瞬变电磁法简介

合集下载

瞬变电磁法应用条件

瞬变电磁法应用条件

瞬变电磁法应用条件瞬变电磁法(Transient Electromagnetic Method,简称TEM)是一种地球物理勘探方法,利用电磁学原理来探测地下的电性和导电性结构。

因其便捷、高效、精准的特点,被广泛应用于矿产勘探、地下水资源调查、环境地质调查等领域。

下面我们将详细介绍瞬变电磁法的应用条件,包括地质背景、地下介质、设备要求等内容。

一、地质背景瞬变电磁法通常适用于地表条件相对较好的地区,如平原、丘陵、山地等地貌,适用于研究区域的地质历史和地下介质结构。

在进行勘探前,需要详细了解地质条件,包括地表覆盖情况、地下水情况、岩石性质等。

只有充分了解地质背景,才能更好地设计勘探方案,提高勘探效果。

二、地下介质瞬变电磁法适用于导电率较高的地下介质,如含水层、矿床、盐水层等。

由于瞬变电磁法原理是通过观测地下电磁参数的变化来识别地下结构,因此对于介质的导电性要求较高。

在适用条件下,瞬变电磁法可以很好地探测地下水资源、矿产矿床等目标。

三、设备要求瞬变电磁法需要专门的仪器设备来进行测量。

在实际应用中,需要考虑设备的稳定性、精度以及适用范围。

目前市面上有多种瞬变电磁仪器,可以根据实际需求选用合适的设备。

还需要配备一定数量的电极、接收线圈等配套设备,以确保勘探工作的顺利开展。

四、环境条件瞬变电磁法对环境条件的要求较高,主要包括天气、地表情况等方面。

在进行勘探时,需要考虑天气因素对野外工作的影响,避免在极端恶劣的天气条件下进行测量。

地表覆盖情况也对瞬变电磁法的有效性产生影响,需要选择开阔的地区进行勘探,避免复杂地形对数据解释的影响。

五、专业人员瞬变电磁法需要专业技术人员进行操作和数据解释。

在进行勘探前,需要组建具备相关专业知识和实践经验的团队,从而保证勘探工作的顺利实施。

在数据解释阶段,也需要专业人员进行综合分析,提出科学合理的建议和结论。

六、安全防护在进行瞬变电磁法勘探时,需要注意安全防护措施。

特别是在野外作业时,要对设备操作人员进行安全培训,确保他们了解相关危险因素和应急措施。

瞬变电磁法原理介绍

瞬变电磁法原理介绍

瞬变电磁法原理介绍瞬变电磁法俗称TEM (Time domain electromagnetic methods )法,属时间域电磁感应方法。

其探测原理是:在地面布设一回线,并给发送回线上供一个电流脉冲方波,在方波后沿下降的瞬间,产生一个向地下传播的一次磁场,在一次磁场的激励下,地质体将产生涡流,其大小取决于地质体的导电程度,在一次场消失后,该涡流不会立即消失,它将有一个过渡(衰减)过程。

该过渡过程又产生一个衰减的二次磁场向地表传播,由地面的接收回线接收二次磁场,该二次磁场的变化将反映地下地质体的电性分布情况。

如按不同的延迟时间测量二次感生电动势V(t),就得到了二次磁场随时间衰减的特性曲线。

如果地下没有良导体存在时,将观测到快速衰减的过渡过程;当存在良导体时,由于电源切断的一瞬间,在导体内部将产生涡流以维持一次场的切断,所观测到的过渡过程衰变速度将变慢,从而发现地下导体的存在。

瞬变电磁法特图3-1 瞬变电磁法原理示意图(1)对高阻层的穿透能力强,在高阻屏蔽地区用较小的回线可达到较大的探测深度,同时对低阻层有较高的分辨能力,利于在高阻围岩地区开展水文电法工作。

(2)瞬变电磁法一次磁场和被测磁场在时间上是分开的,所以,分辨率较高,并且可以在近区观测。

(3)方法本身受地形影响小。

使用回线源实现了装置的对称性,z x t>0Tx t=t 12t=t t=t 3可以减少断面的不均匀性和地层倾斜的影响。

工作中根据实际情况采用了大回线源装置,用探头接收。

大回线装置的Tx采用边长较大的矩形回线,Rx采用小型线圈(或探头)沿垂直于Tx长边的测线逐点观测磁场分量dB/dt值。

地下感应涡流向下、向外扩散的速度与大地导电率有关,导电性越好,扩散速度越慢,这意味着在导电性较好的大地上,能在更长的延时后观测到大地瞬变电磁场。

从“烟圈效应”的观点看,早期瞬变电磁场是由近地表的感应电流产生的,反映浅部电性分布;晚期瞬变地磁场主要是由深部的感应电流产生的,反映深部的电性分布。

瞬变电磁法 解释

瞬变电磁法 解释

瞬变电磁法解释
什么是瞬变电磁法?
瞬变电磁法是一种地球物理勘探方法,用于探查地下的电性和磁性特征。

它利用瞬变电磁场在地下介质中传播的特性来获取地下结构的信息。

这种方法通常通过发送短脉冲电流来产生瞬变电磁场,并测量感应的电磁响应。

通过分析接收到的信号,可以推断地下介质的电导率、磁导率和形态等特征。

瞬变电磁法在石油勘探、地质灾害预测和地下水资源评估等领域具有重要应用价值。

瞬变电磁法的原理
在瞬变电磁法中,发送器通过电流脉冲产生瞬变磁场。

这个瞬变磁场会在地下介质中感应出涡流,产生感应电场和磁场。

接收器会测量感应电场和磁场的变化,并将这些信号转化为数字数据。

这些数据可以用来分析地下介质的电磁性质。

不同类型的地下介质对瞬变电磁场的响应不同,因此可以通过分析信号来识别地下结构的特征。

瞬变电磁法的应用
瞬变电磁法在以下领域具有广泛的应用:
•石油和矿产资源勘探
•地下水资源评估
•地质灾害预测(例如地震和滑坡)
•环境地质研究。

瞬变电磁法报告

瞬变电磁法报告

瞬变电磁法报告引言瞬变电磁法(Transient Electromagnetic Method,TEM)是一种非侵入性地下物探方法,广泛应用于矿产勘探、地质调查和水资源评价等领域。

