和绝缘体之间,这是因为:A. 半导体中没有自由电子B. 半导体中的电子被束缚在原子上C. 半导体中的电子能带结构具有特殊的能隙D. 半导体中的电子受到外部电场的影响6. 以下哪种材料不属于超导体?A. 汞B. 铅C. 铜D. 铝7. 固体物理中,声子是描述什么的量子?A. 电子的集体运动B. 原子的集体振动C. 光子的集体运动D. 磁子的集体运动8. 以下哪种晶体缺陷不会影响晶体的电导率?A. 位错B. 空位C. 杂质D. 晶界9. 固体物理中,费米能级是指:A. 电子能量分布的最低点B. 电子能量分布的最高点C. 电子能量分布的中点D. 电子能量分布的平均点10. 以下哪种材料具有顺磁性?A. 铁B. 铜C. 铝D. 氧二、填空题(每题2分,共20分)1. 在固体物理中,周期性边界条件可以用来描述原子在晶体中的排列,这种条件通常用______来表示。
2. 能带理论中,完全填充的能带称为______,未完全填充的能带称为______。
3. 金属的塑性变形通常与晶体中的______有关。
4. 半导体的掺杂可以改变其______,从而改变其电导率。
5. 超导体的临界温度与材料的______有关。
6. 声子是晶体中原子振动的量子化描述,其能量与______成正比。
7. 晶体缺陷中的位错可以分为______位错和______位错。
固体物理试题及答案
固体物理试题及答案一、选择题(每题2分,共10分)1. 固体物理中,晶体的周期性结构是通过哪种方式描述的?A. 电子云B. 原子轨道C. 布洛赫定理D. 费米面答案:C2. 以下哪种材料不属于半导体材料?A. 硅B. 锗C. 铜D. 砷化镓答案:C3. 在固体物理中,能带理论描述的是:A. 电子在固体中的自由运动B. 电子在固体中的局域化C. 电子在固体中的能级分布D. 电子在固体中的跃迁过程答案:C4. 固体中的声子是:A. 一种基本粒子B. 一种准粒子C. 一种实际存在的粒子D. 一种不存在的粒子答案:B5. 以下哪种效应与超导现象无关?A. 迈斯纳效应B. 约瑟夫森效应C. 霍尔效应D. 量子隧穿效应答案:C二、填空题(每题2分,共20分)1. 固体物理中,描述电子在周期性势场中的运动的定理是______。
答案:布洛赫定理2. 固体中的能带结构是由______决定的。
答案:电子波函数3. 在固体中,电子的费米能级是______。
答案:电子占据的最高能级4. 固体中的电子输运性质可以通过______来描述。
答案:电导率5. 固体中的晶格振动可以用______来描述。
答案:声子6. 固体中的电子-声子相互作用会导致______。
答案:电子散射7. 固体中的能隙是指______。
答案:价带顶部和导带底部之间的能量差8. 超导体的临界温度是指______。
答案:超导相变发生的温度9. 固体中的霍尔效应是由于______。
答案:电子在磁场中的偏转10. 固体中的磁阻效应是由于______。
答案:电子在磁场中的运动受到阻碍1. 简述固体物理中能带理论的基本思想。
答案:能带理论的基本思想是将固体中的电子视为在周期性势场中运动的量子粒子。
由于周期性势场的存在,电子的能级不再是离散的,而是形成了连续的能带。
这些能带决定了固体的电子结构和性质,如导电性、磁性和光学性质等。
2. 描述固体中的声子是如何产生的。
答案:固体中的声子是由于晶格振动的量子化而产生的准粒子。
固体物理学考试重点
固体物理学一:晶体结构1.晶体结构=空间点阵+基元2.晶格:晶体中原子的规则排列简称为晶格。
3.基元:在晶体中适当选取某些原子作为一个基本结构单元,这个基本结构单元称为基元。
4.结点:空间点阵学说中所称的“点子”代表着结构中相同的位置,称为结点。
5.点阵:格点的总体称为点阵。
6晶向:晶体中同一个格点可以形成方向不同的晶列,每一个晶列定义了一个方向,称为晶向。
7.简单格子晶体:基元只有一个原子的晶体,原子与晶格的格点相重合而且每个格点周围的情况都一样。
8.复式格子晶体:基元有两个或两个以上的原子构成的晶体。
9.声子:10.晶胞与原胞的区别:在同一晶格中原胞的选取不是唯一的,但他们的体积都是相等的,而晶胞的体积一般为原胞的若干倍。
11.绝对零度费米能:12.NaCl和CsCl的晶体结构:NaCl:晶胞为面心立方;阴阳离子均构成面心立方且相互穿插而形成;每个阳离子周围紧密相邻有6个阴离子,每个阴离子周围也有6个阳离子,均形成正八面体;每个晶胞中有4个阳离子和4个阴离子,组成为1:1。
CsCl:晶胞为体心立方;阴阳离子均构成空心立方体,且相互成为对方立方体的体心;每个阳离子周围有8个阴离子,每个阴离子周围也有8个阳离子,均形成立方体;每个晶胞中有1个阴离子和1个阳离子,组成为1:1。
13.晶体的结合方式,为什么能结合成晶体?①离子性结合,靠离子间的库伦吸引作用形成晶体;②共价结合,靠两个原子各贡献一个电子形成共价键进而形成晶体;③金属性结合,靠负电子云和正离子实之间的库伦相互作用结合成晶体;④范德瓦尔斯结合,靠瞬时的电偶极矩的感应作用结合成晶体。
