浅谈数学发展史中的三次危机

合集下载

历史上的三次数学危机

历史上的三次数学危机

历史上的三次数学危机王方汉(武汉市第二十三中学430050)在数学发展的过程中,人的认识是不断深化的.在各个历史阶段,人的认识又有一定的局限性和相对性.当一种/反常0现象用当时的数学理论解释不了,并且因此影响到数学的基础时,我们就说数学发生了危机.许多人并不赞成使用危机这个词,因为它们并没有阻碍数学的发展.在历史上,数学曾发生过三次危机.这三次危机,从产生到消除,经历的时间各不相同,都极大地推动了数学的发展,成为数学史上的佳话.第一次数学危机产生于公元前五世纪.那时,古希腊的毕达哥拉斯学派发现:正方形边与对角线是不可通约的,现在称之为/比达哥拉斯悖论0./悖论0这一术语,许多中小学生恐怕是第一次见到.所谓悖论,就是指自相矛盾荒谬结论.今天看来,两条线段不可通约,是数学中常见的合理的现象,它不过表明两条线段之比是一个无理数而已,可是,当时的古希腊人怎么会认识到这一点?!在他们眼中,各种事物的许多物理的、化学的、生物的性质都可能改变,惟其数量性质是不会变的!他们认为:万物都包含着数:数只有两种,这就是自然数和可通约的数.所以,不可通约的数是不可思议的!第一次数学危机持续了两千多年.十九世纪,数学家哈密顿(Hamilton)、梅雷(Melay)、代德金(Dedekind)、海涅(Heine)、波雷尔(Borel)、康托尔(Cantor)和维尔斯特拉斯(Weietstrass)等正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类)))实数,并建立了完整的实数理论.这样,就完全消除了第一次数学危机.第二次数学危机是因为发现微积分方法而产生的.十七世纪,牛顿和德国数学家莱布尼兹(Leibniz,1646-1716)首创了微积分.这时的微积分只有方法,没有严密的理论作为基础,许多地方存在着漏洞,还不能自圆其说.例如,牛顿当时是这样求函数y=x n的导数的:(x+v x)n=x n+n#x n-1#v x+n(n-1)2#x n-2#(v x)2+,+(v x)n,然后把函数的增量v y除以自变量的增量v x,得v yv x=(x+v x)n-x nv x=n#x n-1+n(n-1)2#x n-2#v x+,+nx#(v x)n-2+(v x)n-1,最后,扔掉其中所有含v x的项,就得到函数y= x n的导数为nx n-1.哲学家以眼光税利、思维敏捷而著称.贝克莱(Berkelg)就是这样的哲学家.他一针见血地指出:先以v x为除数,说明v x不等于零,后来又扔掉所有含v x的项,可见v x等于零,这岂不自相矛盾吗?这就是著名的/贝克莱悖论0.现在我们知道,自变量x的增量v x是一个无穷小量.但在当时,贝克莱悖论的出现,咄咄逼人,逼得数学家们不得不认真地对待/无穷小量0,设法克服由此引起的思维上的混乱.十九世纪,许多数学家投入到了这一工作之中,柯西(Cauchy,1789-1857)和维尔斯特拉斯的贡献最为突出.1821年,柯西建立了极限的理论,提出了/无穷小量是以零为极限但永远不为零的变量0,维尔斯特拉斯又作了进一步的改进,终于消除了贝克莱悖论,把微积分建立在坚实的极限理论之上,从而结束了第二次数学危机.第二次数学危机的解除,与第一次数学危机的解除,两者实际上是密不分的.为解决微积分问题,必须建立严密的无理数定义以及完整的实数理论.有了实数理论,加上柯西和维尔斯特拉斯的极限理论,这样,第一、二次数学危机就相继消除了.一波未平,又起一波.前两次数学危机解决后不到三十年,又卷起了第三次数学危机的轩然大波.十九世纪末和二十世纪初,德国数学家康托尔(Cantor,1845-1918)创立了集合论,初衷是为整个数学大厦奠定牢实的基础.正当人们为集合论的诞生而欣然自慰时,一串串数学悖论却冒了出来,又搅得数学家心里忐忑不安.其中,英国数学家罗素(Russell,1872-1970)于1902年提出的实际问题教学不能忽视可行性王满成(湖南城步教研室422500)文[1]通过课本习题演变,进而与生产实际密切相联,这是很可贵的,这正是当前中学数学教学所积极倡导的.但是,一个生产实际问题的解答方案应考虑其可行性.[1]中说:/开挖点E应离D 点33413米,就能使A、C、E三点在同一直线上0这几乎是不可能的事!因为过D作一满足N BDE =50b,DE=33413米的线段有无穷多条,当且仅当B、C、E、D四点共面时,方案才成立:但怎样保证共面,方案也未提及!笔者曾在邵阳市大圳灌区工程指挥部当过施工员(技术员),有过打遂洞两边同时施工的实践经验,现给出一个方案,供老师参考.旨在教师在这方面的教学中更贴近生产实际.第一步:过A、C两点拉线至B1(打一桩),再过C、B1拉线至B2(打一桩,因地形变化,在B1处需一人垂铅,使CB2上一点的射影落在B1上).如此下去,直至得到点G、F.第二步:采用[1]中的方案(或[1]中其它学生的设计方案).第三步:调整.当DE=33413米,且E点恰好落在GF上,问题解决;若E点落在GF的上侧或下侧,则需进行调整.显然,这种方案虽然在理论上讲得过去,但由于地形地貌的复杂性,在实际操作中可能会遇到困难,还需根据具体情况,再设法解决.参考文献1杨海燕.一堂开放型应用题教学实录.数学通报.2001年第7期/罗素悖论0影响最大.罗素构造了一个集合:B={X|X|X},也就是说:把一切不以自身为元素的集合X作为元素,这样的集合记为B.罗素问道:B是否属于B?回答试试看!若B I B,即B是B的元素,则B应满足集合B中的元素的条件,于是有B|B;若B|B,则已符合集合B的元素的条件,于是又有B I B.真奇怪:无论哪种情况,都使我们陷于自相矛盾、进退两难的尴尬境地!罗素悖论的出现,震撼了整个数学界.本应作为全部数学之基础的集合论,居然出现了内耗!怎么办?数学家们立即投入到消除悖论的工作中.庆幸的是:产生罗素悖论的根源很快被找到了!原来是,康托尔提出集合论时对/集合0的概念没有作必要的限制,以致于可以构成/一切集合的集体0这种过大的集合,让罗素这样的/好事者0/钻了空子0.怎么样从根本上消除集合论中出现的各种悖论(包括罗素悖论)呢?德国数学家策梅罗(Zermelo,1871-1953)认为:适当的公理体系可以限制集合的概念,从逻辑上保证集合的纯粹性.经策梅罗、费兰克尔(Frenkel)冯.诺伊曼等人的努力,形成了一个完整的集合论公理体系,称为ZFC系统.在ZFC系统中,/集合0和/属于0是两个不加定义的原始概念,另外还有十条公理.ZFC系统的建立,不仅消除了罗素悖论,而且消除了集合论中的其它悖论.第三次数学危机也随之销声匿迹了.纵观三次数学危机,每次都有一两个典型的悖论作为代表.克服了这些悖论,也就推动了数学的长足发展.经历过历史上三次数学危机的数学界,是否从此就与数学危机/绝缘0了呢?不!对此,我国当代著名数学家徐利治教授说了一段很有见地的话,他说:/由于人的认识在各个历史阶段中的局限性和相对性,在人类认识的各个历史阶段所形成的各个理论系统中,本来就具有产生悖论的可能性,但在人类认识世界的深化过程中同样具备排除悖论的可能性和现实性,人类认识世界的深化没有终结,悖论的产生和排除也没有终结.0参考文献1徐南昌.漫谈数学悖论的方法意义.中学数学,1991,82张祖贵.浅谈三次数学危机.湖南数学通讯,1984,6。

