超长结构温度应力分析方法与控制措施
超长建筑结构温度应力分析

超长建筑结构温度应力分析夏云峰(上海中交水运设计研究有限公司, 上海 200092)摘要:以郑州第二长途电信枢纽工程为例,对超长建筑结构进行整体有限元建模。
针对7种不同类型温度荷载的特点,利用有限元分析程序ANSYS计算。
给出了结构整体变形特点、结构中各种构件(梁、楼板、柱子及剪力墙)的温度内力变化范围以及分布规律。
通过比较得出超长建筑在各种温度作用下的最不利工况。
可为超长建筑结构考虑温度作用进行设计和施工提供参考。
关键词:建筑 超长建筑物 温度荷载 温度应力St udy on t he Te mperature Stress of Super-Lengt h Buil di ngX ia Yunfeng(Shanghai Zhongji a oW ater Transportation Design Institute Co.,L t d., Shanghai 200092)Abst ract:T aking the Second Long D istance Te leco mm unication H ub Pro ject of Zhengzhou for an exa m ple,t h is paperm akesm odels of so lid fi n ite e le m ent to super-length building.A ccord-i n g to characteristics o f te mperature l o ad of7different types and usi n g t h e ANSYS fi n ite e le-m ents ana l y sis progra m,it concl u des the characteristics of the integral structura l defor m ation, the scope and distribution o f ther m a l i n ner force o f different co mponents,such as bea m,floor slab,pillar and shear w a l.l A fter contrasti n g,it su m s up the w orse w orking cond ition for super -length bu il d i n g under d ifferent te m peratures,wh ich cou ld prov ide references to the design and constr uction o f super-length bu il d i n g by consi d ering te m perature acti o ns.K ey w ords:constructi o n super-leng t h buil d i n g te m perature load te m perature stress建筑工程中,混凝土结构的裂缝较为普遍,类型也很多,按成因可归结为由外荷和变形引起的两大类裂缝。
超长结构楼板温度应力分析

主体结构温度作用分析在结构设计时,往往不能准确确定施工时间。
即使确定了施工日期,也不能作为标准,因此,结构合拢温度通常是一个区间值。
我们给出的合拢温度:取某城市的近30年的最高、最低的月平均温度(最高月平均温度37℃,最低月平均温度-5℃),并按3:4:3的比例划分,取中间40%的区间值为合拢温度区间(7.5℃~24.5℃),得出结构的最大升温工况为29.5℃,结构的最大降温工况为-29.5℃。
此外,由于真实季节性温差是一个缓慢加载过程,而程序是瞬间降温计算,考虑到混凝土材料的徐变特性后,实际结构产生的温度应力要小得多,在程序中可以通过松弛系数H来考虑,根据《工程结构裂缝控制》,对于不允许开裂的情况,H=0.3~0.5,对于允许开裂的情况,H=0.5×(0.3~0.5),本报告在计算时取0.3。
图1~图8分别列出了少年宫1层和2层在升温工况和降温工况下楼板最大主应力和最小主应力值。
图9~图16分别列出了少年宫1层和2层在升温工况和降温工况下剪力墙最大轴力和最小轴力值。
图1**结构1层楼板升温工况最大应力(Mpa)图2**结构1层楼板升温工况最小应力(Mpa)图3**结构1层楼板降温工况最大应力(Mpa)图4**结构1层楼板降温工况最小应力(Mpa)图5**结构二层楼板升温工况最大应力(Mpa)图6**结构二层楼板升温工况最小应力(Mpa)图7**结构二层楼板降温工况最大应力(Mpa)图8**结构二层楼板降温工况最小应力(Mpa)图9**结构一层剪力墙降温工况最大轴力(Mpa)图10**结构一层剪力墙降温工况最小轴力(Kn)图11**结构一层剪力墙升温工况最大轴力(Kn)图12**结构一层剪力墙升温工况最小轴力(Kn)图13**结构二层剪力墙降温工况最大轴力(Kn)图14**结构二层剪力墙降温工况最小轴力(Kn)图15**结构二层剪力墙升温工况最大轴力(Kn)图16少年宫结构二层剪力墙升温工况最小轴力(Kn)分析图中计算结果可知,1层、2层楼板的大部分区域在升温工况和降温工况下楼板最大主应力和最小主应力值均在C35混凝土的抗拉、抗压强度设计允许值范围内。
超长结构温度应力分析与控制措施

超长结构温度应力分析与控制措施摘要:随着人们对建筑物使用功能的要求越来越高,一些公共建筑正逐渐向大型化、舒适化发展,大量超长、超宽的大型公共建筑随之涌现。
由于季节变化的影响,超长结构的温度应力问题会导致混凝土楼板产生裂缝,严重影响建筑的使用功能和结构安全,因此温度作用在设计中必须予以考虑。
本文以某钢筋混凝土框架-剪力墙结构为例,对超长结构的温度应力问题采用有限元分析程序MidasGen进行了计算分析并给出了控制措施。
关键词:超长结构;温度应力;后浇带;有限元分析1、前言超长结构,由于季节变化等因素的影响,会让超长结构的混凝土发生变形,当混凝土的变形受到墙体等构件的约束,楼板内便会产生较大的温度应力,当温度应力高出混凝土的抗拉强度时,就会导致混凝土楼板会产生裂缝,通常情况下,若在结构中采用低收缩混凝土材料、设置后浇带以及采用预应力钢筋等措施时,温度应力及收缩应力对结构的影响一般可以忽略。
但超长混凝土结构中,如若不进行合理的温度效应控制,柱、墙等竖向构件将产生显著的温度内力,影响结构的承载能力;楼板则很有可能开裂并形成有害的贯通裂缝,对建筑防水和结构的耐久性很不利,影响建筑的正常使用,因此,如何降低温度应力的影响是超长结构设计的关键问题。
2、工程概况某五星级酒店主楼部分采用钢筋混凝土框架-剪力墙结构,楼盖采用现浇钢筋混凝土梁板体系,底部裙楼为两层宴会大厅,并设有斜圆柱形主出入口。
框架柱截面尺寸600mmx600mm~900mmx1200mm,墙截面尺寸200~500mm。
现行GB50010-2010《混凝土结构设计规范》中对房屋建筑工程结构伸缩缝的最大间距做如下规定:对于现浇式结构,普通砖混结构50m,框架结构55m,剪力墙结构45m,框架-剪力墙结构根据框架和剪力墙的具体布置情况取45~55m之间,通常可取50m。
该酒店结构不设缝轴线尺寸为167.2m,超过了规范要求。
3、温度工况(1)温度荷载。
超长地下室温度应力分析及裂缝控制

