低压配电系统接线方式

合集下载

高压低压配电柜的接线方式与电缆敷设原则

高压低压配电柜的接线方式与电缆敷设原则

高压低压配电柜的接线方式与电缆敷设原则在工业生产和城市建设中,配电系统起着至关重要的作用。

高压低压配电柜作为配电系统的核心组成部分,它的接线方式和电缆敷设原则对于配电系统的运行安全和效率有着重要影响。

本文将针对高压低压配电柜的接线方式与电缆敷设原则进行详细探讨。

一、高压低压配电柜的接线方式高压低压配电柜的接线方式根据不同的需求和要求,一般可以采用以下几种方式:1. 直接引入法:将高压进线和低压进线直接引入配电柜,并采用相应的断路器进行隔离。

2. 母线引入法:将高压进线和低压进线通过母线引入配电柜,采用母线槽和相应的隔离开关进行连接。

3. 电缆引入法:将高压进线和低压进线通过电缆引入配电柜,并采用电缆分支箱和相应的隔离开关进行连接。

以上三种接线方式各有优缺点,具体的采用方式需要根据实际情况和设计要求进行选择。

在进行接线时,还需要注意接线的可靠性和安全性,采取相应的保护措施,例如使用绝缘套管、绝缘胶带等。

二、电缆敷设原则电缆敷设原则是指在配电系统中,电缆的敷设方式和规范。

正确的电缆敷设原则可以保证电缆的安全运行和延长其使用寿命。

下面介绍几条常用的电缆敷设原则:1. 分层敷设原则:根据不同的电缆功率和安全要求,将高压电缆和低压电缆敷设在不同的层次,避免相互干扰。

2. 间距合理原则:电缆敷设时需要留足够的间距,以保证散热和绝缘效果。

3. 固定可靠原则:电缆敷设要固定可靠,避免外力引起电缆松动或破损。

4. 防护措施原则:对于易受损的电缆,例如高温、潮湿等环境下的电缆,需要采取相应的防护措施,例如使用防火套管、防水胶带等。

5. 路径规划原则:在进行电缆敷设时,需要合理规划电缆的路径,避免与其他设备、管道等发生冲突。

通过以上几个原则的合理应用,可以确保电缆的安全敷设和良好运行,提高配电系统的可靠性和效率。

总结:高压低压配电柜的接线方式和电缆敷设原则对于配电系统的正常运行和安全保障具有重要作用。

在实际的工程设计和施工中,我们应根据具体情况和要求选择合适的接线方式,并按照电缆敷设原则进行规划和操作。

低压配电系统的接地

低压配电系统的接地

低压配电系统的接地根据《电压配电设计规范》,低压配电系统接地形式有IT系统、TT系统、TN系统。

其中,第一个字母表示电源端与地的关系,T表示电源端有一点直接接地,I表示电源端所有带电部分不接地或有一点通过阻抗接地;第二个字母表示电气装置的外露可导电部分与地的关系,T表示电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点;N表示电气装置的外露可导电部分与电源端接地点有直接电气连接。

1.IT系统电源不接地或通过阻抗接地,电气设备外壳可直接接地或通过保护线接至单独的接地体。

IT系统可有中性线。

需要特别说明的是,IEC强烈建议不设置中性线,因为如设置中性线,在IT系统中N线任何一点发生接地故障,该系统就不再是IT系统了。

IT系统中,连接设备外露可导电部分和接地体的导线就是PE线。

采用IT方式供电系统,电源中性点不接地,相对接地装置基本没有电压,电气设备的相线碰壳或设备绝缘损坏时,单相对地漏电流较小,不会破坏电源电压平衡,一定条件下比电源中性点接地的系统供电可靠;在供电距离不很长时,供电的可靠性高、安全性好。

一般用于连续供电要求场合,如医院手术室、地下矿井、炼钢炉、电缆井照明等。

如IT方式供电距离很长,电气设备相线碰壳或设备绝缘损坏而漏电时,供电线路对大地分布电容会产生电容电流,此电流经大地形成回路,电气设备外露导电部分形成接触电压;TT方式供电系统的电源接地点一旦消失,即转变为IT方式供电系统,三相、二相负载可继续供电,但会造成单相负载中电气设备的损坏;如消除第一次故障前,又发生第二次故障,如不同相的接地短路,故障电流很大,非常危险,因此对一次故障探测报警设备的要求较高,能及时消除和减少出现双重故障,保证IT系统的可靠性。