(整理)数学史上的三次危机.

(整理)数学史上的三次危机.

数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。

因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。

它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。

这是数学史上的一个里程碑。

毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。

后来,又发现数轴上还存在许多点也不对应于任何有理数。

因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。

例如, ,22,8,6,2等都是无理数。

无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。

事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。

第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。

这种状态一直保持到笛卡儿解析几何的诞生。

中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。

即算术阶段。

希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。

在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。

总之,第一次数学危机是人类文明史上的重大事件。

无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。

首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。

三次数学危机3篇

三次数学危机3篇

三次数学危机第一次数学危机在数学的发展历程中,曾有一次重大的危机,即第一次数学危机。

这次危机发生在20世纪初期,当时的数学家们正在努力寻找一种新的数学方法,以便更好地描述和理解现实世界中的复杂问题。

然而,这条道路并不平坦。

新的数学方法需要更加先进的数学理论支持,但当时的数学还无法满足这一需求。

同时,现实世界中的问题也变得越来越复杂,使得数学家们遇到了难以逾越的困难。

在这种情况下,数学家们开始怀疑数学的基础是否可靠。

他们发现,在数学的基础中存在着一些悖论和不完备性,这让他们陷入了困惑和迷茫。

为了解决这个问题,一些数学家开始重新审视数学的公理和证明,试图找到一种更加严格和完备的数学基础。

他们成立了一些小组,进行了长期而艰苦的研究和讨论。

这些研究最终导致了数理逻辑和公理化方法的发展,这些方法为将来的数学研究奠定了坚实的基础。

第一次数学危机虽然让数学家们苦苦思索和探讨,但也给了他们寻求新的数学方法的动力和启示。

第二次数学危机20世纪初期,数学家们在前往更为复杂的数学领域的过程中遭遇了另一次危机,即第二次数学危机。

这次危机源自对几何学和拓扑学的深入研究,数学家们发现其中存在许多令人困惑和无法解决的问题。

在几何学中,数学家们发现了一些反直觉的结果,这些结果对数学的基础产生了挑战。

例如,他们发现两个形状看似相同的物体却可能有不同的特征,这种现象被称为拓扑上的不可区分性。

在证明这些结果时,数学家不得不使用一些超出传统几何学范围的新工具,如集合论、拓扑学和代数学。

这些新工具的使用使得数学变得更加抽象和复杂,进一步挑战着数学基础的可靠性。

数学家们为了解决这些问题,开始研究数学的逻辑结构,并且发展出了公理集合论来奠定数学基础的更加牢固。

这种方法成为当代数学的基础之一,为数学家们寻找解决方案提供了关键性的工具。

第三次数学危机第三次数学危机发生在上世纪50年代和60年代,当时人们开始在计算机上使用数学模型来解决实际问题。

数学史上三次危机

数学史上三次危机

数学史上三次危机对于数学仅限于学校里学的那点东西,薄如蝉翼,谈不上什么深刻理解,但也听说过数学史上有三次危机。

限于老郭水平不高,能力有限无法深入,蜻蜓点水的说一下。

第一次数学危机-无理数的发现勾股定理是咱们小伙伴们都熟悉的,a^2+b^2=c^2。

这个公式出来之后就用到了已知两条边长求解直角三角形第三条边的边长问题上。

很明显,开平方之后会出现根号2、根号3这种情况,这种不能完全开平方的数是无限不循环的小数,我们现在叫做无理数。

我们现在理解这些数当然是没问题的,不过在当时,这种数的出现,打破了毕达哥拉斯学派认为的世界的和谐性质。

他们认为宇宙万物都可以归结为整数或者是整数之比。

这就导致了一种认识上的“危机”,这个危机被称为第一次数学危机。

其实,这次“危机”(我并不认为这是什么危机)给几何的发展带来了一次推动。

因为,出现了无理数意味着,人类依靠直觉和经验建立的科学不一定是可靠的,而严格的推理证明才是靠得住的。

从那以后,希腊人开始重视演绎推理,并且建立了几何公理体系。

这就是危难之中的机遇,古希腊人抓住了这个机遇,创造了平面几何的第一次辉煌。

第二次数学危机-阿基里斯追不上乌龟“阿基里斯追不上乌龟”:阿基里斯总是首先必须到达乌龟的出发点,因而乌龟必定总是跑在前头。

这个数学悖论故事是很有名的,其实我们现在的小伙伴都能知道,这是不可能发生的事,只要求一个极限,这个事就搞定了,跟本不存在追不上乌龟的事情。

然而在17世纪,微积分刚刚诞生那个时代,这个事还真是个大事。

当时包括牛顿、莱布尼茨等等大佬都没有找到解决这个问题的办法。

当时微积分刚刚初创,逻辑基础非常的不牢固。

很多基础问题,无穷小概念,从而导数、微分、积分等概念不清楚;无穷大概念不清楚;发散级数求和的任意性等等;符号的不严格使用;不考虑连续性就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。

那时候,这个问题争论的焦点就在于无穷小量究竞是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论,造成了第二次数学危机。

三次数学危机

三次数学危机

数学史上的三次数学危机分别是什么?答案一:毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。

他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。

由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。

而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。

然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。

毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。

希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。