14.晶体的结合能与平衡间距?晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量;晶体的平衡间距就是14.什么是晶格振动的德拜模型和爱因斯坦模型,其物理意义是什么,为什么德拜模型在低温时能给出较好的结果而爱因斯坦模型给出的结果较差?德拜模型:假设晶体是各向同性的连续弹性介质,格波可以看成连续介质的弹性波。
固体物理试题库及答案
固体物理试题库及答案一、单项选择题1. 固体物理中,描述原子间相互作用势能的函数称为()。
A. 势能函数B. 势函数C. 势能势函数D. 相互作用势函数答案:D2. 固体中电子的能带结构是由()决定的。
A. 原子核B. 电子C. 原子D. 晶格答案:D3. 在固体中,声子是()的量子化。
A. 电子B. 光子C. 声波D. 晶格振动答案:D4. 金属中的自由电子近似描述了()。
A. 金属的导电性B. 金属的磁性C. 金属的热导性D. 金属的塑性答案:A5. 能带理论中,价带和导带之间的区域称为()。
A. 能隙B. 能带C. 能级D. 能区答案:A二、多项选择题1. 下列哪些因素会影响固体的电子能带结构?()A. 晶格类型B. 原子排列方式C. 原子核外电子排布D. 温度答案:ABCD2. 固体物理中,以下哪些现象可以通过声子来解释?()A. 热传导B. 电导C. 光导D. 热膨胀答案:AD3. 固体中的电子输运性质可以通过哪些参数描述?()A. 电子迁移率B. 电子密度C. 电子亲和力D. 电子浓度答案:ABD三、填空题1. 固体物理中,晶格的周期性势场可以用______函数来描述。
答案:周期性2. 固体中的电子能带是由______决定的。
答案:晶格周期性3. 在固体中,电子的波函数是______的。
答案:布洛赫4. 固体中的电子跃迁通常伴随着______的产生或湮灭。
答案:声子5. 金属的导电性是由______电子提供的。
答案:自由四、简答题1. 简述能带理论的基本原理。
答案:能带理论的基本原理是,固体中的电子在周期性晶格势场中运动,其波函数满足布洛赫定理,即波函数可以写成平面波与周期函数的乘积形式。
由于晶格的周期性,电子的能级形成连续的能带,不同能带之间存在能隙。
电子在能带中的分布决定了固体的导电性、磁性等物理性质。
2. 描述声子在固体物理中的作用。
答案:声子是晶格振动的量子化,它们在固体物理中扮演着重要角色。
固体物理考题及答案一
一、选择题(共30分,每题3分)目的:考核基本知识。
1、晶格常数为的面心立方晶格,原胞体积等于 D 。
A. B. C. D.2、体心立方密集的致密度是 C 。
A. 0.76B. 0.74C. 0.68D. 0.623、描述晶体宏观对称性的基本对称元素有 A 。
A. 8个B. 48个C.230个D.320个4、晶格常数为的一维双原子链,倒格子基矢的大小为 D 。
A. B. C. D.5、晶格常数为a的简立方晶格的(110)面间距为 A 。
A. aB. 3aa D. 5a C. 46、晶格振动的能量量子称为 CA. 极化子B. 激子C. 声子D. 光子7、由N个原胞组成的简单晶体,不考虑能带交叠,则每个s能带可容纳的电子数为 C 。
A. N/2B. NC. 2ND. 4N8、三维自由电子的能态密度,与能量的关系是正比于 C 。
A. B. C. D.9、某种晶体的费米能决定于A. 晶体的体积B.晶体中的总电子数C.晶体中的电子浓度D. 晶体的形状10、电子有效质量的实验研究方法是 C 。
A. X射线衍射B.中子非弹性散射C.回旋共振D.霍耳效应二、简答题(共20分,每小题5分)1、波矢空间与倒易空间有何关系? 为什么说波矢空间内的状态点是准连续的?波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为, 而波矢空间的基矢分别为, N1、N2、N3分别是沿正格子基矢方向晶体的原胞数目.倒格空间中一个倒格点对应的体积为,波矢空间中一个波矢点对应的体积为,即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N. 由于N 是晶体的原胞数目,数目巨大,所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的。
也就是说,波矢点在倒格空间看是极其稠密的。
因此, 在波矢空间内作求和处理时,可把波矢空间内的状态点看成是准连续的。
2、简述处理固体比热的德拜模型的基本出发点和主要结论。
目的:考核对晶格热容量子理论的掌握。
固体物理考试要点