2.TT系统电源中性点直接接地、用电设备外露可导电部分与大地直接连接。

TT系统为工作接地,设备外露可导电部分接地为保护接地。

TT系统中这两个接地必须相互独立,专用保护线PE和工作中性线N分开,没有电的联系。

低压配电系统的接线方式及特点

低压配电系统的接线方式及特点

低压配电系统的接线方式及特点(1)带电导体的形式:所谓带电导体是指正常通过工作电流的相线和中性线(包括PEN线但不包括PE线).宜选用单相两线、两相三线、三相三线、三相四线.(2)系统接地的形式:所谓配电系统接地是指电源点的对地关系和负荷侧电气装置(指负荷侧的所有电气设备及其间相互连接的线路的组合)的外露导电部分(指电气设备的金属外壳、线路的金属支架套管及电缆的金属铠装等)的对地关系.以三相系统为例,系统接地的型式有TN、TT、IT三种系统.TN系统按N线(中性线)与PE线(保护线)的组合情况还分TN-S、TN-C-S和TN-C三种系统.配电系统设计的基本原则(1)低压配电系统应满足生产和使用所需的供电可靠性和电能质量的要求,同时应注意接线简单,操作方便安全,配电系统的层次不宜超过二级.(2)在正常环境的车间或建筑物内,当大部分用电设备为中小容量,又无特殊要求时,宜采用树干式配电.(3)当用电设备容量大,或负荷性质重要,或在有潮湿、腐蚀性环境的车间、建筑内,宜采用放射式配电.(4)当一些用电设备距供电点较远、而彼此相距很近、容量很小的次要用电设备,可采用链式配电.但每一回路链接设备不宜超过5台、总容量不超过10kW.当供电给小容量用电设备的插座,采用链式配电时,每一回路的链接设备数量可适当增加.(5)在高层建筑内,当向楼层各配电点供电时,宜用分区树干式配电;但部分较大容量的集中负荷或重要负荷,应从低压配电室以放射式配电.(6)平行的生产流水线或互为备用的生产机组,根据生产要求,宜由不同的母线或线路配电;同一生产流水线的各用电设备,宜由同一母线或线路配电.(7)在TN及TT系统接地型式的低压电网中,宜选用Dyn11结线组别的三相变压器作为配电变压器.(8)单相用电设备的配置应力求三相平衡.(9)当采用220/380V的TN及TT系统接地型式的低压电网时,照明和其他电力设备宜由同一台变压器供电.必要时亦可单独设置照明变压器供电.(10)配电系统的设计应便于运行、维修,生产班组或工段比较固定时,一个大厂房可分车间或工段配电;多层厂房宜分层设置配电箱,每个生产小组可考虑设单独的电源开关.实验室的每套房间宜有单独的电源开关.(11)在用电单位内部的邻近变电所之间宜设置低压联络线.(12)由建筑物外引来的配电线路,应在屋内靠近进线点,便于操作维护的地方装设隔离电器.。

低压配电系统的接线方式及特点

低压配电系统的接线方式及特点

低压配电系统的接线方式及特点(1)带电导体的形式:所谓带电导体是指正常通过工作电流的相线和中性线(包括PEN线但不包括PE线).宜选用单相两线、两相三线、三相三线、三相四线.(2)系统接地的形式:所谓配电系统接地是指电源点的对地关系和负荷侧电气装置(指负荷侧的所有电气设备及其间相互连接的线路的组合)的外露导电部分(指电气设备的金属外壳、线路的金属支架套管及电缆的金属铠装等)的对地关系.以三相系统为例,系统接地的型式有TN、TT、IT三种系统.TN系统按N线(中性线)与PE线(保护线)的组合情况还分TN-S、TN-C-S和TN-C三种系统.配电系统设计的基本原则(1)低压配电系统应满足生产和使用所需的供电可靠性和电能质量的要求,同时应注意接线简单,操作方便安全,配电系统的层次不宜超过二级.(2)在正常环境的车间或建筑物内,当大部分用电设备为中小容量,又无特殊要求时,宜采用树干式配电.(3)当用电设备容量大,或负荷性质重要,或在有潮湿、腐蚀性环境的车间、建筑内,宜采用放射式配电.(4)当一些用电设备距供电点较远、而彼此相距很近、容量很小的次要用电设备,可采用链式配电.但每一回路链接设备不宜超过5台、总容量不超过10kW.当供电给小容量用电设备的插座,采用链式配电时,每一回路的链接设备数量可适当增加.(5)在高层建筑内,当向楼层各配电点供电时,宜用分区树干式配电;但部分较大容量的集中负荷或重要负荷,应从低压配电室以放射式配电.(6)平行的生产流水线或互为备用的生产机组,根据生产要求,宜由不同的母线或线路配电;同一生产流水线的各用电设备,宜由同一母线或线路配电.(7)在TN及TT系统接地型式的低压电网中,宜选用Dyn11结线组别的三相变压器作为配电变压器.(8)单相用电设备的配置应力求三相平衡.(9)当采用的TN及TT系统接地型式的低压电网时,照明和其他电力设备宜由同一台变压器供电.必要时亦可单独设置照明变压器供电.(10)配电系统的设计应便于运行、维修,生产班组或工段比较固定时,一个大厂房可分车间或工段配电;多层厂房宜分层设置配电箱,每个生产小组可考虑设单独的电源开关.实验室的每套房间宜有单独的电源开关.(11)在用电单位内部的邻近变电所之间宜设置低压联络线.(12)由建筑物外引来的配电线路,应在屋内靠近进线点,便于操作维护的地方装设隔离电器.。

