项目四 液压基本回路和典型液压回路分析(3.3).

合集下载

液压基本回路详解

液压基本回路详解
液压基本回路被广泛应用于模具制造行业,提供高效的模压力和精确的模具控制。
3 汽车制造
汽车制造领域使用液压基本回路来提供制动力、悬挂系统和其他关键部件的控制。
总结与回顾
液压基本回路是液压系统的核心,通过合理的设计和应用,能够实现强大的 动力和精确的控制,广泛应用于各个领域。
பைடு நூலகம்
2
方向控制
液压阀可以控制液体流向,使液压系统中的液体按照需要的方向流动。
3
流量控制
液压阀还可以控制液体的流量,实现对系统中液体流速的调节。
液压油箱
液压油箱是液压系统中的储存与冷却设备,能够保持液压油的温度和质量, 以确保液压系统的正常运行。
常见的液压基本回路
单向回路 简单回路
双向回路 复杂回路
实例演示:液压基本回路的工作原理
液压缸
直线运动
液压缸将液压能转换为机械能,实现直线运动,用于推动、举升、夹持等动作。
自锁性能
液压缸具有良好的自锁性能,使得即使在没有外部动力的情况下,也能保持稳定的位置。
结构简单
液压缸的结构相对简单,体积小巧,重量轻,易于安装和维护。
液压阀
1
压力控制
液压阀控制液压系统中的压力,确保系统的安全与稳定运行。
液压基本回路详解
液压基本回路的定义,液压系统的基本组成部分,工作原理,常见的回路类 型,以及使用和应用领域。
液压泵
液压泵是液压系统的关键组成部分之一,负责将液体从油箱抽入系统,并为液压系统提供所需的 压力。
液压马达
转动力源
液压马达将液压能转换为机械能,驱动各种设 备和机械的旋转运动。
应用广泛
液压马达被广泛应用于工程机械、农业设备、 汽车制造等领域,提供强大的动力。

液压基本回路分析优秀文档

液压基本回路分析优秀文档

★ 对换向回路的要求: 使用执二行 位元三件通能换改向变阀运的动换方向向回。路
在使液执压 行系元统件中能,改执变行运元动件方的向起。动、停止或改变方向是利用液流通、断及改变流向来实现的,实现这些控制的回路称为方向控制回路。
保液证压换 回向路迅是速指、由准液确压、元平件稳组。成,用来完成特定功能的典型回路。
★ 典型的换向回路 第在三液节 压系液统压中基,本执回行路元及件分的析起动、停止或改变方向是利用液流通、断及改变流向来实现的,实现这些控制的回路称为方向控制回路。
使保执证行 换元向件迅能速改、变准运确动、方平向稳。
保证换向迅速、准确、平稳。
第三节 液压基本回路及分析 使执行元件能改变运动方向。
用二位三通换向阀的换向回路
1、换向回路 2、锁紧回路
三、课堂小结
四、练习
返回 退出
1、换向回路
★ 第三节 液压基本回路及分析
第三节 液压基本回路及分析 使执行元件能改变运动方向。
功用:
使执行元件能改变运动方向。 保第证三换 节向液迅压速基、本准回确路、及平分稳析。
在液压系统中,执行元件的起动、停止或改变方向是利用液流通、断及改变流向来实现的,实现这些控制的回路称为方向控制回路。 使在执液行 压元系件统能中改,变执运行动元方件向的。起动、停止或改变方向是利用液流通、断及改变流向来实现的,实现这些控制的回路称为方向控制回路。
保证换向迅速、准确、平稳。 在液压系统中,执行元件的起动、停止或改变方向是利用液流通、断及改变流向来实现的,实现这些控制的回路称为方向控制回路。
保在证液换 压向系迅统速中、,准执确行、元平件稳的。起动、停止或改变方向是利用液流通、断及改变流向来实现的,实现这些控制的回路称为方向控制回路。

液压系统基本回路(识图)

液压系统基本回路(识图)