该方法通过测量地下介质对电磁场的响应,可以获取地下的电阻率和电导率等信息,从而推测地下的地质结构和水文特征。

本报告将介绍瞬变电磁法的原理、仪器设备、数据处理方法以及其在勘探领域的应用情况。

原理瞬变电磁法是基于法拉第电磁感应定律和电磁场传播理论的。

其核心原理是在地下埋设主发射线圈和用于接收电磁信号的线圈,通过给主发射线圈施加瞬变电流,产生瞬变电磁场。

这个瞬变电磁场会感应地下的电流,进而产生感应电磁场,其中电磁场的传播过程会导致接收线圈中电磁信号的变化。

通过测量接收线圈中的电磁信号变化情况,可以推测地下介质的电阻率和电导率等物理参数。

仪器设备瞬变电磁法的仪器设备主要包括发射线圈和接收线圈两部分。

发射线圈通常由一对同心圆线圈组成,中间隔离一段距离,并通过一个高电压电流源施加瞬变电流。

接收线圈通常也是一对同心圆线圈,与发射线圈对应放置。

为了减少噪音干扰,接收线圈一般会使用差分模式进行测量。

此外,为了提高测量精度,仪器还包括数据采集设备、控制器和电缆等。

数据处理方法瞬变电磁法的数据处理主要分为两个步骤:预处理和解释处理。

预处理主要包括数据校正和数据滤波。

校正过程主要是对接收线圈信号进行校正,去除仪器和噪音引起的偏移。

滤波过程主要是对数据进行滤波处理,去除高频噪音和低频漂移等。

解释处理是根据已校正并滤波的数据,利用数学模型和反演算法对地下电阻率进行推测。

常用的解释处理方法包括二维反演、三维反演和测深等。

应用情况瞬变电磁法在矿产勘探、地质调查和水资源评价等领域有广泛的应用。

在矿产勘探中,可以利用瞬变电磁法探测地下的矿床和矿体分布情况,帮助寻找矿产资源。

在地质调查中,可以利用瞬变电磁法推测地下构造和地质体分布,辅助地质勘探和地质灾害预测。

瞬变电磁法名词解释

瞬变电磁法名词解释

瞬变电磁法名词解释瞬变电磁法,这可是地球物理勘探领域中相当厉害的一种方法呢。

瞬变电磁法,简单来说,就是利用不接地回线或者接地线源向地下发射一次脉冲磁场,然后在一次脉冲磁场间歇期间,利用线圈或者接地电极观测二次涡流场的方法。

这种方法的原理呀,是基于电磁感应原理的。

就好比你拿一块磁铁在一个金属物体旁边晃悠,金属物体里就会产生感应电流一样。

在地球内部,地下的地质体有着不同的导电性等电学性质。

当我们发射的一次脉冲磁场作用到地下时,那些导电性不同的地质体就会产生不同强度和特征的二次涡流场。

从仪器设备方面看,瞬变电磁法的仪器主要包括发射机和接收机两大部分。

发射机负责产生强大的一次脉冲电流,这电流通过发射线圈就会产生一次脉冲磁场。

这个磁场得足够强,才能深入到地下一定深度,去探测我们感兴趣的地质体。

接收机呢,则要非常灵敏,它要能精确地捕捉到二次涡流场的微弱信号。

这就像在嘈杂的环境里,要听到很微弱的声音一样不容易。

在实际应用中,瞬变电磁法有着广泛的用途。

比如说在寻找地下水方面,它就大显身手。

地下水存在的地层往往有着独特的电学性质,通过瞬变电磁法,我们可以圈定出可能存在地下水的区域。

在金属矿勘探中,它也是一把好手。

金属矿石的导电性和周围岩石往往不同,利用瞬变电磁法能够探测到那些可能富含金属矿的异常区域。

像在一些山区找铜矿或者铁矿,瞬变电磁法能给勘探人员提供非常有价值的线索。

不过呢,瞬变电磁法也有它的局限性。

它容易受到一些干扰因素的影响。

比如说地表的人文设施,像高压线、大型金属建筑物等,这些东西产生的电磁场会干扰瞬变电磁法的测量结果。

而且,瞬变电磁法的探测深度和分辨率之间存在一定的矛盾关系。

想要探测得深,可能分辨率就会有所下降;想要提高分辨率,探测深度可能就会受到限制。

在数据处理方面,瞬变电磁法得到的数据可不像我们想象的那么容易解读。

需要经过一系列复杂的处理流程,包括去除噪声、校正等操作。

就像厨师做菜,从菜市场买回来的菜得经过洗、切、炒等多道工序才能变成美味佳肴一样,瞬变电磁法的数据也得经过精心处理才能变成对地质解释有用的信息。

瞬变电磁法

瞬变电磁法
电偶源 中心回线
山西平鲁某煤矿CSAMT及TEM反演结果对比
六. 其他
新型TEM探头
国产新 TEM-7K 探头特性曲线
ZONGETEM/3探头特性曲线
TEM-7K,TEM/3和空心线圈野外实测曲线对比
50
100
150
NanoTEM的算术等间隔实测数据曲线-a
NanoTEM的算术等间隔实测数据线-b
TEM算术等间隔实测数据曲线
算术等间隔实测数据曲线局部放大-a
算术等间隔实测数据曲线局部放大-b
算术等间隔实测数据曲线局部放大-c
算术等间隔实测数据曲线局部放大-d
各种TEM装置
五. 电偶源瞬变电磁法
b.几个相邻回线的观测结果.
5. 小心矿外异常的干扰
三.起码目前还不宜采用TEM法的地区
a. 工业电网密集分布区; b. 有大量高层建筑区; c. 正在进行地下采矿的地面; d. 交通繁忙的道路旁; e. 地下金属管线分布区; f. 不满足半空间条件地区; g. 高阻区找无填充物的空洞等.
四.使用TEM法时需要注意的几个问题