高低压配电系统的接线形式与供电方式

高低压配电系统的接线形式与供电方式

高低压配电系统的接线形式与供电方式摘要:高低压配电系统是现代电力系统中的重要组成部分,其接线形式和供电方式对系统的运行稳定性和供电可靠性有着重要的影响。

本文将从明确接地方式、正常电源之间的关系、母线联络开关的运行与切换方式、变压器之间低压侧联络方式以及消防负荷和非消防重要负荷的供电方式等方面进行介绍和分析。

1. 引言高低压配电系统是将电能从变电站输送至用户的关键环节,其接线形式和供电方式决定了电力系统的运行效率和供电可靠性。

本文将针对高低压配电系统的接线形式和供电方式等方面进行详细介绍。

2. 明确接地方式接地方式是高低压配电系统的重要参数之一,直接关系到系统的绝缘性能和运行安全。

常见的接地方式包括TN系统、TT系统、IT系统等。

TN系统是指将低压配电系统的中性点直接接地,而TT系统则是将低压负载的中性点和地之间通过独立的地线连接。

IT系统则是不存在直接的中性点接地,而是通过绝缘监测和故障定位实现。

3. 正常电源之间的关系在高低压配电系统中,经常需要多个正常电源供电,如主电源、备用电源等。

它们之间的关系包括并联关系、串联关系和切换关系。

并联关系是指两个或多个正常电源通过母线联络开关同步并联供电;串联关系则是指两个或多个正常电源通过串联供电,以提高供电可靠性;切换关系则是指在主电源故障或维修时,自动切换到备用电源供电。

4. 母线联络开关的运行与切换方式在高低压配电系统中,母线联络开关的运行和切换方式具有重要作用。

母线联络开关通过将主馈线与备馈线连接或断开实现系统的切换。

常见的切换方式包括自动切换和手动切换。

自动切换是指通过电气保护装置和控制系统自动判断和切换;手动切换则是由操作人员根据实际需要手动切换。

5. 变压器之间低压侧联络方式在高低压配电系统中,变压器之间的低压侧联络方式常用的有直联和并联。

直联方式是指将变压器的低压绕组直接连接,实现供电的互相补偿;并联方式则是将变压器的低压侧通过并联连接,以实现系统的供电可靠性和容量的扩展。

低压配电系统接线方式

低压配电系统接线方式

低压配电系统接线方式一、概述1、先学习几个概念:中性点有效接地系统:中性点直接接地或经一低值阻抗接地的系统。

中性点非有效接地系统:中性点不接地,或经高阻抗接地或谐振接地的系统。

本系统可称为小接地电流系统。

检修接地:在检修设备和线路时,切断电源,临时将检修的设备和线路的导电部分与大地连接起来,以防止电击事故的接地。

工作接地:为了电路或设备达到运行要求的接地,如变压器低压中性点的接地。

保护接地:为安全目的在设备、装置或系统上设置的一点或多点接地。

重复接地:保护中性导体上一处或多处通过接地装置与大地再次连接的接地。

故障接地:导体与大地的意外连接。

当连接的阻抗小到可以忽略时,这种连接叫做“完全接地”。

功能接地:为正常运行而非安全目的在设备、装置或系统上设置的一点或多点接地。

接地电路:有一点或几点永久接地的导体的组合。

引用自《GB/T 4776-2008 电气安全术语》2、GB/T 4776-2008安全措施保护系统中规定了三种保护系统接线方式:TN 系统、TT系统、IT系统。