超长地下室温度应力分析及裂缝控制摘要:分析超长地下室裂缝产生的原因,以巴中万达广场项目为例,采用YJK进行温度应力计算分析,并提出温度裂缝的有效控制措施。
关键词:超长地下室温度应力裂缝控制超长结构系指结构单元长度超过了《混凝土结构设计规范》所规定的钢筋混凝土结构伸缩缝、沉降缝最大间距的结构。
为保证地下室的使用功能,超长地下室通长不能采用预留施工缝的常规施工方案,针对超长地下室如不采用合理的设计和施工措施,后期很容易产生裂缝。
不仅影响工程质量整体外观形象,而且降低抗渗和抗冻能力、钢筋锈蚀、降低耐久性,漏水并影响地下室正常使用,最终导致业主投诉和大量的维护成本。
本文在对地下室裂缝产生的原因进行分析的基础上,对超长地下室结构的裂缝控制、温度应力及其影响进行相关探讨。
1.裂缝产生的原因结构裂缝分为两大类,一类是由于荷载引起的裂缝,另一类是由于变形引起的裂缝,包括温度、湿度、水泥水化热、地基变形等。
地下室裂缝很多出现在施工过程中,此时上部结构还没有承受很大的荷载,因此地下室的开裂主要还是由于温度的收缩和混凝土的干缩。
并且此时上部没有保温隔热的覆盖层,超长地下室的整个施工周期较长,对这一类裂缝,加剧了热胀冷缩、混凝土收缩对地下室的不利作用。
当混凝土内部与表面温差过大时,就会产生温度应力和温度变形。
温度应力与温差成正比,温差越大,温度应力越大,当温度应力超过混凝土内外的约束力时,就会产生裂缝。
2.施工过程中的温度应力分析在超长地下室的施工过程中,混凝土不断产生水化热,因为混凝土内部和表面的散热条件不同,所以混凝土中心温度高,表面温度低,形成温度梯度,造成温度变形和温度应力。
在混凝土浇筑过程中,变化是持续不断的,我们不可能做到在施工过程中进行充分有效的控制,这就要求在超长地下室的整个施工过程开始之前我们就要做好相应的理论估算分析,一方面可以从总体上把握温度应力的变化趋势,避免大部分问题的出现,另一方面,对于极端情况,也可以采取及时有效的措施去减轻危害的程度。
2021解决超长高层建筑温度应力的技术措施范文1

2021解决超长高层建筑温度应力的技术措施范文 21世纪以后,国内建筑大多朝着“高、大、长”三个主流方向发展,实现了高层、超高层、超长高层建筑的建设。
理论上来说,由于受天气与温度的影响,现代建筑结构越长,因温度引起的收缩变形就越大,结构内部受到的变形约束力也随之变得越大,久而久之就会造成建筑结构开裂,给工程质量造成影响。
这就是我们在生活中常说的温度及收缩裂缝。
下面结合超长高层建筑结构施工实际,对温度作用所造成的建筑裂缝原因作详细分析。
一、温度对建筑结构造成的影响 分析现代高层和超长高层建筑裂缝产生的原因,发现温度影响是其裂缝产生的一个重要因素。
从建筑结构的整体性来看,超长高层建筑结构具有两个不好的特点,一是在建筑施工期间,如果连续浇筑混凝土构件,混凝土构件内部可能会因为水泥水化热影响而产生巨大应力,导致超长混凝土结构产生裂缝;二是混凝土构件外部环境温度变化过大后,极有可能造成混凝土构件产生热胀冷缩效应,从而使得混凝土构件表面出现不均匀变形,变形受到约束后就会出现构件开裂。
从这两个方面来看,不管是建筑混凝土构件浇筑时的水化热,还是外界环境温度的变化,建筑结构内外温度一旦变化过大,必然都会对建筑结构产生影响,致使结构裂缝产生。
二、温度类型 上段内容论述了温度对建筑结构的影响,现结合建筑施工实际,探讨超长高层建筑施工中遇到的不同温度类型,详细如下。
1、地理条件分类 工程结构所处的地理位置和地理环境不同,结构受到的自然天气变化影响也就不同。
笼统来说,处于自然界的建筑工程及建筑结构可能会受到地理位置、地形条件、天气气温变化、太阳辐射、雨、空气等诸多因素的影响,这些因素中任意一个因素发生变化,建筑结构性能都会受到一定影响。
但考虑到国内大多数建筑工程都是以钢筋混凝土结构为主,采用混凝土材料施工、搭建起来的,所以它们在自然天气条件下所受到的温度影响主要包括三种,分别为年温温差影响、骤然降温影响以及日照温度变化影响。
浅析超长混凝土结构温度应力计算及控制