小小√2的出现,却在当时的数学界掀起了一场巨大风暴。

它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。

实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。

对于当时所有古希腊人的观念这都是一个极大的冲击。

这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。

这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。

更糟糕的是,面对这一荒谬人们竟然毫无办法。

这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。

第二次数学危机导源于微积分工具的使用。

伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。

这一工具一问世,就显示出它的非凡威力。

许许多多疑难问题运用这一工具后变得易如翻掌。

但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。

两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。

数学史三次危机简介

数学史三次危机简介

数学史三次危机简介
数学史上的三次危机,简要概括如下:
1. 第一次数学危机:公元前5世纪,毕达哥拉斯学派发现无理数,挑战了当时“万物皆数”(指整数或整数之比)的信念。

这次危机通过实数理论的建立得到解决。

2. 第二次数学危机:17至18世纪,围绕无穷小量的问题,主要与微积分的发展有关。

微积分学在理论不完善的情况下被广泛应用,但其基础—无穷小的概念受到质疑。

最终,通过实数理论和极限理论的建立,这次危机得到了缓解。

3. 第三次数学危机:19世纪末,集合论悖论的出现,如著名的罗素悖论,暴露了自洽性问题。

这些悖论挑战了集合论作为数学基础的地位。

至今,尽管哥德尔的不完备定理对形式系统的局限性做了阐述,但第三次数学危机并没有完全解决。

数学史上一共发生过三次危机,都是怎么回事

数学史上一共发生过三次危机,都是怎么回事

数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。

第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。

但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。

毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。

即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。

第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。

直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。

第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。

正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。

”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。

数学史上的三次危机

数学史上的三次危机

数学史上的三次危机从哲学上来看,矛盾是无处不存在的,即便以确定无疑著称的数学也不例外。

数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。

在整个数学发展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算等等。

在数学史上,贯穿着矛盾的斗争与解决。

当矛盾激化到涉及整个数学的基础时,就会产生数学危机。

而危机的解决,往往能给数学带来新的内容、新的发展,甚至引起革命性的变革。

数学的发展就经历过三次关于基础理论的危机。

一、第一次数学危机从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。

它是一个唯心主义学派,兴旺的时期为公元前500年左右。

他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。

整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。

日常生活中,不仅要计算单个的对象,还要度量各种量,例如长度、重量和时间。

为了满足这些简单的度量需要,就要用到分数。

于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。

有理数有一种简单的几何解释。

在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。

以q为分母的分数,可以用每一单位间隔分为q等分的点表示。

于是,每一个有理数都对应着直线上的一个点。

古代数学家认为,这样能把直线上所有的点用完。

但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。

特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。

于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。

数学史上的三次危机

数学史上的三次危机

数学史上的三次危机第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。

因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。

它是在公元前5世纪或6世纪的某一时期又毕达哥拉斯学派的成员首先获得的。

这是数学史上的一个里程碑。

毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为qp/的形式,也就是说不存在作为公共量度单位的线断。

后来,又发现数轴上还存在许多点也不对应于任何有理数。

因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。

例如,,22,8,62等都是无理数。

无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。

事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。

第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1.数学已由经验科学变为演绎科学;2.把证明引入了数学;3.演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。