保护接零是保护接地的一种,即将设备金属外壳接零线,重复接地是接地零线再接地。

这里说明一下:今后不再用“接零”这一述语,而用TT、TN-S、TN-C-S等系统名词代替,而将“接地”作为以上做法的统称。

《建筑电气工程施工质量验收规范》GB50303-2002中还在用“接零”这一术语,在规范《民用建筑电气设计规范》JGJ16-2008,已明确不再用。

该《规范》条文说明第12.3.1条叙述如下:与原规范基本一致,取消了有架空线路的保护部分。

这里要注意的是原规范中,用的“接零”和“接地”的概念,修订后就不再采用了,而是用TN-C-S、TN-S及TT等系统名称代替,而将“接地”作为以上做法的统称。

现在,《建筑电气工程施工质量验收规范》GB50303-2002还沿用“接零”和“接地”术语,估计修改时也会一致起来。

不再用“零线”这一术语。

所谓“零线”是历史产物,20世纪50年代我国师从前苏联,电力工业也不例外,在低压接地系统中采用前苏联的接地系统,就沿用“零线”这一术语。

低压配电系统接地形式

低压配电系统接地形式

低压配电系统接地形式低压配电系统接地形式可有以下三种:TN系统电力系统有一点直接接地,受电设备的外露可导电部分通过保护线与接地点连接。

按照中性线与保护线组合情况,又可分为三种形式:(1)TN-S系统:整个系统的中性线(N)与保护线(PE)是分开的,见附录E.1图E.1-1。

(2)TN-C系统:整个系统的中性线(N)与保护线(PE)是合一的,见附录E.1图E.1-2。

(3)TN-C-S系统:系统中前一部分线路的中性线与保护线是合一的,见附录E.1图E.1-3。

TT系统电力系统有一点直接接地,受电设备的外露可导电部分通过保护线接至与电力系统接地点无直接关联的接地极,见附录E1图E.1-4。

IT系统电力系统的带电部分与大地间无直接连接(或有一点经足够大的阻抗接地),受电设备的外露可导电部分通过保护线接至接地极,见附录E.1图E.1-5。

1、在TN系统的接地形式中,所有受电设备的外露可导电部分必须用保护线(或共用中性线即PEN线)与电力系统的接地点相连接,且必须将能同时触及的外露可导电部分接至同一接地装置上。

2、采用TN-C-S系统时,当保护线与中性线从某点(一般为进户处)分开后就不能再合并,且中性线绝缘水平应与相线相同。

3、保护线上不应设置保护电器及隔离电器,但允许设置供测试用的只有用工具才能断开的接点。

对PEN线的隔离详见本规范第8章有关规定。

4、在TN系统中,保护装置特性除必须满足本规范第8章公式8.6.4.6要求外,当相线与大地间发生直接短路故障时,为了保证保护线和与它相连接的外露可导电部分对地电压不超过约定接触电压极限值50V,还应满足:(14.2.5)式中RB——所有接地极的并联有效接地电阻(Ω);U0——额定相电压(V);RE——不与保护线连接的装置外可导电部分的最小对地接触电阻(相线与地的短路故障可能通过它发生)。