1、凝聚态物质包括:液体、固体、软物质2、固体分为:晶体、准晶体、非晶体4、晶格:晶体中原子的规则排列;晶体结构:晶体中原子的具体排列形式5、常见晶体结构:简单立方晶体结构、体心立方晶体结构、密堆晶体结构、金刚石结构、NaCl结构、CsCl晶体结构、立方硫化锌结构、钙钛矿结构6、配位数:每个原子周围的最近邻原子数;简单立方结构:6;体心立方结构:8;面心立方体结构:12;六角密堆结构:12;金刚石结构:48、简单晶格举例:sc、bcc、fcc结构形成的晶体;复式晶格举例:NaCl结构、CsCl结构9、基元:使一个理想晶体在空间无限周期重复而得到的全同的结构单元;简单晶格的基元特点:只含一个原子;复式晶格的基元特点:含有两个以上的原子或离子10、结点:用来代表忽略结构中基元内原子分布细节的一个集合结构;点阵:晶格被抽象为一个纯粹的几何结构;点阵与晶体结构的逻辑关系:<点阵>+<基元>=<晶体结构>11、点阵的基矢:对于一个给定点阵选择三个不共面的基本平移矢量a1、a2、a3;破缺的平移对称性:只对一组离散的平移矢量Rl具有不变性12、对于一个点阵通常可以定义:初基元胞、单胞、W-S元胞三种元胞15、单胞:为直观反映点阵的宏观对称性而选择的一个非初基元胞;晶轴:单胞的三条棱a、b、c;晶格常数:长度a、b、c16、单胞和初基元胞的关系:sc点阵:一致;bcc点阵:单胞体积为初基元胞体积的两倍;fcc点阵:单胞体积为初基元胞体积的四倍17、简要说明W-S元胞的构造过程:把结点同所有其他结点用直线连接起来,做这些连线的中垂面,这些面包围的最小多面体,构成W-S元胞19、晶列:点阵的结点看成分布在一系列相互平行的直线上,这些直线称为晶列;晶向指数:第11页21、晶面:点阵的结点看成分布在一些列平行且等距的平面上,这些平面称为晶面26、晶面指数和密勒指数的不同:晶面指数:以基矢为坐标系,密勒指数:以单胞的三条棱为坐标系27、正空间:坐标空间;倒空间;坐标空间的傅里叶变换28、正点阵:晶体正空间的性质,由晶体的点阵来描述;倒点阵:正点阵的傅里叶变换33、宏观对称性/点对称性:晶体未作平移34、晶体的宏观对称性是破缺的:由于晶体中原子规则排列的结果35、宏观对称操作/点对称操作:包括绕某轴的转动操作和对某点的反演操作以及他们的组合操作37、对称素:一个物体借以进行对称操作的一根轴、一个平面、一个点38、n次旋转轴:如果一个物体绕某轴旋转2π/n及其倍数不变,该轴即n次旋转轴;对称心:如果一个物体对某点反演不变,该点为对称心;n次旋反演转轴:如果一个物体绕某轴旋转2π/n然后再反演不变,该轴即n次旋转反演轴44、晶体结构有:32种点群;230种空间群1、原子的电离能:基态原子失去一个价电子所必须的能量;它取决于:核电荷、原子半径、电子的壳层结构2、原子的亲和能:一个基态中性原子得到一个电子成为负离子所释放出的能量;元素周期表中原子的亲和能的变化趋势:亲和能随原子半径减小而增大3、原子的负电性:描述化合物分子中组成原子吸引电子倾向强弱的物理量;它的相关因素:原子的电离能、亲和能、价态4、负电性与电离能及亲和能之间是:负电性=Km/2(电离能+亲和能)5、晶体结合类型:金属结合、共价结合、离子结合、范德瓦耳斯结合、氢键、混合键7、金属的基本特性:高导电性、高导热性、大的延展性、金属光泽8、共价键:两个原子共有的自旋反平行的一对电子的结构;成键态:对于单态,EⅠ在R /a B=1.518 处有一极小值,对应两原子组成分子后相互吸引;反成键态:三重态EⅡ随R ab ab增加单调减小,EⅡ对应于原子间相互排斥,因而不能构成稳定分子9、共价键的饱和性:一个原子形成共价键的数目取决于这个原子壳层为填满的加点字数;共价键的方向性:一个原子总在电子波函数最大的方向成键11、极性共价键:当两个电负性不同的原子结合时,不再有这样的对称性要求,电子对将要靠近负电性大的原子一侧,分子显示电偶极距12、离子键:依靠正负离子间库伦吸引的结合17、结合能:原子结合成晶体后释放的能量W18、晶体的内能包括:吸引势能和排斥势能;吸引势能的本质:长程相互作用;排斥势能的本质:系统动能,是一种短程的相互作用;画图说明:19、决定晶体平衡体积的条件:dU/dV│vo=020、体积弹性模量:它反映晶体的性质:倔强性21、一个离子的静电吸引势能:22、马德龙常数:马德龙能:晶体所有平均每一个元胞所具有的长程库伦吸引势23、离子晶体的重叠排斥势:24、具有N个原胞的晶体的内能函数:27、勒纳-琼斯势:28、包含N个原子的惰性气体晶体的总内能:1、晶格动力学:从晶体中原子的振动出发去讨论晶体的宏观性质;热运动在晶体宏观性质上最直接的表现:比热容2、简正模:在简谐近似下讨论晶格的本征振动;格波:简正模对应一个振幅调制的平面波9、一维单原子晶体的波恩-卡曼边界条件:10、波矢密度:一维单原子晶体的波矢密度:15、声学支:特点:振动频率至于M有关;光学支:特点:频率只与m有关16、命名理由:声学支:对于小的q值,此时,波的群速=相速,,与频率无关,表现为长波长弹性波,纵波与声波等同;光学支:当q→0时,其振动频率由力常数β和折合质量决定,此频率恰好位于电磁波频谱的远红外区域。
(完整版)固体物理试题库
(完整版)固体物理试题库一、名词解释1.晶态--晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