3.2减压回路
、二级减压回路
二级减压回路
说明:在减压阀2的遥控口通过电磁阀4接入小规格调压阀3,便可获得两种 稳定的低压,减压阀2的出口压力由其本身来调定。当电磁阀4通电时,减 压阀2的出口压力就由调压阀3进行设定。
3.2减压回路
、多路减压回路
多路减压回路
说明:在同一液压源供油的系统里可以设置多个不同工作压力的减压回 路。如图所示:两个支路分别以15Mpa和8Mpa压力工作时可分别用各自的 减压阀进行控制。
卸荷阀卸荷回路
3.6平衡回路
、用液控单向阀的平衡回路
说明:液压缸停止运动时,依靠 液控单向阀的反向密封性,能锁 紧运动部件,防止自行下滑。回 路通常都串入单向节流阀2,起 到控制活塞下行速度的作用。以 防止液压缸下行时产生的冲击及 振荡。
用液控单向阀的平衡回路
3.6平衡回路
、用远控平衡阀的平衡回路
用单向节流阀的平衡回路
四、速度控制回路
在液压系统中,一般液压源是共用的,要解决各执行元件的 不同速度要求,只能用速度控制回路来调节。
4.1节流调速回路
节流调速装置都是通过改变节流口的大小来控制流量,故调速范围 大,但由节流引起的能量损失大、效率低、容易引起油液发热;
以节流元件安装在油路上的位置不同,可分为进口节流调速、出口节 流调速、旁路节流调速及双向节流调速。
旁路节流调速回路
4.2增速回路
差动连接增速回路
说明:当手动换向阀处于左 位时,液压缸为差动连接,活 塞快速向右运行。液压泵供 给液压缸的流量为qv,液压缸 无杆腔和有杆腔的有效作用 面积分别为A1和A2,则液压缸 活塞运动速度为V=qv/(A1-A2)
差动连接增速回路
4.2增速回路

典型液压系统的基本回路

典型液压系统的基本回路

多路换向阀控制回路
定义:多路换向阀是一种控制液压油流向的阀门,可以实现多个执行机构的控制
工作原理:通过改变阀芯的位置,使液压油流向不同的通道,从而控制执行机构的运动方向和速度
应用场景:广泛应用于各种机械设备的液压系统中,如挖掘机、起重机等 特点:可以实现多个执行机构的独立控制,提高设备的效率和灵活性
速度控制回路
定义:通过改变液压 泵或液压马达的排量 或流量,实现对执行 机构速度的控制。
分类:节流调速回 路、容积调速回路、 容积节流调速回路。
特点:可实现无级 调速,调速范围广 ,稳定性好,但效 率较低。
应用:适用于需要 精确控制速度的场 合,如机床进给系 统、搬运机械等。
方向控制回路
定义:用于控制液压系统中油液流动方向的回路 组成:换向阀、溢流阀等 功能:实现液压缸的正反转、停止等动作 应用:机械手、起重机等设备
状态。
方向控制失灵故障的诊断与排除
故障现象:液压系 统中的方向控制阀 无法正常控制液压 缸或液压马达的正 反转,导致系统无 法按照预定方向进
行动作。
故障原因:方向 控制阀的阀芯卡 滞、堵塞或损坏, 导致液压油的流 动受阻,无法正 常切换油路方向。
诊断方法:检查方 向控制阀的阀芯是 否活动自如,有无 堵塞或卡滞现象。 同时检查液压油的 清洁度,防止杂质 进入阀芯造成卡滞。
排除方法:清洗 或更换方向控制 阀的阀芯,确保 阀芯活动自如。 同时定期更换液 压油,保持液压
油的清洁度。
感谢您的观看
典型液压系统的基本回路
目录
液压系统的基本组成 液压系统的基本回路 典型液压系统的基本回路特点 液压系统基本回路的维护与保养
液压系统基本回路的故障诊断与排除
动力元件

图解各种液压基本回路(动画演示)