这种状态已知保持到笛卡儿解析几何的诞生。

中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。

即算术阶段。

希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里斯多得的逻辑体系, 而成为现代科学的始祖。

在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。

总之,第一次数学危机是人类文明史上的重大事件。

无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。

首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。

三次数学危机的产生与解决

三次数学危机的产生与解决

感谢观看
解决措施
针对三次数学危机,数学家们提出了各种解决措施。在第一次数学危机中, 欧多克索斯提出了实数的概念,将数学从困境中解脱出来;在第二次数学危机中, 数学家们对集合论进行严格的公理化,提出了公理化集合论;在第三次数学危机 中,
数学家们发展出了新的数学逻辑系统——模态逻辑,为数学的发展提供了更 加坚实的基础。
三次数学危机的产生与解决
目录
01 第一次数学危机
03 第三次数学危机
02 第内容
目录
06 总结
数学作为一门基础学科,是人类文明的重要组成部分。然而,在数学发展史 上,曾先后出现过三次严重的危机。本次演示将分别探讨这三次数学危机的产生 背景、原因及后果,并提出相应的解决措施。
第一次数学危机
第一次数学危机发生在公元前580年至568年之间的古希腊时期。这场危机的 起因主要在于当时数学界对无理数认识的不足。古希腊的数学家们认为,所有的 数都可以表示为整数或分数,即有理数。然而,当时希腊数学家希帕索斯发现了 一个问题:如果将
正方形的对角线进行等分,那么所得的线段长度就无法用有理数来表示。这 个发现动摇了当时数学界的基础,引发了第一次数学危机。
第二次数学危机
第二次数学危机发生在19世纪末期。这次危机源于康托尔的集合论,由于集 合论的某些基本概念含混不清,引发了数学界的恐慌。这场危机的根本原因是, 当时数学家们并未对集合论进行严格的公理化。为了解决这次危机,数学家们对 集合论进行了深入
研究,最终由策梅洛提出了公理化集合论,平息了这次危机。
发展。而在第三次数学危机时期,人们对数学的认知发生了根本性的改变, 使数学进入了一个全新的发展阶段。
总结
三次数学危机的产生与解决,是人类文明发展的重要组成部分。这些危机不 仅推动了数学的快速发展,而且也启示人们要不断深入思考和探索数学的内涵和 基础。通过了解三次数学危机的历史背景、原因、后果及解决措施,我们可以更 好地理解数学的

数学史上的三次危机3篇

数学史上的三次危机3篇

数学史上的三次危机第一次危机:希腊数学危机希腊数学家们是数学历史上的伟大人物,他们创造了许多数学概念和理论,如欧几里得几何、三角学、锥曲线等。

但在公元前4世纪到公元前3世纪的时期,希腊数学发生了危机。

这一时期的希腊数学家纷纷开始关注无穷大和无穷小的概念。

然而,这些概念并不符合当时的逻辑和数学标准,他们甚至不能用现代的数学符号来表示。

因此,这些数学家的理论并没有得到广泛的认可和接受。

在这一时期,希腊数学的道路出现了两条分支。

一条是传统的代数学派,他们注重整数、有理数和分数的研究;另一条是几何学派,他们将一切几何测量归纳为单个不可减少的点。

两个学派的意见相左,争论不断,导致了希腊数学的危机。

这一时期的数学发展为数学的发展带来了许多思考,但也让希腊数学陷入了停滞和分化的境地。

第二次危机:19世纪末的非欧几何危机19世纪末期,非欧几何成为了当时的热门话题。

在欧几里得几何中,平行公设是一项基本性质,两条不重合的直线在平面上永远不会相交。

然而,非欧几何学派质疑这一性质,提出了一种名为反射性的新性质,也就是说,两条不重合的直线在特定的情况下是可以相交的。

这种观点的提出,引起了数学界的强烈反响和激烈争议。

欧几里得几何是基础数学,因此许多人认为非欧几何在一定程度上是在否认这一基础。

在这种文化和学术背景下,非欧几何的认可难以达成,成为了数学史上的一次危机。

第三次危机:20世纪初的集合论危机20世纪初,集合论成为了数学的新话题。

然而,当时对于集合论的探讨往往涉及到关于无限的思考,这些思考往往与人的直觉相悖,甚至有些违反逻辑。

其中最著名的例子就是悖论:一个包含所有时空中的点的集合是否存在?如果存在,那么这个集合中是否包含它自身?如果不包含,那么就不能称其为包含所有时空中的点的集合;如果包含,那么这个集合就非常巨大,超出了我们的想象。

这个悖论意味着个体和整体的关系无法解决,出现了数学中的自我矛盾。

这一数学危机的解决需要借鉴哲学和逻辑学的工具,很多数学家因此开始关注哲学基础和逻辑体系,试图建立一个完备的集合论,以应对数学的自我矛盾和前进。

论数学史上的三次危机

论数学史上的三次危机

论数学史上的三次危机提到数学,我有一种感觉,数学是自然中最基础的学科,它是所有科学之父,没有数学,就不可能有其他科学的产生。

就人类发展史而言,数学在其中起的作用是巨大的,难怪有人说数学是人类科学中最美的科学。

但在数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。

人类数学史上出现过三次“危机”,这实际上是数学发展中三次伟大的突破,都是人们认识领域中的变革性发展,都是人们头脑中数学认识结构的转换。

第一次数学危机使数系扩展了,万物皆数的整数算术观念被动摇了,世界上竟存在着不能用整数表示的、不可通约的非比实数,被认为是“异物”的东西,成了新体系中合理的“存在物”。