2.非晶态--非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
3.准晶--准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
4.单晶--整块晶体内原子排列的规律完全一致的晶体称为单晶体。
5.多晶--由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。
6.理想晶体(完整晶体)--内在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。
7.空间点阵(布喇菲点阵)--晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。
8.节点(阵点)--空间点阵的点子代表着晶体结构中的相同位置,称为节点(阵点)。
9.点阵常数(晶格常数)--惯用元胞棱边的长度。
10.晶面指数—描写布喇菲点阵中晶面方位的一组互质整数。
11.配位数—晶体中和某一原子相邻的原子数。
12.致密度—晶胞内原子所占的体积和晶胞体积之比。
13.原子的电负性—原子得失价电子能力的度量;电负性=常数(电离能+亲和能)14.肖特基缺陷—晶体内格点原子扩散到表面,体内留下空位。
15.费仑克尔缺陷--晶体内格点原子扩散到间隙位置,形成空位-填隙原子对。
16.色心--晶体内能够吸收可见光的点缺陷。
17.F心--离子晶体中一个负离子空位,束缚一个电子形成的点缺陷。
18.V心--离子晶体中一个正离子空位,束缚一个空穴形成的点缺陷。
19.近邻近似--在晶格振动中,只考虑最近邻的原子间的相互作用。
20.Einsten模型--在晶格振动中,假设所有原子独立地以相同频率ωE振动。
21.Debye模型--在晶格振动中,假设晶体为各向同性连续弹性媒质,晶体中只有3支声学波,且ω=vq 。
22.德拜频率ωD── Debye模型中g(ω)的最高频率。
固体物理考试要点及部分答案
名词解释1、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。
复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。
5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。
答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。
24、引入玻恩卡门条件的理由是什么?答:(1)方便于求解原子运动方程.由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4).玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.固体物理复习要点名词解释1、基元、布拉伐格子、简单格子。
2、基矢、原胞3、晶列、晶面4、声子5、布洛赫定理(Bloch定理)6、能带能隙、晶向及其标志、空穴7、紧束缚近似、格波、色散关系8、近自由近似9、振动模、10、施主,N型半导体、受主,P型半导体11、本征光吸收;本征吸收边12、导带;价带;费米面简单回答题1、倒格子是怎样定义的?为什么要引入倒格子这一概念?2、如果将等体积的刚球分别排成简单立方、体心立方、面心立方结构,则刚球所占体积与总体积之比分别是多少?3、在讨论晶格振动时,常用到Einstein模型和Debye模型,这两种模型的主要区别是什么?以及这两种模型的局限性在哪里?6、叙述晶格周期性的两种表述方式。
固体物理经典复习题及答案(供参考)
固体物理经典复习题及答案(供参考)⼀、简答题1.理想晶体答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间⽆限重复排列⽽构成的。
2.晶体的解理性答:晶体常具有沿某些确定⽅位的晶⾯劈裂的性质,这称为晶体的解理性。
3.配位数答: 晶体中和某⼀粒⼦最近邻的原⼦数。
4.致密度答:晶胞内原⼦所占的体积和晶胞体积之⽐。
5.空间点阵(布喇菲点阵)答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由⼀些相同的点⼦在空间有规则地做周期性⽆限重复排列,这些点⼦的总体称为空间点阵(布喇菲点阵),即平移⽮量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。
空间点阵是晶体结构周期性的数学抽象。
6.基元答:组成晶体的最⼩基本单元,它可以由⼏个原⼦(离⼦)组成,整个晶体可以看成是基元的周期性重复排列⽽构成。
7.格点(结点)答: 空间点阵中的点⼦代表着结构中相同的位置,称为结点。
8.固体物理学原胞答:固体物理学原胞是晶格中的最⼩重复单元,它反映了晶格的周期性。