当Re值未知时,可假定此值为10Ω。

如不满足公式14.2.5要求,则应采用漏电电流动作保护或其他保护装置。

低压配电系统接线方式三篇

低压配电系统接线方式三篇

低压配电系统接线方式三篇接线方式一:明线敷设接线方式明线敷设接线方式是指电缆或电线直接暴露在室内或室外的敷设方式。

这种接线方式简单直接、运行可靠,适用于气候条件较好、环境相对干净、电气设备不易受到物理损失的场所。

例如,在一座办公楼的照明系统中,电源线从配电室沿着走廊顶部敷设到每个办公室的顶棚上,然后再从顶棚下垂直到每个照明灯具上。

这种方式简洁明了,易于维护和更换。

然而,明线敷设接线方式的缺点是电线易受到外界环境的影响,如阳光、雨水、灰尘等。

另外,明线接线方式有可能造成电线间的相互干扰和短路,增加了系统的故障风险。

接线方式二:开槽敷设接线方式开槽敷设接线方式是指在建筑物的墙壁、地面或顶棚上开槽,将电缆或电线放入槽中,并用覆盖材料盖住槽口,使其与建筑物表面齐平。

这种方式适用于需要保护电线、避免机械损坏或防止盗窃的场所。

例如,在一座工厂的生产车间中,为了保护电缆免受移动设备的碾压或机械碰撞,工程师会在地面上开槽敷设电缆,并且用混凝土或塑料材料覆盖槽口,确保电缆的安全运行。

开槽敷设接线方式的优点是电缆得到了良好的保护,不易受到外界环境和机械损伤。

另外,这种接线方式美观,不会影响建筑物的整体外观。

接线方式三:潜管敷设接线方式潜管敷设接线方式是指将电缆或电线埋入地下的管道系统中进行敷设。

这种接线方式适用于需要长距离输电,或者有地下设备需要供电的场所。

例如,在一座小区的供电系统中,电源线从变电站敷设到小区入口,然后沿着各个街道进行敷设,将电能输送到每个住户的电表箱。

这种方式既保证了供电的可靠性和安全性,又美观大方。

潜管敷设接线方式的优点是电缆在地下敷设,免受外界环境和机械损坏的影响,可靠性较高。

另外,潜管系统中的电缆易于维护和更换,减少了维护成本。

总结起来,低压配电系统接线方式的选择需要根据不同的场所和要求来确定。

明线敷设接线方式适用于简单、干净的环境;开槽敷设接线方式适用于需要保护电线安全的场所;潜管敷设接线方式适用于需要长距离输电的场所。

低压配电系统的几种接地形式TT、TN、IT

低压配电系统的几种接地形式TT、TN、IT

低压配电系统的几种接地形式TT、TN、IT在低压配电系统中,正确的接地形式是非常重要的,不同的接地形式适用于不同的场景和需要。

在本文中,我们将介绍低压配电系统中常见的三种接地形式:TT,TN,和IT。

TT形式TT形式接地也被称为非自关式中性点接地,它指的是电源系统中的中性点被接地,但是接地点和设备之间有一定的电阻。

在TT形式接地中,用于接地的导线通常是连通于附加的电阻的,并且机房内的所有电气设备都需要接地。

TT形式接地适用于以下场景:•当设备故障时,不会引起过大的漏电电流;•适用于需要保证人身安全的场所,如医院、实验室等;•电力系统中接地电阻有一定的限制要求。

然而,TT形式接地的缺点在于,因为接地电阻的存在,会造成设备与地之间的干扰电压,对系统的稳定性造成影响。

TN形式TN形式接地指的是电源系统中的中性点和设备外壳都被接地。

TN形式接地又分为以下三种形式:TN-S形式TN-S形式接地是指中性点和设备外壳都接到同一地方,只有一条连接地电缆。

TN-S形式接地适用于以下场景:•如果具备正常的设备,使用TN-S形式接地是安全的;•电阻值可以非常小。

TN-C形式TN-C形式接地指的是电源系统中的中性点被接地,但各个设备外壳是联接在一起的,只有一条连接地电缆。

TN-C形式接地适用于以下场景:•轻型设备、灯具、弱电设备等;•对安全和电磁兼容性的考虑比较重要。

TN-C-S形式TN-C-S形式接地是指在一些较大的设备上使用TN-S,其余设备使用TN-C。

TN-C-S形式接地适用于以下场景:•符合电力公司规定的规范;•对设备的安全特别要求高。

TN形式接地的优点是在制造成本、可靠性和安装成本方面的具体控制。

然而,TN形式的缺点在于,当非中性点短路到地面时,将会引起短路电流打穿地面,导致一些安全隐患。

IT形式IT形式接地是指电源系统中的中性点没有被直接接地,而是被通过一个电阻器地接到地面上。

IT形式接地适用于以下场景:•连续供电和要求稳定性的设备;•对用电负载互相影响的问题有更高要求。

低压配电系统接线

低压配电系统接线

低压配电系统的插座接线方法
插座接线方法主要有平行连接、串联连接和交替连接等方式。选择适合的插 座接线方法可以为用户提供方便、安全的用电环境。
低压配电系统的保险丝接线方法
保险丝接线方法主要包括串联接线和并联接线两种方式。通过合理设置保险丝的接线方法,可以有效保护电力 设备免受过载和短路等损坏。
低压配电系统的接地接线方法
接地接线方法主要包括单点接地和多点接地两种方式。选择适合的接地接线 方法,可以提供电力系统的安全运行和人身安全保护。
低压配电系统的安全使用规范
低压配电系统的安全使用规范包括对电器设备的正确使用、定期巡检和维护 保养等方面。遵守安全使用规范可以确保电力系统的安全运行和人身安全。
低压配电系统的维护和保养方 法
低压配电系统的安装流程包括设计、布线、安装设备和进行测试等步骤。在安装过程中需要注意安全和规范, 确保系统的正常运行。
低压配电系统的检测方法及步骤
低压配电系统的检测方法包括对电压、电流、绝缘电阻等参数的检测和测量。通过定期检测可以及时发现问题 并采取措施维护系统的正常运行。
低压配电系统的升级改造方法
低压配电系统的升级改造方法包括设备替换、系统优化等方面。通过升级改造可以提高系统的安全性、可靠性 和能效性。
低压配电系统的开关接线方法
开关接线方法主要包括单开关、双开关和交替开关等方式。通过合理设置开 关的接线方法,可以实现电路的灵活控制和电能的节约使用。
低压配电系统的电缆接线方法
电缆接线方法包括直接埋设、架空敷设和管道敷设等方式。根据具体的环境和条件,选择合适的电缆接线方法 可确保电力系统的安全和可靠运行。
低压配电系统的接线排列方式
1 星形接线
三相接线系统的常用排列 方式,以星形连接变压器 和负载。