a.不同Tx和Rx延迟设定结果对比
b.不同Tx和Rx延迟设定结果对比
c.不同Tx和Rx延迟设定结果对比
2.合理的选择发射电流:一般情况下,电 流越大越好,但不要信号饱和和超出仪器的 最大观测值。有时,电流太大导致铁淦氧棒 磁化导致二次场衰变缓慢。
3.Tx< 20m× 20m,时,不宜使用有 铁淦氧磁心的探头,最好改用空心线圈。
瞬变电磁法的应用
瞬变电磁法
瞬变电磁法(Time Domain Electromagnetic Method)简 称TDEM或TEM。瞬变电磁法是以不接地回线源通或接地电 偶源以脉冲电流激励大地后,观测地下感生的二次电流场的一 种探测方法。它可以在一次脉冲电流间断时(50%占空比) 测量它的一系列二次感生电流随时间变化的值,也可以在电 流方波反向时(100%占空比)测量它的一系列二次感生电流 随时间变化值。由于二次场从产生到结束的时间短暂的,又是 不断地衰变的,这就是“瞬变”一词的由来。早期,俄罗斯 称“过渡过程”法,西方早期叫脉冲电磁法(PEM)或电磁 脉冲法(EMP),在原苏联过渡过程法与建场法混称。

瞬变电磁法

瞬变电磁法

瞬变电磁法电磁学是研究电磁场产生、传播和作用的科学,电磁法的主要应用是地球物理勘探,即以电磁场的变化作为地球内部物质构造的判别与研究。

其中最重要的一种电磁方法就是瞬变电磁法。

瞬变电磁法是电磁勘探方法中最为重要的一种。

它是在短时间(几秒钟内)内电磁场的反复的改变,然后改变的电磁场引发地下不同的磁质体,从而表现出不同的响应特性,从而探测到地下结构及其物质构成。

瞬变电磁方法主要分为发射法和接收法,其中首先通过发射电磁场,形成瞬变磁场,再利用接收系统接收被感应磁场及其噪声信号,并再经过相关处理,进而获得物理参数信息。

瞬变电磁法有着极为丰富的信息,它可以获得地下物质的深度构造、属性等,还能探测隐藏的金属物质、水体分布等信息,因此,瞬变电磁法在地球物理勘探和评价方面有着十分重要的作用。

瞬变电磁勘探得到的主要成果是物质构造深度图、磁性参数图等,其中物质构造深度图可以用于描述地下物质构造的深度分布,它是用灰度值表示深度,磁性参数图可以用于反映地下物质的属性,它使用颜色表示不同的参数值,显示属性分布情况,这两种图像可以为解译地质构造、勘探和评价提供重要的基础。

瞬变电磁法的应用范围广泛,主要应用在金属和非金属矿产勘探,地质灾害预测,地下水探测,工程地质调查,水文地质等领域。

它可以准确地反映地下物质的属性,有效地探测地下结构,因此,它在各领域都得到了广泛的应用。

瞬变电磁法在勘探和评价中有着重要的作用,但它也有一些不足之处。

首先,瞬变电磁法只能提供局部的勘探,无法提供全局的勘探信息;其次,磁性参数的测量精度相对较低,它是一种非开放的技术,且具有较强的环境干扰;最后,探测结果受到各种磁场的影响,大气磁场的变化会影响测量结果的准确性,因而会影响勘探的准确性。

瞬变电磁法是一项重要的地球物理手段,它已经应用广泛,但相关技术也有待改进。

未来,应加强以瞬变电磁法为主体,结合其他手段,如超声波法、岩石物理法等,实现对地球物理领域的更加精确的勘探和评价,进一步推动地质物理领域的发展。

瞬变电磁法

瞬变电磁法
IP仪器采用保定、重庆仪器厂生产的WJF-V型激电发送机和WDJS-1型接收机。选择中间梯度法装置,供电极AB=500—800米,测点距MN=25米。参数设置:供电时间8秒,断电延时200毫秒,二次场放大量置0档。工作电流700-800毫安,电位差一般>20毫伏,测量一次电位和四个不同时段的视极化率。
二、方法简介
瞬变电磁法(简称TEM)是近十年来在我省引进的一项新的地球物理勘查方法,它是利用不接地回线或接地线源向地下发送一次脉冲磁场,在一次脉冲磁场的间歇其间,利用线圈或接地电极观测二次涡流场的方法。通过研究瞬变电磁响应,达到寻找良导矿体及解决其它地质问题。由于该方法观测的是纯二次场,具有探测深度大,分辨率高,发现异常能力强,装置灵活多样,对低阻覆盖层的穿透能力强等优点。因此被广泛应用于有色金属矿产勘查,寻找地下冷热水、水库查漏等地质勘查工作。
五、应用
根据地质任务要求,在勐兴铅锌矿南北向9公里的成矿带的南段和中段,布设垂直于矿带方向的9条TEM勘查剖面。剖面总长5.3公里。追索南段成矿带沿南段的延伸情况以及沿倾向上的分布情况;中段主要是查证矿体向西端倾斜延伸的情况,为后期地质工程提供物探依据。
测网的选择取决于重叠回线装置对矿体的分辩率,即能基本得出异常特征和范围。根据不同的地质目的与勘查程度,选择不同的测线间距。一般测线间距等于0.5-2倍回线边长,点距等于0.5倍回线边长。野外测线、测点测量采用卫星定位仪(GPS)定点。
1、瞬变电磁法:是利用不接地回线或按地线源向地下发送一次脉冲磁场,在一次脉冲磁场的间歇期间,利用回线或电极观测二次涡流场的方法。如下图:
研究局部导体的瞬变电磁响应的目的在于勘查良导金属体,研究水平层状大地的瞬变电磁场理论的目的在解决地质构造测深问题。发展和推广TEM的实践表明,它可以用来勘查矿产、煤田、地下水、地热及研究构造等各地质问题。