图解各种液压基本回路(动画演示)

图解各种液压基本回路(动画演示)液压基本回路是由一些液压元件组成的,用来完成特定功能的控制油路。

液压基本回路是液压系统的核心,无论多么复杂的液压系统都是由一些液压基本回路构成的,因此,掌握液压基本回路的功能是非常必要的。

从机器构成的角度来讲,任何机器都是由原动机、传动系统和工作机三部分组成的。

液压基本回路是构成液压传动系统的基本单元。

液压基本回路通常分为方向控制回路,压力控制回路和速度控制回路三大类。

方向控制回路其作用是利用换向阀控制执行元件的启动,停止,换向及锁紧等。

压力控制回路的作用是通过压力控制阀来完成系统的压力控制,实现调压,增压,减压,卸荷和顺序动作等,以满足执行元件在力或转矩及各种动作变化时对系统压力的要求。

速度在控制回路的作用是控制液压系统中执行元件的运动速度或速度切换。

一压力控制基本回路压力控制回路是利用压力控制阀来控制系统和支路压力,实现调压、稳压、增压、减压、卸荷等目的,以满足执行元件对力或力矩的要求。

压力控制回路可分为:调压回路、减压回路、增压回路、卸荷回路、平衡回路、保压回路、泄压回路1调压回路功效:调定和限制液压系统的最高工作压力,或者使执行机构在工作过程不同阶段实现多级压力变换。

一般用溢流阀来实现这一功能。

分类:单级调压回路、多级调压回路、无级调压回路A单级调压回路节流阀可以调节进入液压缸的流量,定量泵输出的流量大于液压缸的流量时甲多余的油液便从溢流阀流回油箱。

调节溢流阀便可调节泵的供油压力,溢流阀的调定压力必须大于液压缸最大工作压力和油路上各种压力损失总和。

B二级调压回路二级调压回路:系统压力值有两种。

如图二所示状态下,当两位两通电磁换向阀断电时,液压泵的工作压力由先导溢流阀1调定为最高压力;当两位两通电磁换向阀通电后,液压泵工作压力由远程调压阀2(溢流阀)调定为较低压力。

(其中,远程调压阀2的调整压力必须小于溢流阀1的调整压力。

)C多级调压回路如图所示,在图示状态,当电磁换向阀断电中位工作时,液压泵的工作压力由先导溢流阀1调定为最高压力;当电磁换向阀4右边电磁铁通电右位时,液压泵工作压力由远程调压阀2(溢流阀)调定为较低压力。

液压基本回路PPT课件

液压基本回路PPT课件

多缸快慢速互不干扰回路
调速阀并联的快慢速互不干扰回路
在每个液压缸的进油路上分别并联一个调速阀,通过调节调速阀的开口大小来实现各缸 的快慢速互不干扰。
变量泵(马达)控制的快慢速互不干扰回路
通过改变变量泵或变量马达的排量来调节进入各液压缸的流量,实现各缸的快慢速互不 干扰。
比例阀控制的快慢速互不干扰回路
制动器锁紧回路
通过制动器对执行元件进行锁紧,防止其意外移动。
锁紧回路的应用
如机床工作台、升降台等需要长时间保持位置的场合。
制动回路
01
02
03
溢流阀制动回路
通过溢流阀使系统压力迅 速降低,实现执行元件的 快速制动。
换向阀制动回路
利用换向阀切断液流,使 执行元件迅速停止运动。
制动回路的应用
如各种车辆的刹车系统、 机床的快速进给系统等。
压力控制回路
03
调压回路
调压原理
利用压力控制阀调节系统 压力,保持稳定的工作压 力。
调压方式
通过改变溢流阀的设定压 力,实现系统压力的调节。
调压回路应用
适用于需要稳定工作压力 的液压系统,如机床、注 塑机等。
减压回路
减压原理
通过减压阀将系统压力降低到所 需的工作压力。
减压方式
减压阀串联在油路中,通过调节减 压阀的设定压力,实现减压效果。
多缸工作控制回路
05
同步运动回路
流量控制同步回路
依靠节流阀或调速阀分别调节进入两液压缸的流量使之相等,实 现两缸同步运动。
容积控制同步回路
通过改变变量泵或变量马达的排量来调节进入液压缸的流量,实 现两缸同步运动。
伺服控制同步回路
利用伺服阀或比例阀等高精度控制元件,通过闭环控制实现两缸 高精度同步运动。