等 效荷 载 ( 面力 部 分 ) 呵表 示 为 :
(
计算 时 楼 板采 用P M S A P 程序 , 计 算 时采 用 二维 壳 元 ; 梁 柱分 析 采用 S A T WE 程
不动 点 附近 最大 H , 即地下 室顶 板 由于受 地下 室侧 壁 的强 约 束 , 接 近地 下 章侧 3 . 温度 升高 或 降低 均 会在 结构 内部产 生 局部 应 力 。升温 时 , 楼 板 大部 分 受压 应 力 , 压应 力 最大点 发 生在 结构 的形 心 附近 , 压应 力达 到 了2 . 1 M P a , 但仍 侧 壁处 出现 部分 的拉 应力 , 大部 分拉 应力 均小 于 混凝 土 的轴 心抗 拉 强度 标 准 值 。 当楼板 在 降温作 用 下 , 结构 整体 呈 收缩状 态 , 楼 板受 拉 应 力作 用 , 大 部 分 都在1 . 9 MP a 以下 ,在靠 近 地下 室 侧壁 的楼 板 出现 了2 . 5 ~ 3 . 7 M P a 的拉 应 力 , 超 出了混 凝 土 的轴心 抗拉 强度 标准 值2 . 2M P a ( C 3 5 混凝土) 。
1 ) 一维 杆件 的 温度作 用计 算 原理【 : 不发 生 弯 曲。假 定温 度沿 杆 轴线 变化 :
T = T ( 1 -∈ ) + . r J ∈ ,
对 于一 维 杆件 单元 , 令T = g ( x ) , 即这种 温 度分 步将 使 杆件 只 发生 伸 缩 , 而 远 小于 混凝 土 的轴 心抗 压 强度 标 准值 2 3 . 4 MP a ( C 3 5 混凝 土 ) 。 同时在 地 下 拳
超长结构温度应力分析方法与控制措施

江苏建筑2012年第1期(总第146期)[收稿日期]2011-10-17[作者简介]彭波,男,(1973-),四川齐盛实业有限责任公司,工程师,一级建造师。
引言随着人们对建筑物使用功能的要求越来越高,一些公共建筑正逐渐向大型化、舒适化发展,导致超长、超宽的大型公共建筑也大量出现,这些建筑如果按照规范要求设置一道或多道伸缩缝[1],会影响建筑整体效果,还会给消防布置、管线铺设及设备安装带来不便。
也会增加建筑装修困难,影响建筑物的立面效果。
因此,往往在方案设计时对于超长结构不设或少设伸缩缝,这就需要对未设伸缩缝的超长结构在温度作用下进行应力分析和采取控制措施。
1温度应力问题的特点从结构本身来说,结构的超长将对结构产生两个方面的不利影响。
一是连续浇筑的超长混凝土收缩和水化作用引起混凝土体积不均匀变化使混凝土构件内部产生较大的应力而开裂,在大尺寸混凝土构件内,由于混凝土传热较慢,其水化作用放出的热量直接导致构件不同部位产生较大温差,引起构件开裂。
二是环境温度变化导致构件热胀冷缩,引起构件之间不均匀变形和位移,对于超静定的混凝土结构产生较大的应力。
这两个方面对超长结构的不利影响主要是由于内在的温度变化引起的。
温度应力就是结构或构件由于温度变化产生的变形受到约束时产生的应力,如果加大伸缩缝间距或不设伸缩缝,仍按传统常规方法设计施工而不采取一定的措施,将会给结构带来很大的安全隐患[2],严重时甚至会使结构达到正常使用极限状态而破坏,超过使用功能规定的限值,影响结构的正常使用。
与荷载引起的应力相比,温度应力具有以下特点:(1)混凝土结构收缩变形的产生和温度的变化是一个长期的渐进的过程。
徐变使混凝土应力逐渐松弛,其应力值远小于一次瞬时全部变形情况下产生的弹性值。
(2)温度和收缩变形引起的应力是由于变形受到约束产生的。
混凝土的温度应力与一般弹性体不同[3]:一般弹性体在约束条件不变、已经不存在温差的条件下,温度应力消失;混凝土中由水泥水化热引起的温度应力不同,温差消超长结构温度应力分析方法与控制措施彭波1,蔡宏儒2,刘成清2(1四川齐盛实业有限责任公司,四川成都610041;2西南交通大学土木工程学院建筑工程系,四川成都610036)[摘要]许多超长的大型公共建筑结构不断出现,如果按照规范要求需设置一道或多道伸缩缝,会带来诸多不便。
基于杭州某超长结构项目的温度应力分析与控制

基于杭州某超长结构项目的温度应力分析与控制发布时间:2021-06-25T08:27:27.033Z 来源:《防护工程》2021年6期作者:冯飞1 唐婷婷2[导读] 近年来,随着社会经济的飞速发展,各种大型的建筑工程项目不断涌现。
在大型建筑工程项目施工中,超长、超宽建筑已成为建筑行业的新趋势,这些超长混凝土结构在不同温度的作用下内部应力变化较大,如果温差较大可能会导致结构内部的拉应力大于结构的抗拉能力,从而产生结构构件裂缝。
冯飞1 唐婷婷21华润置地杭州公司;2新鸿基地产杭州公司浙江杭州 310000摘要:近年来,随着社会经济的飞速发展,各种大型的建筑工程项目不断涌现。
在大型建筑工程项目施工中,超长、超宽建筑已成为建筑行业的新趋势,这些超长混凝土结构在不同温度的作用下内部应力变化较大,如果温差较大可能会导致结构内部的拉应力大于结构的抗拉能力,从而产生结构构件裂缝。
为了避免温度应力病害问题,在涉及超长结构的建筑工程项目设计中,要采取有效的措施来尽量降低温度应力对于超长结构的影响,减少温度应力造成的裂缝。
本文基于杭州某超长结构项目的温度应力计算进行分析,并提出相应控制建议。
关键词:超长结构;温度应力;控制杭州某超长结构项目为商业裙房,地上5层,地下3层,为混凝土框架结构。
项目Y方向长度约为260米,X方向长度约为180米,由于建筑使用功能需求,未设置结构缝。
1超长结构温度应力分析结构初始温度T0取后浇带合拢温度,根据《荷载规范》第9.3.3条规定:“混凝土结构的合拢温度一般取后浇带封闭时的月平均气温”,查找气象资料显示,杭州地区的12月、1月、2月、3月平均气温均可在10度以下,因此应采取措施将后浇带合拢时间安排在这4个月中。
温度场设定初始温度考虑误差±5度,即T01=15度,T02=5度混凝土收缩在混凝土内部产生拉应力,后浇带封闭后的残余收缩等效为结构的整体降温。
混凝土收缩比例随时间延长快速降低,推迟后浇带的封带时间可有效减少混凝土的残余收缩变形,对超长结构的温度应力控制意义重大。
超长结构温度应力的计算及控制