第三章瞬变电磁法

第三章瞬变电磁法

图3.1.1 瞬变电磁法原理示意图
117
由于瞬变电磁法测量的是导体内涡流的过渡过程,观测是在脉冲间歇期间进行 的,不存在一次场源的干扰,观测参数为纯二次场,是电磁法中唯一可采用同点装置 的方法,探测目标耦合最紧,获得的响应最强。磁性源激发,不受接地条件限制。 在金属矿勘查中, 主要用于寻找良导性的致密块状、 团块状、 网脉状硫化物矿体。 但对于浸染状硫化物矿体的探测效果不佳。 瞬变电磁法具有以下特点: (1)由于 TEM 法接收的是纯二次场,因而不受一次场的影响; (2)可以采用高密度时序采样,纵向分辨率较高; (3)穿透低阻覆盖能力强,勘探深度大; (4)发射用不接地回线,不受地表接地条件限制; (5)一般矿山主要干扰是电场,相对 TEM 干扰较小。
119
甚至重要的作用。应用此图时,回线长可看着任意比例尺,并以它来归一测点距、深 度和异常体大小。
图 3.1.4 通过主剖面的垂直剖面下方的一次场磁力线分布图
2、正常场 正常场是剖面测量中的一个术语,它是指局部异常响应的背景。典型的正常场就 是均匀非磁性导电半空间表面的瞬变响应。层状大地也可视为相当某一电阻率的半空 间。 (1)重叠回线 设半径为 a 的单匝圆回线铺设于均匀非磁性导电半空间表面上,在 t=0 的瞬间, 回线中的电流 I 阶跃地下降为零: I t ≤ 0 I (t ) = 0 t > 0 则均匀半空间的电动势响应为: (3.1.4)
§3.2 野外工作方法
3.2.1 常用装置类型及功能 常用装置类型及功能
瞬变电磁法用于找矿勘查能够较准确地确定地质体的倾向、埋深、走向等。野外 工作装置形式繁多,并是电磁法中唯一能进行同点发射—接收的方法。根据勘查任务 的不同可非常灵活地选用装置,常用的装置组合有以下几种(图 3.2.1) 。

试谈瞬变电磁法的应用

试谈瞬变电磁法的应用

试谈瞬变电磁法的应用一、瞬变电磁法的概述瞬变电磁法(简称TEM法)属于时间域电磁法,由于该方法是纯二次场测量,故与传统直流电法勘探相比较,具有对低阻异常体反映灵敏,勘探深度大,受地形影响小,工作效率高等优势。

瞬变电磁法开始只应用于金属矿勘探,上世纪90年代以后随着仪器的数字智能化发展,瞬变电磁法才开始应用于煤田水文探测中,如查明断层和陷落柱等构造的含导水性、地下采空区勘查、评价含水层富水性、结合水文钻孔预测矿井涌水量、矿井迎头超前探测等方面都取得了良好的效果。

地面瞬变电磁法多采用大定源回线装置,探测深度较大。

瞬变电磁法主要有:(1)地面动源类。

即发射系统和接收系统依点移动并观测记录结果,又可分为以下类型:同点类型:包括中心回线组合,同一回线组合,重叠回线组合。

该类型指发射回线的中心点与接收回线的中心点重合;分离回线类型:发射线圈与接收线圈相隔一段距离且同时移动;双回线类型:因使用步骤繁琐,使用效果不明显,故此方法极少使用,在此不做赘述。

(2)地面定源类。

不移动发射源,只移动接收线圈,并观测记录结果,又可分为以下类型:(大定源组合:发射回线边长一般较长;偶极定源组合:发射回线边长较小。

(3)地一井类。

发射回线在地面敷设,在井中逐点移动探头进行观测,可以在地面开孔,也可以是在坑道中开孔。

二、瞬变电磁法的特点及野外工作的要求2.1瞬变电磁法的特点瞬变电磁法能够在脉冲间隙中进行测量,这主要和这种方法不容易受到其他物质和磁场的干扰有关。

在使用这种方法的过程中,不同的脉冲强度是由不同的频率所合成的,这就使得脉冲在相同的时间场中有着不同的传播速度,勘察的深度也会不一样。

下面我们就具体的谈一下这种方法在空间和时间上的可分性特征。

(1)在提高煤炭資源勘察精确度的方法中,频率域法主要是通过提高自身精确度来实现的,但是瞬变电磁阀则是通过提高自身的灵敏度来实现,并成功的实现了提高精确度向提高灵敏度方面的转变。