高压低压配电柜的电气连接方式与接线原则

高压低压配电柜的电气连接方式与接线原则

高压低压配电柜的电气连接方式与接线原则配电柜在建筑、工业生产和电力系统中发挥着至关重要的作用。

在配电柜中,高压低压配电柜是其中一个重要的组成部分。

本文将重点介绍高压低压配电柜的电气连接方式和接线原则。

一、高压低压配电柜的基本构造高压低压配电柜是将高压电源转变为低压电源,供应给工业设备和终端用户使用。

它由高压部分和低压部分组成。

高压部分主要由高压进线柜、变压器、高压母线以及高压开关设备组成。

低压部分主要由低压母线、熔断器、开关设备和控制设备组成。

二、高压低压配电柜的电气连接方式1. 平行连接方式在平行连接方式中,高压进线柜的多根导线与变压器的输入端进行平行连接。

这种连接方式适用于负荷较大的情况,可以确保高压进线柜和变压器之间有较好的电流均衡。

同时,平行连接方式可以提高系统的可靠性和灵活性。

2. Y型连接方式Y型连接方式是将高压进线柜与变压器的输入端进行Y型连接。

这种连接方式适用于负载分布较为均匀的情况。

Y型连接方式可以减小系统的不平衡负载,提高电气设备的运行效率。

3. Δ型连接方式Δ型连接方式是将高压进线柜与变压器的输入端进行Δ型连接。

这种连接方式适用于负载分布不均匀的情况。

Δ型连接方式可以使系统更好地适应非平衡负载和突变负载的情况。

三、高压低压配电柜的接线原则在高压低压配电柜的接线过程中,需要遵循以下原则:1. 安全第一原则在接线过程中要严格按照相关的安全规定进行操作,确保安全可靠。

操作人员必须佩戴好防护用具,同时要对设备进行定期维护和巡检,确保设备的正常运行。

2. 良好的接地原则高压低压配电柜的接地非常重要,接地电阻应符合相关标准要求。

在接线过程中,要确保接地线路的可靠连接,防止设备因为接地不良而引起的漏电或电气事故。

3. 线缆的选择原则在接线过程中,要选择符合要求的导线和电缆,确保电流的正常传输。

同时还要考虑线缆的绝缘性能和耐火性能等因素,以提高设备的安全性和可靠性。

4. 连接端子的原则在接线过程中,连接端子应牢固可靠,避免接触不良和松动现象。

低压配电系统的接线方式有三种,分别是放射式、树干式和混合式。

低压配电系统的接线方式有三种,分别是放射式、树干式和混合式。

低压配电系统的接线⽅式有三种,分别是放射式、树⼲式和混合式。

低压配电系统的接线⽅式低压配电系统的接线⽅式有三种,分别是放射式、树⼲式和混合式。

①放射式配电线路特点:发⽣故障时互不影晌,供电可靠性⾼,但导线消耗量⼤,开关控制设备较多,投资⾼。

适⽤于对供电可靠性要求⾼的场合。

②树⼲式配电线路特点:开关设备少,导线的消耗⾥也较少;系统的灵活性好,但⼲线上发⽣故障时,影响范围⼤,供电可靠性较低;适⽤于供电容量⼩⽽负载分布较均匀的场合。

2.电线、电缆的选择和敷设1)导线和电缆线芯截⾯的选择应满⾜要求:①在额定电流下,导线和电缆的温升不应超过允许值;②在额定电流下,导线和电缆上的电压损失不应超过容许值;③导线的截⾯不应⼩于最⼩允许截⾯,对于电缆不必校验机械强度;④导线和电缆,还应满⾜⼯作电压的要求。