伊新富:现在的PKPM系列的PMSAP已经具备进行温度应力分析的功能。
我谈一下对超长结构用PMSAP计算要考虑的具体问题,望各位多提意见.砼规范9.1.3-3规定:当增大伸缩缝间距时,尚应考虑温度变化和砼收缩对结构的影响。
5.3.6条文说明:温度应力分析参见《水工混凝土结构设计规范》。
其第11.3.1规定:钢筋混凝土框架计算时,应考虑框架封闭时的温度与运用期可能遇到的最高或最低多年月平均温度之间的均匀温差。
必要时,考虑结构在运用间的内外温差。
11.3.3规定:分析钢筋混凝土框架在温度作用下的内力时,杆件的刚度应取用开裂后的实际刚度。
目前,温度应力可用PMSAP计算,刚度按"王铁梦:工程结构裂缝控制"折减为0.25~0.3,但折减后对其它所有的工况都有影响,水平位移增大几倍,所以计算时直接把温差折减到0.3倍,刚度不折减,以方便和竖向,水平荷载组合;组合系数按 "樊小卿:温度作用与结构设计",取1.3(分项系数)X0.6(组合系数)。
温度应力计算1、构筑物抗震规范,钢结构设计手册(沈祖炎等编写),烟囱设计规范等都把温度荷载作为可变荷载。
2、温度荷载效应的分项系数等于1.0,组合系数取1.0。
钢筋及混凝土材料特性有所改变(常温下基本上没变);钢结构设计手册特别说明,当温度荷载与其他荷载组合时,钢材的强度设计值可提高25%。
烟囱设计规范限制混凝土最高温度不大于150度。
3、仅考虑大气温度变化的计算温度差值(摘自钢结构设计手册) 1)采暖房屋25~35度2)非采暖房屋:北方地区35~45度;中部地区25~35度;南方地区20~25度3)热加工车间约40度4)露天结构:北方地区55~60度;南方地区45~50度4、详细的温度差可参考《民用建筑热工设计规范》GB50176-93该工程是一个非常大的平面尺寸了,建议至少设后浇带三道以上才行。
1、现在的PKPM系列的PMSAP已经具备进行温度应力分析的功能。
超长结构温度应力的计算和裂缝控制措施

超长结构温度应力的计算和裂缝控制措施摘要:温度的变化会严重影响超长混凝土结构的变形及内力。
以某高铁站北站站前广场项目为例,阐述阶段温度应力的等效温差计算方法在超长混凝土结构中的应用价值。
以有限元软件为基础,分析降温温差的情况中超长结构内力,探究温度的变化对超长混凝土结构的影响。
经过对结构特点的分析及结果得出,缓粘结预应力技术能够控制温度裂缝。
在使用阶段,随着结构降温温差的增大,超长结构最大温度应力呈线性增长。
控制后浇带闭合时间和施加预应力是有效控制温度应力的方法。
关键词:超长结构;温度应力;缓粘结预应力;裂缝控制《预应力混凝土结构设计规范》[1]规定,当钢筋混凝土结构的平面长度大于《混凝土结构设计规范》中规定的最大伸缩缝间距时,定义为超长结构。
我国的经济发展推动了工程建设的发展,为保障建筑工程结构与功能的完整性,多数工程都不采用超长结构或不设置结构缝。
在施工过程中,混凝土结构会受到温度等非荷载因素的影响而出现变形,结构受约束作用产生约束内力,其出现温度效应。
而温度效应对于混凝土超长结构的梁、板裂缝的影响巨大。
故此,本文以鲁南高铁临沂北站站前广场项目为例,通过采用缓粘结预应力等措施,缓解温度效应产生的影响,以实现裂缝控制。
1 工程概述某高铁站北站站前广场项目,项目总建筑面积20.46万m²。
包括广场地下两层建筑面积19.65万m²,主要为地下停车场、出租车蓄车场及设备管理用房;广场东侧建设一级长途客运站一座,站房、辅助及设备用房建筑面积约7100m²;广场西侧建设公交调度中心一座,建筑面积1000m²;建设高架落客平台匝道4条,宽15m,总长约1400m(如图1所示)。
工程建设的结构体系为:框架—剪力墙,筏板基础作为地基基础。
地下一层及二层的梁、板、框架柱结构的混凝土强度为C40,地上梁、板、框架柱混凝土强度为C30,选用HRB400级钢筋。
北站站前广场平面总尺寸为483.7m×224.1m,沿纵向设两道结构缝,分为136.5m×224.1m,201.7m×224.1m和136.5m×224.1m三个结构单元。
混凝土超长结构温度应力分析全精通