(2)由于采空区的围岩区域地形差异比较大,所以如果采用原始的勘测方法,就容易受到地形的倾向而降低精确度,如果采用瞬变电磁法则能够避免这一问题。

瞬变电磁法

瞬变电磁法

瞬变电磁法
瞬变电磁法是以时变电磁法为基础的一种测量方法,用于测量地下物质的集体性物理参数,如地层密度、水位变化和地下水的渗透率等。

它是地球物理测量方法中最常用的一种,用于探测地下分布状况,有助于人们对地下物质的性质和分布进行详细的了解。

瞬变电磁法的基本原理是利用特殊的装置,在地面上不断发射和接收时变的电磁波,在接收端可以检测到地下物体的信号反射,然后根据信号强度和持续时间,推断地下物体的参数,以及地面上电磁信号传播衰减规律。

瞬变电磁法是一种非接触性的探测方法,在探测深度和范围比较大的情况下,可以获得比较精确的测量结果。

瞬变电磁法主要包括发射、接收和计算三部分,发射部分是运用电子器件将电能变为电磁波,同时将其发射到地下;接收部分是接收来自地下的电磁信号,并将其转换为电信号输出;计算部分是根据接收到的信号,通过计算方法得到电磁属性的信息。

瞬变电磁法用于探测地下物体的几何特性,经常用于探测深层发育环境,用于表征水位变化、渗透率变化,以及地下资源运动态变化,如油气流动、岩溶洞穴生成等。

它可以用于钻探灾害监测,也可以用于地质灾害预测,比如岩溶型地质灾害和水文地质灾害等。

瞬变电磁法拥有广阔的应用前景,它可以用于地下水资源的勘探、评价和管理,可以用于环境监测,用于定位水补给点,可以用于污染源的探测,用于油气勘探、水文勘探,以及地震活动和火山灰等活动的监测等等。

瞬变电磁法是一种新兴的测量技术,只要安装简单,易于操作,测量效果可靠,准确性较高,而且受社会及科技进步的不断推动,其应用技术也会得到持续改善,可以被广泛应用到工程实践中去,为人们对地下物质的性质和分布提供重要的参考。

瞬变电磁法

瞬变电磁法

中线回线全域电阻率

在晚期感应电动势ε(t)∝t-2/5,在双对数坐标 上的响应曲线呈68.2°下降直线。电阻率越 大,早、中期的时间短,且幅度大,电阻率 越小,早、中期的时间长。图2.2.1给出中心 回线下回线半径100m的两层大地的电动势时 间特性曲线。
4、高阻围岩中水平导电板的瞬变电磁
第2章 瞬变电磁法的反演方法
1、基于烟圈理论的最简化反演 根据M.N.Nabighian的推导,蒋邦远提出了 一种简单的、快速近似反演方法。 该方法的基本原理如下;均匀半空间地表 线圈激发的阶跃瞬变响应可,则上式中之速度v 为时间t所对应地层之速度。
否则, ; 早期瞬变电磁场用的较 少。
晚期视电阻率
/ r ; u 0 m r0 0 3 / 2 BZ (t ) m0 0 3 / 2 E (t ) ( ) ; ( ) 40t t t 20t t
特点: 1、晚期场与成反比,在导电性差的 大地上,磁 场经早期衰减,已衰减 殆尽的缘故。 2、晚期场与位置无关, 表明晚期场等效烟圈电 流 已扩散到无限远、无限 深处了。 3、晚期磁场随时间迅速 衰减。
他指出,任一时刻的 涡电流产生的磁场可等 效为一个水平环状的线 电流产生的磁场。 地下涡电流向下、 向外扩散的现象---“烟圈 效应”。
“烟圈”的半径和深度 为: r 8c 2 t /( 0 ) a 2 ; d 4 t / 0 d 2 c 2 2 0.546479 ; v t t 0 8 早期瞬变电磁场由浅部 涡流产生 反映浅部电性; 晚期瞬变电磁场由深部 涡流产生 反映深部电性; 观测研究瞬变电磁场随 时间的变化规律,可探 测 大地电性的垂向变化 瞬变电磁测深的原理。 观测研究同一时间瞬变 电磁场沿剖面的变化规 率 可探测大地电性沿剖面 变化 瞬变电磁探测 地下电阻率不均匀体的 原理。

瞬变电磁法资料

瞬变电磁法资料

第1章概述瞬变电磁法,是利用不接地回线或接地线源向地下发射一次脉冲磁场,在一次脉冲磁场间歇期间利用线圈或接地电极观测地下介质中引起的二次感应涡流场,从而探测介质电阻率的一种方法。

其基本工作方法是:于地面或空中设置通以一定波形电流的发射线圈,从而在其周围空间产生一次电磁场,并在地下导电岩矿体中产生感应电流:断电后,感应电流由于热损耗而随时间衰减。

1、原理瞬变电磁法(Transient Electromagnetic Method)也称时间域电磁法(Time domain electromagnetic methods),简称TEM,它是利用不接地回线或接地线源向地下发射一次脉冲磁场,在一次脉冲磁场间歇期间,利用线圈或接地电极观测二次涡流场的方法。

它是建立在电磁感应原理基础上的时间域人工源电磁探测方法。

它利用不接地回线或接地线源向地下发送一次脉冲磁场,在其激发下,地下地质体中产生的感应涡流将产生随时间变化的感应电磁场。

该信号和地下地质结构的电性特征有着直接的关系。

通过研究瞬变场随时间的变化规律,从而达到解决地质问题的目的。

其工作原理见图1。

其衰减过程一般分为早、中和晚期。

早期的电磁场相当于频率域中的高频成分,衰减快,趋肤深度小;而晚期成分则相当于频率域中的低频成分,衰减慢,趋肤深度大。

通过测量断电后各个时间段的二次场随时间变化规律,可得到不同深度的地电特征。

瞬变电磁法是在没有一次场背景情况下观测研究二次场,简化了对探测目标产生异常的研究。

该方法以其装置轻便、受旁侧影响小、高工效、低成本等特点已被广泛用于金属矿和煤田地质勘探、工程物探、地下水与地热勘探、采空区与岩溶发育带探测及环境灾害地质调查研究等诸多领域。