2)导线的敷设导线的敷设按敷设位置可分为:①明敷:导线直接或者在线管、线槽等保护体内.敷设于墙壁、顶棚的表⾯。

②暗敷:导线在线管、线槽等保护体内,敷设于墙壁、顶棚、地坪及楼板等内部。

3)电缆的敷设①埋地敷设:埋深不应⼩于0.7m,并应敷于冻⼟层之下,上下各铺100mm厚的软⼟或砂层,电缆在沟内应波状放置,预留1.5%的长度。

②电缆沟敷设:室外电缆沟的盖板宜⾼出地⾯100mm,以减少地⾯⽔流⼊沟内。

当有碍交通和排⽔时,采⽤有覆盖层的电缆沟,盖板顶低于地⾯300mm。

沟内应考虑分段排⽔,每50m设⼀集⽔井,沟底向集⽔井应有不⼩于0.5%的坡度。

③电缆穿管敷设:管内径不能⼩于电缆外径的1.5倍。

管的弯曲半径为管外径的10倍.且不应⼩于所穿电缆的最⼩弯曲半径。

电缆穿管时,若⽆弯头,长度不宜超过50m;有⼀个弯头时不宜超过20m;有两个弯头时,应设电缆井,电缆中间接线盒应放在电缆井内,接线盒周围应有⽕灾延燃设施。

*注:电缆在室内埋地、穿墙或穿楼板时,应穿管保护。

⽔平明敷时距地应不⼩于2.5m。

垂直明敷时,⾼度1.8m以下部分应有防⽌机械损伤的措施。

低压配电系统接线方式

低压配电系统接线方式

(2)TN-S系统
TN-S系统中性线N与TT系统相同。与 TT系统不同的是,用电设备外露 可导电部分通过PE线连接到电源 中性点,与系统中性点共用接地体 ,而不是连接到自己专用的接地体 ,中性线(N线)和保护线(PE线)是 分开的。TN-S系统的最大特征是N 线与PE线在系统中性点分开后, 不能再有任何电气连接,这一条件 一旦破坏,TN-S系统便不再成立 。
(3)TN-C-S系统
TN-C-S系统是,TN-C系统和TN-S系统的结合形式,在TN-C-S系统中,从电源出来的 那一段采用TN-C系统,因为在这一段中无用电设备,只起电能的传输作用,到用 电负荷附近某一点处,将EN线分开形成单独的N线和PE线。从这一点开始,系统相 当于TN-S系统。
配电箱 L1 L2 L3 N PE
低压配电系统的 接地方式 根据现行的国家标准《电压配电设计规范》,低 压配电系统有三种接地形式,即IT系统、TT系统、 TN系统 (1)第一个字母表示电源端与地的关系: T-电源端有一点直接接地 I-电源端所有带电部分不接地或有一点通过阻抗接地。 (2)第二个字母表示电气装置的外露可导电部分与 地的关系: T-电气装置的外露可导电部分直接接地,此接地点在 电气上独立于电源端的接地点; N-电气装置的外露可导电部分与电源端接地点有直接 电气连接。
N
L1 L2 L3 N PE
PE U V W N L N
PE
三相设备
单相设备
单相插座
TN-S供电系统的特点如下:
(1)系统正常运行时,专用保护线上不有电流,只是工作零线上有不平衡 电流。 PE 线对地没有电压,所以电气设备金属外壳接零保护是接在专用的 保护线 PE 上,安全可靠。 (2)工作零线只用作单相照明负载回路。 (3)专用保护线 PE 不许断线,也不许进入漏电开关。 (4)干线上使用漏电保护器,工作零线不得有重复接地,而 PE 线有重复 接地,但是不经过漏电保护器,所以 TN-S 系统供电干线上也可以安装漏电 保护器。 (5)TN-S 方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统 。 由于传统习惯的影响,现在还经常将TN-S系统称为三相五线制系统,严格地 讲这一称呼是不正确的。按IEC标准,所谓“×相×线”系统的提法,是另 外一种含义,它是指低压配电系统按导体分类的形式。所谓的“×相”是指 电源的相数,而“×线”是指正常工作时通过电流的导体根数,包括相线和 中性线,但不包括PE线。按照这一定义,TN-S系统实际上是“三相四线制 ”系统或“单相二线制”系统。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接地,但是不经过漏电保护器,所以 TN-S 系统供电干线上也可以安装漏电 保护器。 (5)TN-S 方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统 。 由于传统习惯的影响,现在还经常将TN-S系统称为三相五线制系统,严格地 讲这一称呼是不正确的。按IEC标准,所谓“×相×线”系统的提法,是另外 一种含义,它是指低压配电系统按导体分类的形式。所谓的“×相”是指电 源的相数,而“×线”是指正常工作时通过电流的导体根数,包括相线和中 性线,但不包括PE线。按照这一定义,TN-S系统实际上是“三相四线制”系 统或“单相二线制”系统。