混凝土超长结构温度应力分析全精通
一、分析原理
1.热应力原理:根据材料的线膨胀系数及温度差,可以计算出温度应力。
当结构受到温度变化的影响时,混凝土会产生相应的应力。
2.纵横向温度应力不平衡原理:由于混凝土超长结构的尺寸很大,在温度变化作用下,结构的不同部位会有不同的温度变形,从而引起不平衡的应力分布。
3.材料特性:混凝土作为一种复合材料,其特性会受到温度的影响。
根据材料的热学性能参数,可以计算出具体的温度应力。
二、分析工具
混凝土超长结构温度应力分析通常使用有限元分析方法进行求解。
有限元分析是一种针对复杂结构的数值计算方法,可以较为准确地模拟结构的温度变化,并计算出相应的应力分布。
常用的有限元分析软件包有ANSYS、ABAQUS等,这些软件具有强大的计算能力和可视化效果,可以对混凝土超长结构进行全面的温度应力分析。
三、分析方法
1.平衡温度法:假设混凝土超长结构处于其中一温度状态下的平衡。
通过对结构进行瞬态热传导和力学分析,可以计算出结构在温度变化时的应力分布。
2.数值分析法:通过数值计算的方法,将混凝土超长结构划分为若干网格单元,根据其热传导和力学特性,计算出结构在不同温度下的应力变化。
3.经验公式法:根据混凝土的力学特性和温度变化规律,通过经验公式的方法来估计结构的温度应力分布。
这种方法相对简单,适用于一些简单结构和初步设计。
总结起来,混凝土超长结构温度应力分析对于工程设计来说是非常重要的一项工作。
通过深入了解分析原理、使用分析工具和熟练掌握分析方法,可以准确地评估结构的稳定性和安全性,为工程的设计和施工提供科学依据。
超长混凝土结构温度应力影响分析

Construction & Decoration建筑与装饰2023年12月下 169超长混凝土结构温度应力影响分析聂行中铁上海设计院集团有限公司南昌院 江西 南昌 330000摘 要 温度应力是超长结构设计中重点探讨的问题之一。
本文介绍了某体育馆超长框架结构温度应力分析及设计,探讨了温度荷载的确定,并通过YJK建模计算,分析了温度应力下结构变形及楼板应力分布,根据分析结果提出来相关控制温度应力的措施,为今后类似工程设计提供一定的借鉴作用。
关键词 温度应力;超长结构;温度荷载Analysis on Influence of Temperature Stress of Ultra-Long Concrete StructuresNie XingChina Railway Shanghai Design Institute Group Co. Ltd. Nanchang Institute, Nanchang 330000, Jiangxi Province, ChinaAbstract Temperature stress is one of the key problems in the design of ultra-long structures. In this paper, the analysis and design of temperature stress of ultra-long frame structure of a gymnasium are introduced, the determination of temperature load is discussed, and the structural deformation and floor stress distribution under temperature stress are analyzed through YJK modeling calculation, and relevant measures to control temperature stress are proposed according to the analysis results, which provides a certain reference for similar engineering design in the future.Key words temperature stress; ultra-long structure; temperature load引言近20年来,我国经济实力的不断增长逐步推动着现代城市的高速发展,我国建筑行业也取得了长足的发展,人们对建筑使用功能、建筑美感也提出了更高的要求,大空间、大跨度的体育场馆、会展中心、城市枢纽中心等建筑应运而生。
超长混凝土结构温度应力配筋计算与裂缝控制

超长混凝土结构温度应力配筋计算与裂缝控制摘要:现浇混凝土框架结构长度一般超过55m,可被定义为超长结构,结构形式为开敞式的最大长度则为35m。
剪力墙结构由于刚度及约束更大,长度限制则更加严格。
《《混凝土结构设计规范 GB50010 2010》(以下简称“砼规”)中建议采用设置伸缩缝的方法来降低温度应力对于结构的影响,然而由于抗震的要求,此类伸缩缝的宽度一般在100mm以上,不但影响建筑物的美观,同时也是漏水、渗水的隐患所在。
而通过对温度应力的配筋计算和加强结构的构造措施,再配合适当的施工措施。
完全可以做到无需设缝的超长混凝土结构。
关键词:计算温差;伸缩缝;松弛系数1.“抗”与“放”的概念结结构在外界温度的影响下,若不受其他约束而产生自由变形,其将不会产生任何的温度应力。
一旦受到约束后,由此产生的约束应力随约束的增大而增大。
显然,在处理结构因温度的影响产生变形而导致的应力问题上,简单的“抗”,如加大截面、提高刚度、增加约束等,对结构未必是合理和经济的处理方式。
而应做到“抗”、“放”兼顾,如合理地控制温度区段、设置后浇带、控制结构合拢时的温度等,都是常见的“放”的措施。
这使结构在保证正常使用极限状态的同时,又满足承载力的极限状态。
2.计算温差在计算温差时,是以结构初始温度与使用期限内该结构可能遇到的最高(最低)月平均温度的差值为计算温差,有时还要考虑浇筑初期收缩产生的当量温度。
具体公式如下:T=T2-T1+T3T-均匀温度作用标准值T1-结构初始温度、为结构后浇带合拢后的当月平均气温T2-结构最高(最低)平均温度T3-混凝土浇筑初期收缩产生的当量温度 T3=-Ey(t)/αα-混凝土线膨胀系数1x10-5/°CEy(t)-任意时间的混凝土收缩量,ε(t)=ε(∞)?(1-e-0.01t)M1M2M3???M10?【3】,此函数公式与混凝土配合比,初期养护时间,混凝土配筋率,使用环境等都有密切联系。
大面积超长混凝土结构的温度应力分析与设计