由于方法本身的属性,不宜在高压超高压输变电线路、铁路等强干扰源附近采集资料,这也为相关规范、技术规程所规定。

2、优点瞬变电磁法探测具有如下优点⑴由于施工效率高,纯二次场观测以及对低阻体敏感,使得它在当前的煤田水文地质勘探中成为首选方法;⑵瞬变电磁法在高阻围岩中寻找低阻地质体是最灵敏的方法,且无地形影响;⑶采用同点组合观测,与探测目标有最佳耦合,异常响应强,形态简单,分辨能力强;⑷剖面测量和测深工作同时完成,提供更多有用信息。

《瞬变电磁法介绍》课件

《瞬变电磁法介绍》课件

瞬变电磁法展望和挑战
展望
• 随着技术的进步,瞬变电磁法在地下资源探 测和环境监测方面的应用前景广阔。
• 瞬变电磁法将和其他成像技术相结合,以提 高检测精度和地下结构的细节。
挑战
• 瞬变电磁法需要高精度的仪器和计算机设备, 成本较高。
• 瞬变电磁法的地下结构分辨率受到限制,难无损成像技术。它使用电磁波来探测地下 结构并生成图像。
瞬变电磁法基础知识
电流
瞬变电磁法中的电流是指短暂而 强烈的尖峰电流。
磁场
瞬变电磁法中的磁场是由电流在 地下产生的。
电磁波
瞬变电磁法使用的电磁波频率通 常在几千赫兹到数十兆赫兹之间。
瞬变电磁法原理解析
电磁感应原理
电流通过线圈时会产生磁场,磁场变化时会引起感应电流,从而检测地下物质。
导电率差异
不同物质具有不同的导电率,使用瞬变电磁法可以探测地下导电率的异质性。
瞬变电磁法应用领域
1
环境监测
2
瞬变电磁法可以帮助测量水文地质结构
和寻找地下水资源。
3
矿产勘探
在矿产勘探中,瞬变电磁法可帮助找到 金属矿脉和石油。
接收器
接收器测量磁场变化,从而确定 地下物质。
计算机
计算机用于数据处理和成像,生 成地下结构图像。
瞬变电磁法数据解释与处理
1 解释场强
瞬变电磁法产生的磁场强度可以帮助判断地下物质性质。
2 处理数据
瞬变电磁法生成的数据需要进行计算和成像处理,以获得准确的地下结构图像。
3 图像生成
瞬变电磁法的成像程序将数据转换为可视化的图像,以显示地下物质分布。
土地利用
瞬变电磁法可以检测土地利用情况,如 耕地、林地和建筑用地等。

TEM瞬变电磁法简述

TEM瞬变电磁法简述

TEM瞬变电磁法简述瞬变电磁法或称时间域电磁法(Transient Electromagnetic Method,简称TEM),是以地壳中岩(矿)石的导电性与导磁性差异为主要物质基础,根据电磁感应原理,以不接地回线(磁偶源)向被测地质体发射脉冲式电场作为场源(一次场)。

以此来激励地下介质的二次涡流场,并对二次场进行观测。

在发射脉冲的间隙利用接收回线(线圈)接收二次场,通过分析二次场随时间的变化特征,来获取地下介质的电性特征(电阻率),推断目标体的空间赋存位置、产状、埋深等信息。

图1瞬变电磁法原理图如图1所示,在地面布设发送回线,并给发送回线上供一个电流脉冲方波,在一次磁场的激励下,地质体将产生涡流,在一次场消失后,该涡流不会立即消失,它将有一个过渡(衰减)过程。

该过渡过程又产生一个衰减的二次磁场向地表传播,在回线一定范围内接收回线接收二次磁场。

1.2 TEM如何实现测深在瞬变过程早期阶段,高频谐波占主导地位。

由于高频的趋肤效应,涡旋电流主要集中在导电介质的表层附近且阻碍电磁场向地质体深处传播。

所以早期阶段主要反映地质体断面上部地质信息。

随着时间的推移,高频成分被导电介质吸收,从而低频成分占主导地位。

它在导电地质体中激发出很强的涡旋电流。

然而由于热损耗,这些涡旋电流场很快就消失了。

在瞬变过程的晚期,局部地质体中的涡流实际上全部消失,而在各个地层中的涡流磁场之间连续的相互作用使场均匀化和使电流均匀分布,晚期场将依赖于断面的总纵向电导。

1.3 TEM如何探测地质体信息在发送一次脉冲磁场的间歇期间,观测由地质体受激励引起的涡流产生的随时间变化的感应二次场的强度。

地质体介质被激励所感应的二次涡流场的强弱决定于地质体介质所耦合的一次脉冲磁场磁力线的多少,即二次场的大小与地下介质的电性有关:(1)低阻地质体感应二次场衰减速度缓慢,二次场电压较大;(2)高阻地质体感应二次场衰减速度较快,二次场电压较小。

根据二次场衰减曲线的特征,就可以判断被测地质体的电性、性质、规模和产状等,由于瞬变电磁仪接收的信号是二次涡流场的电动势(即二次电位),因此,瞬变电磁作为一种时间域的人工源地球物理电磁感应探测方法,是根据地质构造本身存在的物性差异来间接判断相关地质现象的一种有效的地质勘探手段。

TEM法(瞬变电磁法)

TEM法(瞬变电磁法)