3、TT 系统接地装置耗用钢材多,而且难 以回收、费工时、费料。
N
PE UVW N
三相设备
三、 TN系统
TN系统即电源中性点直接接地、设备外露可导电部分与电源中性点直接 电气连接的系统。 TN系统主要是靠单相碰壳故障变成单相短路故障(短路电流是 TT 系统的 5.3 倍),并通过短路保护切断电源来实施电击防护的。从电 击防护的角度来说,单相短路电流大或过电流保护器动作电流值小, 对电击防护都是有利的。 TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用。 TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为 TN-S系统、TN-C系统、TN-C-S系统三种形式。
PE UVW N
三相设备
PE LN
单相设备 单相插座
TN-C系统具有如下特点:
(1)设备外壳带电时,接零保护系统能将漏电电流上升为短路电流 ,实际就是单相对地短路故障,熔丝会熔断或自动开关跳闸,使故障 设备断电,比较安全。
(2)TN-C方式供电系统只适用于三相负载基本平衡的情况,若三相 负载不平衡,工作零线上有不平衡电流,对地有电压,所以与保护线 所连接的电器设备金属外壳有一定的电压。
L2
N
L3
PEN
N
PE
UVW N
三相设备
PE LN
单相设备 单相插座
祝同学们在新的一年身体健康,学习进步。
(1)TN-C系统
TN-C系统如图所示,将PE线和N线的功
能综合起来,由一根称为PEN线的
L1
导体同时承担两者的功能。在用电
L2
设备处,PEN线既连接到负荷中性 N
L3
点上,又连接到设备外露的可导电
PEN
部分。由于它所固有的技术上的种 种弊端,现在已很少采用,尤其是 在民用配电中已基本上不允许采用 TN-C系统。
(2)TN-S系统
TN-S系统中性线N与TT系统相同。与 TT系统不同的是,用电设备外露可 导电部分通过PE线连接到电源中性 点,与系统中性点共用接地体,而 不是连接到自己专用的接地体,中 N 性线(N线)和保护线(PE线)是分开的 。TN-S系统的最大特征是N线与PE 线在系统中性点分开后,不能再有 任何电气连接,这一条件一旦破坏 ,TN-S系统便不再成立。
L1 L2 L3
N
PE
PE UVW N
三相设备
PE LN
单相设备 单相插座
TN-S供电系统的特点如下:
(1)系统正常运行时,专用保护线上不有电流,只是工作零线上有不平衡 电流。 PE 线对地没有电压,所以电气设备金属外壳接零保护是接在专用的 保护线 PE 上,安全可靠。
(2)工作零线只用作单相照明负载回路。 (3)专用保护线 PE 不许断线,也不许进入漏电开关。 (4)干线上使用漏电保护器,工作零线不得有重复接地,而 PE 线有重复
(3)如果工作零线断线,则保护接零的通电设备外壳带电。 (4)如果电源的相线接地,则设备的外壳电位升高,使中线上的危
险电位蔓延。 (5)TN-C系统干线上使用漏电断路器时,工作零线后面的所有重复
接地必须拆除,否则漏电开关合不上闸,而且工作零线在任何情况下 不能断线。所以,实用中工作零线只能在漏电断路器的上侧重复接地 。
(3)TN-C-S系统
TN-C-S系统是,TN-C系统和TN-S系统的结合形式,在TN-C-S系统中,从电源出来的 那一段采用TN-C系统,因为在这一段中无用电设备,只起电能的传输作用,到用电 负荷附近某一点处,将EN线分开形成单独的N线和PE线。从这一点开始,系统相当 于TN-S系统。
配电箱
L1
TT系统的局限性:
1、当电气设备的金属外壳带电(相线碰壳 或设备绝缘损坏而漏电)时,由于有接 地保护,可以大大减少触电的危险性。 但是,低压断路器(自动开关)不一定Байду номын сангаас能跳闸,造成漏电设备的外壳对地电压 高于安全电压,属于危险电压。
2、当漏电电流比较小时,即使有熔断器也 不一定能熔断,所以还需要漏电保护器 作保护,困此 TT 系统难以推广。
相关文档
最新文档