取⼀结点为顶点,由此点向最近邻的三个结点作三个不共⾯的⽮量,以此三个⽮量为边作的平⾏六⾯体即固体物理学原胞。
固体物理学原胞的结点都处在顶⾓位置上,原胞内部及⾯上都没有结点,每个固体物理学原胞平均含有⼀个结点。
9.结晶学原胞答:使三个基⽮的⽅向尽可能的沿空间对称轴的⽅向,以这样三个基⽮为边作的平⾏六⾯体称为结晶学原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n ,其中n 是结晶学原胞所包含的结点数, 是固体物理学原胞的体积。
10.布喇菲原胞答:使三个基⽮的⽅向尽可能的沿空间对称轴的⽅向,以这样三个基⽮为边作的平⾏六⾯体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n ,其中n 是结晶学原胞所包含的结点数,是固体物理学原胞的体积11.维格纳-赛兹原胞(W-S 原胞)答:以某⼀阵点为原点,原点与其它阵点连线的中垂⾯(或中垂线) 将空间划分成各个区域。
大学固体物理试题及答案
大学固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物理中,晶格振动的量子化描述中,声子是()。
A. 电子的量子化B. 光子的量子化C. 晶格振动的量子化D. 磁场的量子化答案:C2. 能带理论中,价带和导带之间的区域称为()。
A. 能隙B. 能级C. 能带D. 能区答案:A3. 在固体中,电子的自由度不包括()。
A. 位置B. 动量C. 能量D. 质量答案:D4. 固体物理中,金属的自由电子模型是由哪位科学家提出的?()A. 薛定谔B. 泡利C. 德鲁德D. 海森堡答案:C5. 固体物理中,半导体的能带结构中,导带和价带之间的能隙称为()。
A. 能隙B. 能级C. 能带D. 能区答案:A6. 晶格常数是指()。
A. 晶格中原子间的平均距离B. 晶格中原子间的最大距离C. 晶格中原子间的最小距离D. 晶格中原子间的任意距离答案:A7. 固体物理中,费米能级是指()。
A. 最高占据能级的电子能量B. 最低未占据能级的电子能量C. 电子从导带跃迁到价带所需的能量D. 电子从价带跃迁到导带所需的能量答案:B8. 固体物理中,布拉格反射定律描述的是()。
A. X射线在晶体中的衍射现象B. 电子在晶体中的衍射现象C. 光在晶体中的反射现象D. 声波在晶体中的反射现象答案:A9. 固体物理中,超导现象是指()。
A. 材料在低温下电阻突然消失的现象B. 材料在高温下电阻突然消失的现象C. 材料在低温下电阻突然增加的现象D. 材料在高温下电阻突然增加的现象答案:A10. 固体物理中,霍尔效应是指()。
A. 电流通过导体时,导体两端产生电压的现象B. 电流通过导体时,导体两侧产生磁场的现象C. 电流通过导体时,导体内部产生电场的现象D. 电流通过导体时,导体内部产生磁场的现象答案:B二、填空题(每题2分,共20分)1. 固体物理中,晶格振动的量子化描述中,声子是晶格振动的_______。
答案:量子化2. 固体物理中,金属的自由电子模型中,电子被视为_______。
大学固体物理考试题及答案参考
固体物理练习题1.晶体结构中,面心立方的配位数为 12 。
2。
空间点阵学说认为 晶体内部微观结构可以看成是由一些相同的点子在三维空间作周期性无限分布 。
3.最常见的两种原胞是 固体物理学原胞、结晶学原胞 。
4.声子是 格波的能量量子 ,其能量为 ħωq ,准动量为 ħq .5。
倒格子基矢与正格子基矢满足 正交归一关系 。
6。
玻恩-卡曼边界条件表明描述有限晶体振动状态的波矢只能取 分立的值 , 即只能取 Na的整数倍。
7.晶体的点缺陷类型有 热缺陷、填隙原子、杂质原子、色心 .8.索末菲的量子自由电子气模型的四个基本假设是 自由电子近似、独立电子近似、无碰撞假设、自由电子费米气体假设 。
9。
根据爱因斯坦模型,当T→0时,晶格热容量以 指数 的形式趋于零。
10.晶体结合类型有 离子结合、共价结合、金属结合、分子结合、氢键结合 。
11。
在绝对零度时,自由电子基态的平均能量为 0F 53E 。
12。
金属电子的 B m ,23nk C V = 。
13.按照惯例,面心立方原胞的基矢为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=)(2)(2)(2321j i a a k i a a k j a a,体心立方原胞基矢为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=+-=++-=)(2)(2)(2321k j i a a k j i a a k j i a a。
14 。
对晶格常数为a 的简单立方晶体,与正格矢k a j a ia R ˆˆˆ22++=正交的倒格子晶面族的面指数为 122 , 其面间距为 a 32π 。
15。