中心回线 TEM 正演结果之一
中心回线 TEM 正演结果之二
0
(m)
-5
-10 30
(m)
35
40
45
50
55
60
65
70
75
80
水泥管(直径30cm) 碎石(2m*2m*2m) 空洞(1m*o.5m*1m) 钢管(直径10cm) 碎石(1.5m*1.5m*1.5m)
福建某海湾围堰NanoTEM探测
-100
-200
4500
5000
5500
6000
6500
辽宁清远红透山GDP-32II 验收试验结果
-100 -200
GDP-32 TEM结果 200m*800m
GDP-32 CSAMT结果
200 600 400 600 800 1000
-300
GDP-32 TEM结果
400m*400m
700 750 800 850 900 950 1000
TEM法的电阻率计算与所使用的装置有关,就 中心回线而言,其近区的计算公式为
探测深度公式为
h ≈ 28 ρ × t
TEM多窗口电压剖面 多窗口电压剖面
160 140
Gambell EE/CA TEM Geophysical Survey Area C, Line 0e TEM dBz/dt (uV/Am2)
瞬变电磁法
瞬变电磁法(Time Domain Electromagnetic Method)简称TDEM或TEM。瞬变电磁法以接地导线 或不接地回线通以脉冲电流,以激励探测目的物感 生二次电流,在脉冲间隙测量二次场随时间变化的 响应的一种电磁探测方法。由于二次场从产生到结 束的时间是短暂的,这就是“瞬变”一名词的由来, 俄罗斯称“过渡过程”,西方早期叫脉冲电磁法 (PEM)或电磁脉冲法(EMP),在原苏联过渡过 程的早期与建场法混在一起。

瞬变电磁法

瞬变电磁法

瞬变电磁法
一种新的时间反演方法
瞬变电磁法是一种新的时间反演方法,它是基于地球电磁场的快速变化原理,用以检测地球介质中的地震波时间反演,进而可以对大范围的地震活动进行研究。

它的原理是当地的地震波发生变化时,地球介质中的电磁场变化也会被快速激发,通过观测和记录这些电磁场变化可以推断某一特定时间段内发生了什么样的地震波变化。

在时间反演中,首先要让记录仪记录大量的原始地震数据,然后利用一些数学模型对这些数据进行处理,进而对地震活动(地震波发生的时间和性质)进行重建。

瞬变电磁法的时间反演效果可以空间大范围地探测地震活动,而且也不受地
震波层次结构、目标位置分布等空间因素的影响。

另外,该方法采用多极体检测系统,检测只需很少时间,即使对于大规模地震反演,也很容易实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节瞬变电磁法(TEM)
一、方法原理
瞬变电磁法是利用不接地回线或接地线源通以脉冲电流为场源,以激励探测目的物感应二次电流,在脉冲间歇测量二次场随时间变化的响应。

当发射回线中的电流突然断开时,在介质中激励出二次涡流场(激发极化场),二次场从产生到结束的时间是短暂的,这就是“瞬变”名词的由来。

在二次涡流场的衰减过程中,早期以高频为主,反映的是浅层信息,晚期以低频为主,反映的是深层地下信息。

研究瞬变电磁场随时间变化规律,即可探测不同导电性介质的垂向分布。

瞬变电磁法的探测深度与回线线圈的大小、匝数有关,线圈越大、匝数越多,探测的深度就越深。

瞬变电磁法的观测是在脉冲间隙中进行,不存在一次场源的干扰,这称之为时间上的可分性,脉冲是多频率的合成,不同的延时观测的主频率不同,相应的时间场在地层中的传播速度不同,调查的深度也就不同,这称之为空间的可分性。

由这两种可分性导致瞬变电磁法有以下特点:把频率域法的精确度问题转化成灵敏度问题,加大功率,灵敏度可以增大信噪比,加大勘探深度;在高阻围岩地区不会产生地形起伏影响的假异常;在低阻围岩地区由于是多道观测,早期道的地形影响也较易分辨;可以采用同点组合(同一回线、重叠回线等)进行观测,使与探测目标的耦合最好,取得的异常强,形态简单,分层能力强;线圈点位、方位或接收距要求相对不严格,测地工作简单,功效高;有穿透低阻覆盖层的能力,探测深度大;剖面测量与测深工
作同时完成,提供了更多有用信息,减少了多解性。

二、地球物理前提
由于瞬变电磁法是观测断电后由一次脉冲激励出的二次涡流场随时间的变化规律,二次涡流场随时间的衰减快慢和强弱与被探测介质(道碴、混凝土、岩石等)及介质状态(含水与干燥、完整与破裂)有关,TEM法衰减曲线的变化过程反映了检测点由高频到低频、由浅层到深层的地质信息变化过程。

检测的参数是各层规一化的电阻率,对实测的衰减曲线进行反演拟合,绘制地下电性分层及分层的电阻率柱状图,进而以反演拟合曲线为基础,绘制成曲线簇断面图、等值线断面图及电性分级断面图。

TEM法主要用于隧底检测。

隧底结构的正常场,一般情况下,干燥的道碴与铺底砼、基岩相比,相对电阻率高、电导率低,铺底砼的电阻率次高、电导率次低,基岩的电阻率相对较低、电导率相对较高,略高于铺底砼。

当隧底结构出现异常,有裂损的铺底砼与完好的铺底砼相比,电导率升高、电阻率降低。

如果在铺底层与基岩顶面之间有干虚碴层或存在吊空、松散层时,则将出现低电导率、高电阻率层;相反,虚碴层、松散层含水时,则出现高电导率、低电阻率。

因此,用TEM法对隧底进行检测后,将实测的衰减曲线进行反演拟合,并以反演拟合为基础,绘制成电性分级断面图等图件,最后结合收集的既有资料(隧底结构图、竣工图、施工开挖地质情况等),对这些图件进行分析解释,提供隧底结构分层(道碴层、铺底层、基岩面、道碴充水充泥段和陷槽段)、有无底板层(含仰拱)、底板层破损段、
超挖与欠挖段、含水软弱夹层段等。