液压基本回路(有图)_图文

液压基本回路(有图)_图文

类型: 调速回路、增速回路、速度换接回路等
一、调速回路
节流调速回路
类 型
容积调速回路
进油节流调速回路 回油节流调速回路
旁路节流调速回路
变量泵-定量执行元件 定量泵-变量执行元件 变量泵-变量执行元件
容积节流调速回路:变量泵+流量阀
(一)节流调速回路
1、进油节流调速回路
回路组成方式:
将流量控制阀串接在执行元件 的进油路上,且在泵与流量阀 之间有与之并联的溢流阀 。

速度刚度 活塞运动速度随负载变化而变化的程度。用T表示


速度负载特性曲线(v-R曲线)
v AT1
AT2 AT3
0
分析:
AT1 > AT2 > AT3
Rmax
R
① R一定时,v与AT成正比 ;高速时的速度刚度比低速 时的小; ② AT一定时,R增加则速 度减小;重载区域的速度刚 度比轻载时的小。
(2)特点
PP qP (1)速度-负载特性分析
※ 列活塞受力平衡方程 ※ 求出节流阀前后压差:ΔP ※ 求出活)
v
AT1< AT2< AT3 AT1
0
分析:
AT3 AT2
Rmax3 Rmax2 Rmax1
R
① R一定时, AT越大,v越小,速度刚度越差;
2、回油节流调速回路
A1 A2
Py
qy
P1
q1
P2
q2
qp
Pp
回路组成方式:
将流量控制阀串接 在执行元件的回油 路上,且在泵与执 行元件之间有与之 并联的溢流阀。
(1)速度-负载特性分析
系统稳定工作时,活塞受力平衡方程:

液压基本回路(有图)

液压基本回路(有图)

液压系统中常见的问题
1 高温问题
引起润滑不良和物理性 能退化。
2 气泡问题
空气混入后气泡会导致 写作和噪音。
3 故障问题
由于系统构造复杂,故 障排除更加麻烦。
液压系统的故障检修方法
1
分析故障原因
了解故障原因,对故障进行排除。
检查液压油、滤器和密封
2
定期更换液压油和滤芯,检查密封是
否完好。
3
维护液压系统的正常工作
液压系统的节能环保
加装变频器
通过变频器的变换达到节 能的目的。
采用流量调节器
有助于减少液压泵的排量, 减少节能。
采用液压节能元件
采用液压系统节能元件, 比如液阻炬,调速马达等, 这些设备都能够减少能耗。
液压系统对人类生活的影响
1
机械行业
液压系统可以使各种机械的性能与功能得到提高,为现代生产模式提供强有力的 支撑。
闭环液压系统的工作原理
1
信号检测器检测执行机构反馈信息
信号检测器检测执行机构的反馈信息,通过反馈回路再次进入控制阀。
2
控制阀内部将反馈信息和设定值进行比较
控制阀内部将反馈信息和设定值进行比较,产生控制信号,调整执行机构的运动 状态。
3
执行机构接受控制信号
执行机构重新进行工作,产生新的反馈信息,经过反馈回路,形成闭环控制。
液压控制阀
调节液压流量和压 力。
液压泵
将液压油从低压区 送到高压区。通常 采用齿轮泵和柱塞 泵。
液压储能器
将液体压缩以存储 能量,释放能量时 将其恢复原状。
压力控制元件的作用
压力表
测量液体在液压回路中的压力 值。
安全阀
当液体压力超过设置值时,自 动开启以减小压力。