2 2 温度荷 载 组合 .
混凝土 的收缩 变形 只能 产生混 凝 土 的拉应 力。与 收缩 应 力
温度应力是随温度 的变化循 环往复 的 , 有拉应 力 , 既 也有 压 中, 不断 出现超长 超大混 凝 土结 构 , 对结 构不设 缝 长度 的要 求 不 同, 且 其抗 压强度 大大超 过其 抗 也越来 越高 。一般地 , 构越长 , 结 降温引起 的收缩变 形越 大 , 束 应力 。由于对 于混凝 土这种材料来说 , 约 拉 强度 , 因此在工程 中我们通 常只考虑 当温度下 降时 引起 的混 凝 产生 的拉应力就 越大 , 由此 产生 的结 构裂 缝就 越多 越宽 。因 而 ,
考虑普通钢筋作用 。 图 2 图 3为地下 1层分别在升温工 况( ) 降温工况 ( ) , 。 、 下
由于 自然界 的复 杂性 , 于 自然 环境 的建 筑结构 的温 度场分 的 楼 板 的 最 大 V nMi s 力 。从 图 2中 可 以看 出 当 温 度 上 升 时 处 o— s 应 e 布的确定也是很 复杂 的 , 因此 , 文 的计 算仅 仅考 虑季 节温 差 和 往往 以混凝土压应 力为 主 , 本 而从 图 3的结果 , 我们不 难 发 现 当温
对本工程而言 , 构平 面比较复 杂 , 结 各部 位板 块 的受 约 束情
况均不相同 , 因此各部 位的温度应力 也不相 同 , 即使 同一 块板 上 , 由于各个部位 的混凝土变形相互 制约 , 温度应 力也 不相 同。要详
1层均为大面积超长混凝土结构 。平面尺寸 为 38 0m× 1 . 7 . 2 42m,
.
6 ・ 8
第3 8卷 第 2 1期 20 12 年 7 月
山 西 建 筑
某超长混凝土框架结构办公楼温度应力分析及设计措施

(3)选择合理的材料,优先采取减小水化热的措施,如 选用水化热较低的水泥,在保证混凝土强度的前提下,尽可能 减少水泥用量等。
(4)加强混凝土浇筑后的养护工作,注意保持初浇混凝 土处于湿润状态,浇筑混凝土应选择温度相对较低的时段。
5 结束语 本工程依据YJK软件计算得出的楼板温度应力云图,对局
部温度应力较大处(主要是楼板开洞处、平面不规则处)进行 了适当加强,同时从结构设计、材料、施工等方面提出了减小 温度应力的措施,进一步保证了结构的安全性。此外值得一提 的是,由于温度应力具有一定的复杂性与不确定性,设计人员 应着重关注结构温度应力的变化规律,而不要拘泥于具体的计 算数值,对温度应力的认识需重视概念,加强构造。
6 建筑与装饰2020年12月中
Copyright©博看网 . All Rights Reserved.
Construction & Decoration
建筑设计与装饰
图2 办公楼二层楼板升温工况下X向温度应力
图3 办公楼二层楼板降温工况下X向温度应力
分析可知,在升温工况下,楼板以受压为主,最大压应力 0.7Mpa,远小于混凝土的抗压强度标准值;在降温工况下,楼 板拉应力均小于1.1Mpa,亦小于混凝土的抗拉强度标准值。此 外,楼板在局部平面转折处产生温度应力集中,需采取适当的 措施减小温度应力的影响。
1 工程概况
缝。结构长度远远超过国家规范对混凝土结构设置伸缩缝间距
本 工 程 位 于 江 苏 省 溧 阳 市 , 办 公 楼 单 体 建 筑 除 办 公 的限制规定(规范规定室内环境钢筋混凝土框架结构设置伸缩
区 域 外 合 并 包 含 部 分 商 业 及 餐 饮 功 能 , 其 平 面 尺 寸 约 为 缝的最大间距为55m),因此该办公楼属于超长混凝土结构。
地下车库超长楼盖温度应力分析

地下车库超长楼盖温度应力分析本工程地下车库东西向最大平面尺寸约为50m,南北向最大平面尺寸约为130m,南北向尺寸远大于规范规定的框架结构伸缩缝最大间距55m的要求,为尽可能减小对建筑功能的影响,未设置伸缩缝。
故在结构计算分析时,需考虑温度作用对结构受力的影响。
一、收缩应力的分析方法目前工程界对超长混凝土结构收缩应力的分析,最常用的方法是将混凝土收缩等效成温度收缩,与最大季节温差相加,作为最不利温差施加于结构,对整个结构进行弹性有限元分析,得到楼面中均匀分布的最大拉应力。
再将该拉应力乘以0.3的徐变应力折减系数,作为结构设计的最终依据。
而《建筑结构荷载规范》(GB50009)规定:混凝土结构分析时,考虑温度作用的结构刚度折减以及混凝土材料的徐变和收缩作用等,可参考有关资料考虑,如《公路桥涵设计通用规范》(JTGD60)及《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62)等。
综合考虑,本工程收缩应力分析与控制分为两个阶段:1主体结构浇筑至后浇带浇筑前(浇筑后60天),此阶段的收缩应力主要为混凝土的自身收缩、塑形收缩、碳化收缩以及干缩,而温度变化不大,温度应力不明显,同时此时间段存在着混凝土的徐变。
此阶段应力控制主要为后浇带设置以及施工控制。
2.后浇带浇筑时至结构温度变化最大(与后浇带浇筑季节相反),此阶段混凝土仍存在收缩应力,并伴随着温差引起的温度应力,同时存在着混凝土的徐变。
此阶段的应力控制为计算出考虑徐变的收缩应力,根据计算结果指导设计。
二、温度荷载取值根据《建筑结构荷载规范》(GB50009-2012)并结合以往工程经验,本工程温度荷载取值如下:根据上表,采用20,-20℃的温差进行温度作用计算(定义为TEMP+、TEMP-工况)。
三、温度作用下计算结果在温度荷载作用下的车库顶板应力分布如下图1〜图2所示:图1地下车库顶板主应力图(升温工况)图2地下车库顶板主应力图(降温工况)由上述计算结果可知:在升温和降温两个工况作用下,地下车库顶板的温度应力较小,绝大部分楼板最大主拉应力小于2.39MPa,小于C40混凝土的抗拉强度标准值,温度作用下混凝土楼板不出现裂缝。
试论超长混凝土结构温度应力计算及控制