三、现场检测
㈠测线测点布置
沿隧道纵向布置测线,1⨯1m的重叠线圈,在轨道间每隔1~2.5m 布置一测点,见图8.3.1,采用点测方式。

图8.3.1 瞬变电磁法现场检测工作示意图
㈡野外数据采集时,瞬变电磁法应多次数据叠加,取平均值。

㈢野外工作,由于发射和接收线圈不接地、作业方便、工作效率高,所以检测工作可在两列车行走间隔时段内完成,不需要另外要点,不会影响列车正常运营。

四、工程实例
1强场源瞬变电磁技术完善与升级(安徽铜陵凤凰山铜矿TEM实验研究)
(国家十五科技攻关项目)
本项目的试验目标定在利用电法技术了解安徽铜陵凤凰山铜矿深部的矿体形态及空间分布情况,检验所选方法技术对凤凰山铜矿已知深部矿体的探测效果及分辨能力。

为实现上述目标,在2002年11月份的由吉林大学(原长春科技大学)、中南大学等研究单位的有关人员组成的TEM对比试验组分别于2002年11月10日-11月20日在徽铜陵凤凰山铜矿相思树矿区,对其55勘探线和51勘探线开展了TEM的试验,采用吉林大学自行研制的ATEM-II型强场源仪器系统。

经过试验组成员近一个月的野外详细工作和努力,取得了较丰富的第一手资料,本章给出对比试验的初步结果。

2002年11月13日至2002年11月19日,本项目研制的瞬变电磁系统,在安徽铜陵凤凰山铜矿相思树地区进行了野外实验,实验内容包括:相思树矿区55线、51线实验,55线的大电流实验,在此实验的基础上,对未知区域51线进行了500米勘探。

凤凰山55线视电阻率断面图、 凤凰山51线视电阻率断面图
2ATTEM
系统与关键技术研究(舟山大陆连岛工程桥位区的工程勘探)
(自然基金项目)
随着城镇化进程的不断加快,工程探测和环境地质调查问题已是地球物理探测的新的研究分支,即工程与环境地球物理学的研究迅速兴起,促进了高精度高分辨率地下探测技术的发展。

电磁场探测在工程与环境地球物理中起着重要作用,但由于城市环境的特殊性,传统的探测方法在某些方面受到限制,难以满足工程与环境的要求。

尤其是近地表地下目标体,如城市活断层、含水断裂带、地
下空洞等不良地质体,已有的物探手段如直流联剖、直流电阻率测深和高密度电法、探地雷达等可在一定范围内探测到目标体,但直流联剖仅能直观简单地确定低阻带(低阻破碎带型的断层),直流电阻率测深和高密度电法虽然可以确定不良地质体的丰富信息,但深度不够准确,探地雷达可以高分辨率地进行近地表分层,但探测深度浅,瞬变电磁不仅具有直流测深和高密度电法的效果,而且比探地雷达探测深度大、无损检测解决城市问题等优点。

舟山大陆连岛工程位于浙江省
H(m)H(m)
m 欧姆.米
50
100
150
200
H(m)m
欧姆.米
老 虎 山 纵 4 线 高 密 度 电 法 反
演 剖 面
地质矿产部第一综合物探大队提供
东部的东海海域内,连接舟山、宁波两市,主要由岑港大桥、响礁门大桥、桃天门大桥、西堠门大桥和金塘岛大桥组成。

其中即将建成的西堠门大桥为连接金塘岛和册子岛跨度约为1650米的悬索桥,悬索桥的南北锚碇均位于金塘岛和册子岛上,北塔位于海中的老虎山上,南塔位于金塘岛上。

2003年6月,采用瞬变电磁方法对舟山大陆连岛工程中即将建设的西堠门大桥的桥位区的塔、锚处的基岩中的断裂、破碎、裂隙等不良地质问题进行了工程勘探,探测深度在地表以下40米~80米,此次勘探是采用ATEM-II型瞬变电磁探测系统在浅层工程探测的应用。

3浅海底瞬变电磁探测技术研究(南京长江四桥工程桥位区的工程勘探)
(国家高技术研究发展计划)
电磁方法分两大类:频率域电磁方法(如MT)和时间域电磁方法(如TEM)。

地下2~100米左右的深度范围是频率域方法的一个弱视区(或半盲区)。

对于时间域来说,探测深度是由观测时间的早晚决定的,要探测浅层目标体,唯一的办法就是缩短延迟的时间(即电流关断后开始记录的时间)。

对于目前市场上的时间域TEM仪器,从地表到地下20米左右是一个半盲区。

由此可见,地下2~20米范围对于以上几种方法来说都是一个困难,而这一范围却与人类活动极为密切。

本项目将地面瞬变电磁探测系统移至
浅海底(水深小于20米),利用海水这个
特殊介质进行快速探测,实现近海底的电阻
率成像,直接服务于浅海底资源探查、海洋
工程和近海岸的研究。

研究内容包括浅海底
瞬变电磁发射技术、数据的快速采集与处理
技术,浅海底拖曳系统的密封、耐压以及与
海面观察系统的高效数据传输技术,并探索
海底环境噪声的有效压制方法。

为解决浅海
底瞬变电磁探测技术的难题,项目组于2004年2月20日至27日,在南京与江苏工程物理勘查研究院联合对长江四桥选址进行了野外瞬变电磁探测。

在栖霞镇煤码头、某油港码头进行了两条、各200米测线,近80个物理点的勘探,对长江四桥选址提供了第一手物探资料。

H(m)m
南京L1线测量数据反演结果
0102030
40
H(m)
010203040
南京L2线测量数据反演结果。

相关文档
最新文档