根据晶胞基矢之间的夹角、长度关系可将晶体分为 7大晶系 ,对应的只有14种 布拉伐格子.16.按几何构型分类,晶体缺陷可分为 点缺陷、线缺陷、面缺陷、体缺陷、微缺陷 。
17. 由同种原子组成的二维密排晶体,每个原子周围有 6 个最近邻原子。
18.低温下金属的总摩尔定容热容为 3m ,bT T C V +=γ 。
19. 中子非弹性散射 是确定晶格振动谱最有效的实验方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考试固体物理1.晶体的结合能,晶体的内能,原子间的相互作用势能有什么区别?答:自由粒子结合成晶体过程中释放出的能量,或者把晶体拆散成一个个自由粒子所需要的能量称为晶体的结合能。
原子的动能与原子间的相互作用势能之和称为晶体的内能。
在0K时,原子有零点振动能。
但原子的零点振动与原子间的相互作用势能的绝对值相比小得多。
所以,在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能。
2.简述线缺陷的类型和区别,并说明理论上临界切应力比实验值大3-4个数量级的原因?答:(1)刃位错,螺位错螺位错线与滑移方向平行,刃位错线与滑移方向垂直。
3.试述导体,半导体和绝缘体能带结构的基本特征?以及在外电场下,为什么他们的导电特性会有不同?答:导体:两种情况:第一,价带未填满而成为导带;第二,价带虽已填满,但禁带宽度为零,满带与导带部分重叠。
除去完全充满的一系列能带外,还有只是部分地被电子填充的能带,后者可以起导电作用,称为导带。
半导体:价带已填满,禁带宽度较小,满带中的电子在不很强的外界影响下即可进入空带,参与导电,同时满带中留下的空穴也可参与导电。
绝缘体:价带已被电子填满,成为满带,在满带和空带之间的禁带宽度很大,满带中很少有电子能被激发到空带中去,在外电场作用下,参与导电的电子极少。
4.金属自由电子论在空间的等能面和费米面是何形状?费米能量与哪些因素有关?在低温下比热容比经典理论给出的结果小得多,为什么?答:(1)都是球形(2)与电子密度和温度有关(3)因为在低温时,大多数电子的能量远低于费米能级,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。
5.晶体结构是如何区分Bravais格子和复式格子的?答:当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表原子,这种晶体结构就称为简单格子或布拉菲格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网络,这些格子相互错开一定距离套构在一起,这种晶体结构叫做复式格子。
6.共价结合为什么有“饱和性”和“方向性”?答:要形成稳定的共价键,必须尽可能使电子云重叠程度大一些,在成键时,要尽可能沿着电子云密度最大的方向发生重叠,形成稳定的共价键,因此共价键具有方向性。
元素的原子行程共价键时,当一个原子的所有未成对电子和另一些原子中自旋方向相反的未成对电子配对成键后,就不再跟其他原子的未成对电子配对成键。
因此,共价键具有饱和性。
7.简要说明简谐近似下晶体不会发生热膨胀的物理原因;势能的非简谐项起了哪些作用?答:由于在简谐近似下,原子间相互作用能在平衡位置附近是对称的,随着温度升高,原子的总能量增高,但原子间的距离的平均值不会增大,因此,简谐近似不能解释热膨胀现象。
势能的非简谐项在晶体的热传导和热膨胀中起了至关重要的作用。
8.一个物体或体系的对称性高低如何判断?有何物理意义?过测角和投影以后,才可对它的对称规律,进行分析研究。
如果一个物体或体系含有的对称操作元素越多,则其对称性越高;反之,含有的对称操作元素越少,则其对称性越低。
9.什么叫声子?特性?子,它是一种玻色子1声子不携带物理动量 2.等价性10.周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样?1.写出倒格子定义及其与正格子的关系解:(1)把倒格基矢平移形成的格子叫倒格子 (2[][][]()方的倒格子正格子与倒格子互为对格原胞体积之积为应,正格原胞体积与倒倒格子与正格子一一对是晶格原胞体积是正格矢,其中=321313212131323222,2,2ππππΩΩ⨯Ω⨯Ω⨯a a a a a a a a a 2.已知某晶体与相邻两原子间的相互作用势能可表示为()n m rr -r u BA +=(1)求出平衡时,两原子间的距离(2)平衡时的结合能解:(1)平衡时,要求晶体的互作用势能取最小值 ()0r n -r m r dr r du 1n 01m 00==++BA1n 01m 0r n r m ++=BAABm n r m -n 0=m-n 10m n r ⎪⎭⎫⎝⎛=∴A B 平衡间距为(2)假设晶体是由N 个原子构成,并且只考虑相邻原子之间的相互作用,平衡时晶体的结合能为()0br u 21N E ≈()⎥⎦⎤⎢⎣⎡===∴n m -12r -r u 21m 00b αN E W 单个原子结合能为3.