第二次数学危机是方法论的领域扩大了,确立了一种崭新的“分析方法”。

“分析”的结果与“运算”或“证明”的结果有着同等程度的确定性。

第二次数学危机先后沿续一百多年,无非是为“分析”结果的确定性寻找基础,寻求证明和建立“分析”的步骤程序。

这在数学发展史上被称之为“分析中注入严密性”。

第三次数学危机是人的认知领域扩展到无穷,扩大了人们的思维方式,通过对一系列悖论的研究,确立了关于无穷运算的规则。

人类对数的认识经历了一个不断深化的过程,在这一过程中数的概念进行了多次扩充与发展。

其中无理数的引入在数学上更具有特别重要的意义,它在西方数学史上曾导致了一场大的风波,史称“第一次数学危机”。

第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。

这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。

当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。

该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。

三次数学危机及其影响

三次数学危机及其影响
罗素
整理课件
12
❖ 最后,这些既属于自己而又不属于自己 的集合 (Set),便成了集合论的矛盾,引 发起第三次数学危机。
整理课件
13
危机的消除
❖ 危机出现以后,包括罗素本人在内的许多 数学家作了巨大的努力来消除悖论。当时消 除悖论的选择有两种,一种是抛弃集合论, 再寻找新的理论基础,另一种是分析悖论产 生的原因,改造集合论,探讨消除悖论的可 能。
整理课件
10
罗素悖论
❖ 但罗素在1903年出版了《数学的原理》,书 中提到著名的罗素悖论,使数学基础产生了 裂纹,因而震动了整个数学界,这就是所说 的第三次数学危机。
整理课件
11
理发师悖论
罗素悖论的通俗化——“理 发师悖论”:某村的一个理 发师宣称,他给且只给村里 自己不给自己刮脸的人刮脸。 问:理发师是否给自己刮脸?
整理课件
9
三、第三次数学危机
1.“数学基础”的曙光——集合论
到19世纪,数学从各方面走向成熟。非欧几何的出现使 几何理论更加扩展和完善;实数理论(和极限理论)的出现 使微积分有了牢靠的基础;群的理论、算术公理的出现使算 术、代数的逻辑基础更为明晰,等等。人们水到渠成地思索: 整个数学的基础在哪里?正在这时,19世纪末,集合论出现 了。人们感觉到,集合论有可能成为整个数学的基础。
数学历史之: 三次数学危机及其影响
一. 第一次数学危机
❖ 一. 第一次数学危机
❖ 1.危机的起因:
第一次数学危机是由 不 能写2 成两个整数 之比引发的。
毕达哥拉斯(约公元前580-前500) 古希腊哲学家、数学家、天文学家
整理课件
2
例:如边长为1的正方形,对角线的 长度就不能以整数之比表示。

数学的三次危机

数学的三次危机

数学的三次危机在数学几千年的发展历程上,曾发生过三次动摇数学根基的危机,其中每一次都曾使得人们尤其是数学家怀疑数学的合理性,然而经过无数数学家的力挽狂澜,这三次危机不仅没有让数学失去其合理性,反而使其变得更加强大。

第一次数学危机“万物皆数”是古希腊毕达哥拉斯学派坚不可摧的信仰。

所谓“万物皆数”就是指任何的实数都可以表示为两个整数的比值。

然而学派引以为傲的毕达哥拉斯定理(也就是我国俗称的勾股定理)却恰恰成了其信仰的终结者。

毕达哥拉斯学派中的一个“好事之徒希伯斯(Hippasu)对学派坚守的“万物皆数”首先表示了怀疑。

他思考了一个问题:边长为1的正方形其对角线有多长呢?一番思索演算之后,他发现这一长度既不是整数,也不是分数,“万物皆数”的信仰就此崩塌。

相传恼羞成怒的学派成员将希伯斯淹死在了海里,真理不仅没有给他荣誉反而招致杀身之祸,可悲亦可叹!自被希伯斯发现之后,√2这个数学史上的第一个无理数便登上了舞台。

然而这一发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念都是巨大的冲击。

更为恼火的是,面对这一打击,人们手足无措,于是便直接导致了人们认识上史无前例的危机,从而导致了西方数学史上一场浩大的风波,史称“第一次数学危机”。

第二次数学危机自微积分被发明之后,质疑之声就从未消停过。

相当长的时间内,数学界对“无穷小”这一概念的理解和使用都是非常混乱的,但微积分理论的基础却恰恰就是“无穷小分析”。

这一理论上的缺陷招致了巨大的抨击,英国大主教更是直接称“无穷小”为盘旋的幽灵。

如果这一危机无法解除,那无数由微积分理论所获得的成果都将遭受无情的质疑。

这也就是数学史上的第二次危机。

转机出现在柯西,魏尔斯特拉斯等人用极限的方法定义无穷小量之后,这时微积分理论经过发展和完善才真正具有了严格的理论基础,从而使得数学大厦变得更加坚实牢固可靠,危机便也解除。

第三次数学危机“数学狂人”康托一手所发展的集合论作为现代数学的基础早已是数学界的共识。

数学发展史上的三次危机

数学发展史上的三次危机

数学发展史上的三次危机无理数的发现---第一次数学危机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。

当时的毕达哥拉斯学派重视自然及 到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。

他的处理不无穷小是零吗?---第二次数学危机 18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可 1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指 18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。

其中特别是:没有 直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。

从波尔查诺、阿贝尔、柯西、狄悖论的产生---第三次数学危机 数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令 1897年,福尔蒂揭示了集合论中的第一个悖论。