1工程概 况
本 工程 位于泉 州市 中心 , 上部 由一 栋办公 楼 、 一栋 住宅 和 5层商业裙房 两部分构成 , 采用抗震缝 断开 , 地下室 4层。
建 筑总面积约 1 4 . 8万 m z , 其中住宅和商业的面积约为 6 . 4万
i 1 1 z
,
住宅为 2 8 层, 建筑高 9 9 m, 长 9 5 m, 宽 1 7 . 1 m。 商业裙房为
为1 . 0×1 0 , 肛 则是 材料泊松 比 ,取值为 0 . 1 5 , E则 是混 凝 土强 度 , 为 C 3 0 , C 指的是板底水平 阻力 系数 , B指的是板
在工程早期施工 阶段 , 还要采取措施进行混凝土早期 收
缩应力的控制 , 以免结构 出现变形 。而设 置后 浇带 , 则能起到 控制早 期收缩变形 的作用 。 在平面图上每隔约 3 0 m进行一条 后浇带 的设置 。而后浇带应该位 于预应力筋 的张拉端 , 宽度
屋外 围护结构 中采取 了一些 保温隔热 措施 ;也采取 了覆盖稻 草等措施避免
■_
结构长 时间暴 露 ,因此 能够减少骤 降
温差对结 构的影响 。所 以在考虑混 凝 土结构外 部温差时 ,主要考虑季节 温
差, 约3 6 ℃。
2 . 3混凝土结构温度应力计算
图 1六 层 结 构 平 面 图
对 混凝 土结 构 产 生 一 定 影 响 。 2 0 1 2年 ,
福建地 区最 高温度达 3 8 %, 最低 2 ℃。
而骤 降温差 为气温骤降产 生的瞬时 温
差, 将导致混凝 土结 构 出现急 剧收缩 ,
进而产生 裂缝 【 l J 。在工程施 工的过程
中, 为防止骤降温差 带来 的危 害 , 在房
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 1 第 1 ( 第 16期 ) 0 2年 期 总 4
5 3
超长结构温度应力分析方法与控制措施
彭波 -蔡 宏 儒 2刘成 清 .
f 四川 齐盛 实业有 限责 任 公 司 。 四川成 都
6 04 ; 10 1
2 南 交通 大学 土木 工程 学 院建筑 工 程 系 。 西 四川成 都
大温差 , 引起 构 件 开 裂 。 是 环 境 温 度 变 化 导 致 构 件 热胀 冷 二
缩, 引起 构 件 之 间 不 均 匀 变 形 和 位 移 , 于 超 静 定 的混 凝 土 对 结 构 产 生 较 大 的应 力 。这 两 个 方 面 对 超 长 结 构 的不 利 影 响
【 日 2 1. .7 收稿  ̄1 1 1 01 0
【 作者简介】 波男(7) 川 盛 业 限 任 司工 彭 ,, 3, 齐 实 有 责 公 ,程 1 -四 9
师一 建 师 .级 造 。
5 4 除 , 度应力仍存在 。 温
2 超 长 结 构 温 度应 力 分 析 方 法
江苏 建 筑
21 0 2年 第 1 ( 第 16期 ) 期 总 4
『 键 词 1 超长结构 ; 缩缝 ; ; 力; 关 伸 温度 应 措施
【 图分 类号]U 1 【 中 T 3 文献标 识码 】 [ A 文章 编号10 5 6 7 {0 2 0 — 0 3 0 10 — 2 0 2 1 ) 1 0 5 - 3
An lssM eh d a d Co to fTe p r t r te si u e — o g S r c u e ay i t o n n r l m e a u e S r s S p r- n t u t r o n l
应 力 而 开 裂 ,在 大 尺 寸 混 凝 土 构 件 内 , 由于 混 凝 土 传 热 较
慢 ,其 水 化 作 用 放 出 的 热量 直 接 导 致 构 件 不 同部 位 产 生 较
体 在 约 束 条件 不 变 、 已经 不 存 在温 差 的 条 件 下 . 度 应 力 消 温
失 ;混 凝 土 中 由水 泥 水 化 热 引 起 的温 度 应 力 不 同 .温 差 消
D
工 具 进 行 计 算 工 作 。 目前 常 见 的 通 用 有 限 元 软 件 有
N SR A T AN, N Y , B Q S Y A D, D I S P系 A S S A A U ,D N 3 A N A。 A 列 等 已 在 世 界 范 围 内 被 广 泛 应用 。 国 内也 出现 了许 多 以 有 限 元 技 术 为核 心 ,针 对某 一 专 业 领 域 使 用 的有 限元 计 算 软 件 , 同济 大 学 和上 海 市 城 乡 建 筑 设 计 研 究 院推 出的 Sa . 如 tt r 中 国建 筑 科 学 研 究 院 P P A 工 程 部 编 制 的 P A 卫 等 K MC D MS
P ENG ’ C n — l L U C e g q n 2 Bo AIHo g r l I h n - ig
(. cu nQ hn d s i o Ld, h nd i un6 04 hn ;. h o o i l nier g D pr e t f 1 i a i e gI uta C . t.C eg uSc a 10 1C ia S o l f v g ei , e a m n Sh S n rl , h 2 c C iE n n t o
到 目前 为 止 ,科 研 设 计 人 员 已提 出 了许 多有 关 温 度 作 用 对 超 长 结 构 影 响 的计 算 方 法 。 要 有 如 下 几 种 : 主 21 多 层 混 凝 土 框 架 结 构 温 度 应 力 计 算 方 法 . 该 方 法 对 梁 柱 杆 件 均 承 受 温 度 作 用 产 生变 形 时 ,假 定 框 架 柱 的垂 直 变 形 是 自由 的 ,水 平 杆 件 的变 形 受 到 柱 子 约 束 而 在 框 架 内部 产 生 温 度 应 力 -。 柱 子 对 梁 约 束 的 程 度 ”各 可用 “ 移 刚 度 ” 示 : 侧 表