考虑每格点具有一个质量为m 的原子的二维平衡晶格,仅计及最近邻原子之间的相互作用,力常数为β,设声子色散关系曲线为 ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=2qa sin m4q βω(1)在长波极限下(q →0),求声子态密度D (w ),即单位频率间隔中的点阵震动的 数 (2)在高温频率下(k ,T 》h ω),求二维原子晶体总能量 解:(1)()()βπωββωπωπππωβωββω22a 2m am1am2d dq q 2qdq 22a mdq d aq m 2qa sin m4S SS S D =∙∙∙===∴∙=≈⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=即由已知得:(2)无4.已知一维晶体的电子能带可写成:()⎪⎭⎫⎝⎛+-=ka ka ma k E 2cos 81cos 8722 ,式中a 是晶格常数。
试求:(1)能带的宽度(2)电子在波矢k 的状态时的速度 (3)能带底部和顶部电子的有效质量 解:(1)()()2min max 22max min 2ma 2-ma2a a k 000k a0k 02sin 4sin dk k d==∆∴=⎪⎭⎫ ⎝⎛=======-=E E E E E E E ka ma ka ma E πππ时,当时,当,得由2(2)()()⎪⎭⎫⎝⎛==∇=ka 2sin 41-sinka ma dk k d 1k 1kE E νν得:由(3)m32-ka 2cos 21-coska m k m k k m a k 1-ak 222ak 22=⎪⎭⎫⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂=∂∂∂=±=±=±=**πππβααβE E 得:由m2ka 2cos 21-coska m m 0k 1-0k k 2220k =⎪⎭⎫⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂====*E5.计算在绝对零度下,三维金属中自由电子的费米能和费米半径解:()()()()()()()()()()()312022032220230323020213230202132302213230220020222223320223:2,3223:22,,22:22:,2:2422:2:4:200nk m k E n N n m E NE m V N dE E m V N dE E N E E m V dE dZ E N dE E m V dZ dZ E m k m k dk dE m k E dk k V dk k V dZ dk V Vk dkk k dE E E m k E F F F F FE EF FFπππππππππππ==⋅==⋅⋅=⋅=∴⋅⋅==∴⋅⋅=====⨯=+→=⎰⎰得由是电子密度是电子负极其中即解得即据的量子态全部被电子占能量低于费米能级绝对零度时能态密度得中代入且得则空间中的量子态密度则是晶体体积其中空间中的波矢密度空间体积范围内对应的能量为,则有电子的能量电子可以看成自由电子绝对零度下,金属中的6.维单原子布拉菲品格振动的频率和波矢的色散关系为2sin2qa m ⋅=βω期中m 是原子质量,a 是原子间距,β是原子间的相互作用力的力常数。
(1)按照德拜模型,求出品格比热的表达式; (2)给出低温极限时比热随温度变化的表达式。
解:()()()()()Nk C LVNV Lk T k V T Lk C e e x x dx e e x V T Lk dT dE C T k x d e VL d D e E e VL d dq L D dqLdqL d L L aLa dq d VqmaV q maqam q V V x xT H x xV T k T k T k D 00000202202220000,,11,0,1,:11:1:,:22.,2,2,,,22,0:00000=∴==⋅=∴≈-→-===-=⋅⋅-=-=⋅=====⋅=∴→⎰⎰⎰πωπωωππωωωπωωωωωπωπωππωππωωβββωωωωωω在高温时则设整个晶体热振动能的热振动能频率为模式密度个振动模式范围包括是晶体长度其中个震动模式则单位波矢区间对应个振动模式区间对应小的波矢区间区间对应的两个同样大由色散曲线关系可知则有设由已知得7.