两年后,康托发现了很相似的悖论。

1902年,罗素 罗素悖论使整个数学大厦动摇了。

无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基 承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。

尽管悖派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的法解决了。

他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。

欧多克斯和狄德金于1872年给出的无数学家对这一理论的可靠性是毫不怀疑的。

学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。

他指出:"牛顿在求xn的导数时,靠。

其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪来看,还没有解决到令人满意的程度。

数学发展史上三次数学危机

数学发展史上三次数学危机

数学发展史上三次数学危机第一次数学危机“无理数的产生”第一次危机发生在公元前580~568 年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。

这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。

毕达哥拉斯学派认为“万物皆数” ,这个数就是整数,他们确定数学的目的是企图通过数的奥秘来探索宇宙的永恒真理,并且认为宇宙间的一切现象都能归结为整数或整数之比。

后来这个学派发现了毕达哥拉斯学定理(勾股定理),他们认为这是一件很了不起的事,然而了不起的事后面还有更了不起的事。

毕达哥拉斯学派的希帕索斯从毕达哥拉斯定理出发,发现边长为 1 的正方形对角线不能用整数来表示,这就产生了这个无理数。

这无疑对“万物皆数” 产生了巨大的冲击,由此引发了第一次数学危机。

第二次数学危机“微积分工具”18 世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。

但是不管是牛顿,还是莱布尼茨所创立的微积分理论都是不严格的。

危机的起源因为牛顿和莱布尼茨的微积分理论是建立在无穷小分析之上的,但他们对作为基本概念的无穷小量的理解与应用是混乱的。

1734 年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础——无穷小的问题,提出了所谓贝克莱悖论。

笼统的说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题。

这一问题的提出在当时的数学界引起了一定的混乱,由此导致了第二次数学危机的产生。

第三次数学危机“罗素悖论”到 19 世纪末,康托尔的集合论已经得到数学家的承认,集合论也成功地应用到其他的数学分支。

集合论是数学的基础,由于集合论的使用,数学似乎已经达到了无懈可击的地步。

但是,正当数学家们熟练地应用集合论时,数学帝国又爆发了一次危机。

康托尔集合论的创造性成果为数学提供了广泛的理论基础,所以在 1900 年巴黎国际数学会议上,法国大数学家庞加莱宣称:“数学的严格性,看来直到今天才可以说实现了。

数学历史上三大危机

数学历史上三大危机

数学历史上三大危机数学作为一门研究数量、结构、变化和空间等概念的学科,自诞生以来就不断面临着各种挑战和危机。

其中,数学历史上最为著名的三大危机,分别是无理数的发现、无穷小量的悖论以及集合论中的罗素悖论。

这三大危机不仅推动了数学的发展,也深刻地影响了数学哲学和科学哲学的演变。

一、无理数的发现无理数的发现是数学史上的一次重大突破,也是数学历史上第一次危机。

自古以来,人们一直认为所有的数都可以表示为分数,即两个整数的比例。

然而,公元前5世纪,古希腊数学家毕达哥拉斯学派发现了一个重要的几何事实:边长为1的正方形的对角线长度无法用两个整数的比例来表示。

这个发现不仅颠覆了毕达哥拉斯学派关于数的理论,也引发了一场关于无理数存在性的哲学争论。

无理数的发现揭示了数学中存在着一类无法用分数精确表示的数,这对当时的数学观念产生了巨大的冲击。

为了解决这个问题,古希腊数学家们发展了无理数的理论,并提出了诸如平方根、立方根等概念。

无理数的发现不仅推动了数学的发展,也促使人们重新审视数学的基础和本质。

二、无穷小量的悖论无穷小量的悖论是数学史上第二次重大危机。

在17世纪,随着微积分的诞生,无穷小量的概念逐渐被引入数学研究。

然而,无穷小量的性质和应用却引发了诸多悖论和争论。

例如,无穷小量是0还是非0?无穷小量乘以无穷大是什么?这些问题困扰着当时的数学家,也对微积分的发展产生了阻碍。

为了解决无穷小量的悖论,数学家们进行了深入的研究和探索。

19世纪,柯西、黎曼等数学家提出了极限的概念,建立了微积分的严格基础。

极限概念的引入不仅解决了无穷小量的悖论,也推动了数学分析的进一步发展。

三、集合论中的罗素悖论集合论中的罗素悖论是数学史上第三次重大危机。

19世纪末,德国数学家康托尔创立了集合论,为数学提供了一个全新的研究对象。

然而,1901年,英国哲学家罗素发现了一个关于集合论的基本悖论:一个集合如果包含所有不包含自身的集合,那么这个集合是否包含自身?罗素悖论揭示了集合论中存在的基本矛盾,对数学的基础产生了严重的挑战。

三次数学危机论文精选全文

三次数学危机论文精选全文

精选全文完整版(可编辑修改)浅谈数学发展史中的三次“危机”数学常常被人们认为是自然科学中发展得最完善的一门学科,但在数学的发展史中,却经历了三次危机,人们为了使数学向前发展,从而引入一些新的东西使问题化解,在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在19世纪末,罗素悖论的产生引起数学界的轩然大波,最后是将集合论建立在一组公理之上,以回避悖论来缓解数学危机。