远 小 于 一 次 瞬 时 全 部 变 形 情 况 下 产 生 的 弹性 值 。 ( ) 度 和 收 缩 变 形 引 起 的 应 力 是 由 于 变 形 受 到 约 束 2温 产 生 的 。混 凝 土 的 温 度 应 力 与 一 般 弹 性 体 不 同 一 般 弹 性
从 结 构 本 身 来 说 ,结 构 的 超 长 将 对 结 构 产 生 两 个 方 面 的 不 利 影 响 。一 是 连 续 浇 筑 的 超 长 混 凝 土 收 缩 和 水 化 作 用 引 起 混 凝 土体 积不 均 匀 变 化 使 混 凝 土 构 件 内部 产 生 较 大 的
603 ) 10 6
『 摘 要1 许多超长的大型公共建筑结构不断出现, 如果按照规范要求需设置一道或多道伸缩缝, 会带来诸多不便。因此,
常 常 出现 超 长 结 构 不 设 或 少设 伸 缩 缝 的 情 况 , 就 需 要 对 未 设 伸 缩缝 的超 长 结 构 在 温度 作 用 下进 行 计 算 分 析 和 采 取 控 制 措 这
难 , 响 建 筑 物 的 立 面 效 பைடு நூலகம் 。 因此 。 往 在 方 案 设 计 时 对 于 影 往
超 长 结 构 不 设 或 少 设 伸 缩 缝 ,这 就需 要 对 未 设 伸 缩 缝 的 超
长结构在温度作用下进行应 力分析和采取控制措施 。
1 温 度 应 力 问题 的特 点
长 期 的渐 进 的 过 程 。 变 使 混 凝 土 应 力 逐 渐 松 弛 。 应 力 值 徐 其
—
—
的 线 性 分 析 发 展 到 各 类 非 线 性 分 析 .其应 用领 域 也 已 从 力 学 领 域 拓 展 到 了 各 类 物 理 场 的 分 析 。 随着 大量 的 商 业 有 限 元 分 析 软 件 的 出 现 ,越 来 越 多 的 工 程 技 术 人 员 开 始 使 用 这
一
使 用 极 限状 态 而 破 坏 , 过 使 用 功 能 规 定 的 限 值 。 响 结 构 超 影 的正 常使 用 。
与 荷 载 引起 的 应力 相 比 . 度 应 力 具 有 以 下 特 点 : 温 ( ) 凝 土 结 构 收 缩 变 形 的 产 生 和 温 度 的 变 化 是 一 个 1混
结 构 带 来 很 大 的 安 全 隐 患 1 严 重 时 甚 至 会 使 结构 达 到 正 常 2 ] 。
道 或 多 道 伸 缩 缝 【 会 影 响 建 筑 整 体 效 果 , 会 给 消 防 布 l 1 , 还
置 、管 线 铺 设 及 设 备 安 装 带 来 不 便 。 也 会 增 加 建 筑 装 修 困
Ke r s sp rln rcue jit tm ea r; t s; e srs ywo d : u e—o gs u tr;ons e p rt e s es m aue t ; u r
O 引 言
主要 是 由 于 内 在 的 温 度 变 化 引 起 的 。 温 度 应 力 就 是 结 构 或 构 件 由于 温 度 变 化 产 生 的 变 形 受 到 约束 时 产 生 的 应 力 , 果 加 大 伸 缩 缝 间 距 或 不 设 伸 缩 缝 , 如
,
R. =
何
( l 2 3… , i , ,, n — )
均 是 针 对 建 筑 领 域 应 用 的 有 限 元 计算 软 件 。
有 限 元 分 析方 法 已成 为 近年 来 众 多科 研 设 计 人 员 用 来 解 决 温 度 应 力 问 题 的 重 要 方 法 , 取 得 了许 多 成 功 的 经 验 。 并 2 . 局 部 构 件 的 温 度 应 力 计算 方 法 4 由 于 研究 对 象 是建 筑结 构 中 的局 部构 件 ,计 算 工 作 量 较小 , 为求 得逼 近理 论 解 的第 结 果 。 以 采 用 经 典 理 论 方 法 可 或 采 用 数 值 方 法 来 确 定 结 构 构 件 的 温 度 场 的 分 布 .从 而 得 出较为精确的温度应力值 。 可 采 用 弹 性 有 限 元 的 方 法 对 大 面 积 混 凝 土 梁 板 结 构 温 度 应 力 进 行 了分 析 ,采 用 季 节 温 差 与 当 量 温 差 的 叠 加 得 到
o T st pam l- h n e ep n i it w lbigal to n o v n e c . h r fr t e e i fe up r n e u ut c a nl x a s nj ns i r fi c n e i n e e e o e r s ot n s e l g i o o , l n ,h 一o ji t rl s e h a e n so e ss tt e c . wh c e u r st mpe a u e c l u a in a d a a y i n sr c u e wi o te p n i n t t r t u x a so o u h s i h r q ie e rt r ac lt n n ls a d o s
,
cnrl aue r ogs c r w to t x a s njit. S vr n t c r tema s esa a s r o t srs o n t t e i u p n i ns e ea l gs t e h r l t s n l i ae o me f l u r u h e o o l o u r u r ys
随 着 人 们 对 建 筑 物 使 用 功 能 的 要 求 越 来 越 高 。一 些 公
共 建 筑 正 逐 渐 向 大 型化 、 适 化 发 展 , 致 超 长 、 宽 的 大 舒 导 超 型 公 共 建 筑 也 大 量 出 现 。这 些 建 筑 如 果 按 照 规 范 要 求 设 置