已知一维金属晶体共含有N个电子,晶体的长度为L,设:T=0K 试求:(1)电子的状态密度(2)电子的费米能级(3)晶体电子的平均能量解:()()()()()()()()()()()()()()()32324221332242200,022********,22821,2,1,0,2,08)1(002300002200,1,02222222222200000FF E E FFE EF E E E E e kxi E E E Nhm L dE E Nh mL dE E g E Ef N E L N m h E E hmL dE E m h L dE E g E f N K T K E E f K T Emh L E g dEEmh L dE E m L dk Ldk k g dE E g dZ d dEE m dk dk m E kdk m dE m k E k E h m Lk k g n Lnk L x x Ae E hmdx d FF FFF F ====⎪⎭⎫⎝⎛=∴===∴=⎩⎨⎧===∴=====∴======∆=∴±±==∴+===+⎰⎰⎰⎰〈〉)结果得:由()由已知得:(电子填充的最高能级时的费米能级,即为式中的时,)当(能态密度为:电子态数得:得:令得:由ππππππψψψψπψπ9.应用德拜模型,计算(一)二(三)维情况下晶格振动的状态密度、德拜频率、德拜温度、零点能、平均晶格能、晶格比热容。
解:(1)模式密度:波矢空间波矢密度:(三维)(二维),,一维3222)(2⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛πππL L L波矢数目:dq q L qdq L dq L 23242222πππππ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛;;;;;; 振动模式数目:ωωπωωπωπd vV d v S d v L c c c 32222222;;;;;;()ωρ:3222231vV v S v L c c c ωπωππ;;;;;;一维有一支纵波;;;二维有一支纵波一支横波;;;三维有一支纵波两支横波,速度相等 (2)德拜频率:N d v V N d v S N d v L DD Dc c c 32321322200===⎰⎰⎰ωωπωωπωπωωω;;;;;;Dω:v V N v S N L Nvc c c 3122164⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛πππ;;;;;;(3)德拜温度:BDD k ωθ =(4)零点能:()ωωωρωd D⎰021(5)平均晶格能:()ωωωρωωd e E DB T k ⎰⎪⎭⎫ ⎝⎛+-=02111 (6)晶体比热容:TECV∂∂=高温时 低温时()dxee x TNk C TxxDBV D ⎰-=θθ0221B Nk =T ∝()dxee x T Nk C TxxD B V D⎰-⎪⎪⎭⎫⎝⎛=θθ023214B Nk 2=2T ∝()dxee x T Nk C TxxD B V D⎰-⎪⎪⎭⎫⎝⎛=θθ024319 B Nk 3=3T ∝1.反映晶体周期性的重复单元,有两种选取方法:在固体物理学中选取周期最小的重复单元称为原胞,在晶体学中,由对称性选取最小的重复单元称为结晶学原胞2.源自聚集密度较大的品面,他们之间的距离较大,结合力较弱,因而容易分裂开,这样的晶面称为解理面3.晶体中可以独立存在的8种基本对称操作是1,2,3,4,6,i ,m ,44.属于立方晶系的晶胞中所包含的格点数目分别为:简立方1个,体立方2个面心立方4个5.晶体的结合类型分别是共价结合,离子结合,金属结合,分子结合,氢键结合,库伦吸引力是原子结合的动力,它是长程力,晶体原子间还存在排斥力,它是短程力,在平衡时,两者相等6.什么是声子:用独立能量的量子振子的振动来描述格波的独立模式,这就是声子,服从玻尔兹曼统计理论7.晶格振动热容理论中,爱因斯坦模型的基本假设是晶体中所有原子都以相同频率震动,德拜模型的基本假设是把格波看作弹性波来处理8.滑移矢量b与位错线相平行的位错称为螺位错,相垂直的位错称为刃位错9.不允许电子存在的能量范围称为禁带,不被电子占据的能带称为空带,能带中的能量状态均被电子占据的能带称为满带,电子未占满的能带称为导带10.晶格是由N个格点组成,则一个能带有N个不同的波矢状态,能容纳N个电子11.体心立方惯用原胞体积是初级原胞的2倍;面心立方是4倍12.边长为L的立方晶体中,电子波矢取值为k=,电子在k空间的态密度为34πc Vnql13.晶体中离子排列的最大特点是长程有序,非晶体原子排列的最大特点是短程有序14.半导体材料Si和Ge单晶的晶体点阵类型为面心立方,倒易点阵类型为体心立方,每个原子最近邻原子数为415.在波矢空间,能量FE E 的等能面成为费米面,对金属电导有贡献的只是费米能级附近的电子 16.原子晶体是靠共价键结合的,共价键的两个特点是饱和性和方向性17.一个例子的周围最近邻的粒子数称为配位数,他用来描述晶体中粒子排列的紧密程度,晶体结构中最大的配位数为1218.价带中不被电子占据的空状态称为空穴,格点上的原子由于热涨落,脱离格点位置而进入格点间隙位置,产生弗伦克尔缺陷19.单位频率区间的格波振动模式数目称为模式密度,又称角频率的分布函数,单位能量间隔内两等能面间所包含的量子态数目称为能态密度。