本文回顾了数学上三次危机的产与发展,并给出了我对这三次危机的看法,最后得出确定性丧失的结论。

一、数学史上的第一次“危机”第一次数学危机是发生在公元前580~568年之间的古希腊。

那时的数学正值昌盛,特别是以毕达哥拉斯为代表的毕氏学派对数的认识进行了研究,他们认为“万物皆数”。

所谓数就是指整数,他们确定数的目的是企图通过揭示数的奥秘来探索宇宙的永恒真理,信条是:宇宙间的一切现象都能归结为整数或整数之比,即世界上只存在整数与分数,除此之外他们不认识也不承认别的数。

在那个时期,上述思想是绝对权威、是“真理”。

但是不久人们发现即使边长为1的正方形对角线不是可比数。

这样毕达哥拉斯“万物皆数”是不成立的,绝对的权威受到了严重的挑战:一方面证明单位正方形对角线的长不是整数分数,按照他们的观点,这种长度不是数!另一方面,他们不承认自己的观点有问题,这就陷入了极大的矛盾之中,这是第一次数学危机。

二、数学史上的第二次“危机”第二次数学危机发生在十七世纪。

十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。

其实我翻了一下有关数学史的资料,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到很多年后,牛顿和莱布尼兹开辟了新的天地——微积分。

微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾。

数学历史上三大危机

数学历史上三大危机
Байду номын сангаас
(Leibniz,1646年—1716年),德国哲学家、数学 家。与牛顿一起被认为是微积分的奠基者。
第二次数学危机
• 这是他著名的名言“存在就是 被感知”的基本原理。。 • 一回,贝克莱突发奇想,想知 道上吊是什么感觉,然后他就 上吊了,幸好有朋友及时赶到, 救了他一命。 • 贝克莱悖论:无穷小量到底是 不是零?
第一次数学危机
• 为庆贺毕达哥拉斯定理(即勾股定理) 的发现用了一百头牛设宴,也叫“百 牛定理”“蒋铭祖定理”。 • 他认为万物皆数:“1”是万物之母; “2”是对立和否定的原则;“3” 是万物的形体和形式;“4”是正义; “5” 雄性与雌性和结合;“6” 是 灵魂;“7”是机会;“8”是和谐, 也是爱情和友谊;“9”是理性和强 大;“10” 是完满和美好。 • 毕达哥拉斯的得意弟子希帕索斯发现 了无理数投进了爱琴海,因为这动摇 了学派的根基。
( Newton 1643年1月4日—1727年3月31日)爵士,英国 皇家学会会长,物理学家,百科全书式的“全才”。
第二次数学危机
• 莱布尼茨最大的贡献不是发明微积分, 而是发明了微积分中使用的数学符号, 他对二进制的发展做出了贡献。 • 2006年7月1日,德国的汉诺威大学 正式改名为汉诺威莱布尼茨大学。 • 牛顿与莱布尼茨在微积分上的著作权 之争,演变成了英国科学界与德国科 学界、乃至与整个欧洲大陆科学界的 对抗。
数学曾有过三次危机
历史上,数学的发展有顺利也有曲折。大 的挫折也可以叫做危机。危机也意味着挑战, 危机的解决就意味着进步。所以,危机往往是 数学发展的先导。数学发展史上有三次数学危 机。每一次数学危机,都是数学的基础部分受 到质疑。实际上,也恰恰是这三次危机,引发 了数学上的三次思想解放,大大推动了数学科 学的发展。

数学史上的三大数学危机

数学史上的三大数学危机

a
d
t
a mt
d nt
5
实例
① 形数(表示图形所用点的个数)
6
三边形数 四边形数 五边形数
六边形数
3
4
5
6
6
9
12
15
10
16
22
28
15
25
35
45
1 3 (2n 1) n2
1 5 (4n 3) 2n2 n
1 2 n n(n 1) 2
1 4 (3n 2) n(3n 2) 2
实数理论—极限理论—微积分。 而“历史顺序”则正好相反。
29
三、第三次数学危机
1.“数学基础”的曙光——集合论
到19世纪,数学从各方面走向成熟。非欧几何 的出现使几何理论更加扩展和完善;实数理论(和 极限理论)的出现使微积分有了牢靠的基础;群的 理论、算术公理的出现使算术、代数的逻辑基础更 为明晰,等等。人们水到渠成地思索:整个数学的 基础在哪里?正在这时,19世纪末,集合论出现了。 人们感觉到,集合论有可能成为整个数学的基础。
34
罗素悖论是:以 M表示“是其本身成员的
所有集合的集合”(所有异常集合的集合),
而以 N表示“不是它本身成员的所有集合的集
合”(所有正常集合的集合),于是任一集合
或者属于M ,或者属于 N ,两者必居其一,且
只居其一。然后问:集合N 是否是它本身的 成员?(集合 N 是否是异常集合?)
35
如果 N 是它本身的成员,则按 M 及 N 的定 义,N 是 M 的成员,而不是 N 的成员,即N 不
有公式 S(t) 1 gt ,2 其中 g 是固定的重力加速度。
2
我们要求物体在t 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈数学发展史中的三次危机摘要:在数学发展的历史长河中,危机与发展是并存的。

在数学发展史中出现了三次危机,人们通过对危机的探索,最终消除了它,并促进了数学的不断发展和进步。

第一次数学危机是人们对万物皆数的误解,随着无理数的发现进而度过了把第一次数学危机。

第二次数学危机是人们对无穷小的误解,而微积分的出现产生了一种新的方法——分析法,分析法是算和证的结合,是通过无穷趋近而确定某一结果。

罗素悖论的发现,导致了数学史上的第三次危机。

为了探求其根源和解决难题的途径,数学界、逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。

归根结底,导致三次危机的原因,是由于人的认识。

关键词:危机;万物皆数;无穷小;分析方法;集合一、前言历史上,数学的发展又顺利也有曲折。

打的挫折也可以叫做危机。

危机也意味着挑战,危机的解决就意味着进步。

所以,危机往往是数学发展的先导。

数学发展史上有三次数学危机。

每一次危机,都是数学的基本部分受到质疑。

实际上,也恰恰是这三次危机,引发了数学上的三次思想解放,大大推动了数学科学的发展。

二、无理数的发现---第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。

当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。

他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。

这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。

到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。

他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。

欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。

今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。

第一次数学危机对古希腊的数学观点有极大冲击。

这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。

危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!三、无穷小是零吗?---第二次数学危机18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。

1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。

他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。

这里牛顿做了违反矛盾律的手续---先设x 有增量,又令增量为零,也即假设x没有增量。

"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。

无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。

导致了数学史上的第二次数学危机。

18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。

其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。

直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。

从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。

四、悖论的产生---第三次数学危机数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。

这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。

由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。

1897年,福尔蒂揭示了集合论中的第一个悖论。

两年后,康托发现了很相似的悖论。

1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。

罗素悖论曾被以多种形式通俗化。

其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。

理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。

当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。

罗素悖论使整个数学大厦动摇了。

无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。

于是终结了近12年的刻苦钻研。

承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。

尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。

现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。

所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。

五、结语历史上的三次数学危机,给人们带来了极大的麻烦。

危机的产生使人们认识到了现有理论的缺陷,科学中悖论的产生常常预示着人类的认识将进入一个新阶段,所以悖论是科学发展的产物,又是科学发展源泉之一。

第一次数学危机使人们发现无理数,建立了完整的实数理论,欧氏几何也应运而生并建立了几何公理体系;第二次数学危机的出现,直接导致了极限理论、实数理论和集合论三大理论的产生和完善,使微积分建立在稳固且完美的基础之上;第三次数学危机,使集合论成为一个完整的集合论公理体系(ZFC系统),促进了数学基础研究及数理逻辑的现代性。

数学发展的历史表明对数学基础的深入研究、悖论的出现和危机的相对解决有着十分密切的关系,每一次危机的消除都会给数学带来许多新内容、新认识,甚至是革命性的变化,使数学体系达到新的和谐,数学理论得到进一步深化和发展。

悖论的存在反映了数学概念、原理在一定历史阶段会存在很多矛盾,导致人们的怀疑,产生危机感,然而事物就是在不断产生矛盾和解决矛盾中逐渐发展完善起来的,旧的矛盾解决了,新的矛盾还会产生,而就是在其过程中,人们便不断积累了新的认识、新的知识,发展了新的理论。

数学家对悖论的研究和解决促进了数学的繁荣和发展,数学中悖论的产生和危机的出现,不单是给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望。

数学中悖论和危机的历史也说明了这一点:已有的悖论和危机消除了,又产生新的悖论和危机。

但是人的认识是发展的,悖论或危机迟早都能获得解决。

“产生悖论和危机,然后努力解决它们,而后又产生新的悖论和危机。

”这是一个无穷反复的过程,也就不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。

参考文献[1]师琼,王保红.悖论及其意义[J].中共山西省委党校学报,2005,28(4):76~78.[2]赵院娥,乔淑莉.悖论及其对数学发展的影响[J].延安大学学报(自然科学版),2004,2(1):21~25.[3]李春兰.试论数学史上的第一次危机及其影响[J].内蒙古师范大学学报(教育科学版),2006,19(1):88~90.[4]梁伟.试析悖论与数学史上三次危机及其方法论意义[J].科技资讯,2005,(27):187~188.[5]王方汉.历史上的三次数学危机[J].数学通报,2002,(5):42~43.[6]胡作玄.第三次数学危机[M].四川:四川人民出版社,1985,1~108.[7]黄燕玲,代贤军.悖论对数学发展的影响[J].河池师专学报,2003,23(4):62~64.[8]周勇.第2次数学危机的影响和启示[J].数学通讯,2005,(13):47.[9]王庚.数学怪论[A].数学文化与数学教育——数学文化报告集[C].北京:科学出版社,2004.13~25.[10]兰林世.三次数学危机与悖论[J].集宁师专学报,2003,25(4):47~49.[11]王风春.数学史上的三次危机[J].上海中学数学,2004,(6):42~43.[12]张怀德.数学危机与数学发展[J].甘肃高师学报,2004,9(2):60~62.[13]刘明祥.数学史上的三次危机[J].湖南教育,1996.09.45[14]陈云波.数学发展史上的三次危机[J].教育与管理,2004.12.28[15]王保红.数学三次危机的认识论意义[J].山系教育学院学报2002.04:56~57后记:科学文化的发展离不开探索,在探索的过程中人们自然会犯错误。

正是因为有了错误,并且能够寻求方法解决问题,人类才能不断的进步与发展。

之所以选择这个题目也正是基于此原因。

要想真正了解数学的发展,我们就必须正面数学发展的道路上所经历的理论缺陷,以及置身于寻求解决方法的道路中去,体验数学文化这一路发展所经历的坎坷,我们才能够更好的理解数学,理解数学文化。

在写这篇论文的同时,我也深深体会的,不仅仅是数学,对于生活中的每一件事,我们都应该正视我们所经历的酸甜苦辣,因为这将是我们人生道路上,一种宝贵的财富。

相关文档
最新文档