液压与气动技术——液压基本回路及分析

液压与气动技术——液压基本回路及分析

• 节流调速回路按节流阀安装位置不同可分 为:进油路节流调速、回油路节流调速和 旁油路节流调速三种。节流调速由于存在 节流损失和溢流损失,功率损失较多,效 率较低,主要用于对速度稳定性要求不高 的小功率液压系统。
• 容积调速回路也有三种组合:即变量泵— 定量执行元件回路、定量泵—变量执行元 件回路和变量泵—变量执行元件回路。三 种回路的共同特点是:①调速时既无节流 损失也无溢流损失,效率较高;②其速度 将随负载增加而有所下降,但与节流调速 不同,它是由于泵和马达的容积效率随负 载压力的增加而降低所引起的。三种回路
图7.12
限压式变量泵 和调速阀组成 的容积节流调 速回路
• 7.2.4 快速运动回路
• (1)差动连接快速运动回路 • (2)双泵供油快速运动回路 • (3)蓄能器供油快速运动回路
图7.13 差动连接快速运动回路
图7.14 双泵供油快速运动回路
图7.15 蓄能器供油快速运动回路
• 7.3 压力控制回路
图7.19 液控单向阀的平衡回路
• 7.4 其他控制回路
• 7.4.1 同步回路
• 使两个或两个以上液压缸在运动中保持相 同位移或相同运动速度的回路称同步回路。
图7.20 调速阀的同步回路
图7.21 液压马达串、并联回路
• 7.4.2 液压马达控制回路
• 液压马达和液压缸都是执行元件,其控制 回路大部分是相同的,但由于马达做旋转
图7.8 定量泵—变量液压马达调速回路
图7.9 定量泵和变量液压马达回路输出特性曲线
图7.10 变量泵—变量马达调速回路
图7.11 变量泵—变量马达调速回路特性曲线
• 7.2.3 容积节流调速
• 容积节流调速回路是利用变量泵供油,用 调速阀或节流阀改变进入液压缸的流量, 以实现工作速度的调节,同时液压泵的供 油量与液压缸所需的流量相适应,无溢流 损失(但有一定的节流损失),所以,这 种回路具有效率较高、低速稳定性好的特 点。

液压系统基本回路

液压系统基本回路
液压系统基本回 路
压力控制回路
功用
控制系统整体或系统某一部分旳压 力,满足执行元件对力或力矩所提 出旳要求。
分类
调压*、减压*、卸荷*、保压* 、
平衡等多种回路。
要求:
熟悉和掌握:
调压 减压 卸荷 保压等回路
了解:平衡回路
1.调压回路
功用
为了使系统旳压力与负载相适应并 保持稳定,或为了安全而限定系统 旳最高压力不超出某一数值。
双向调压
分类 <
多级调压
双向调压回路
动画演示
多级调压回路
2.减压回路
功用
使某一支路取得低于泵压旳稳定压力。
分类
单级减压——用一种减压阀即可 二级减压——减压阀+远程调压阀即可
单级减压回路
二级减压回路
3. 卸荷回路
卸荷:卸荷回路旳功能是在液压泵不断
止转动旳情况下,使液压泵在零压或很 低压力下运转,以减小功率损耗、降低 系统发烧、延长液压泵和驱动电动机旳 使用寿命。
容积调速——变化泵和马达旳V
经过变化变量泵或(和)变量马达旳排量来调整速度。优点是无节流损失 和溢流损失、发烧较小、效率高;缺陷是速度稳定性较差。
容积节流调速——既可变化q,又可变化V
用能够自动变化流量旳变量泵与流量控制阀联合来调整速度。缺陷是有节 流损失、优点是无溢流损失、发烧较低、效率较高。
容积调速
3. 容积节流调速回路
go
迅速回路
功用:使执行元件取得必要旳
高速,以提升效率,充分利用 功率。
分类 :1.液压缸差动连接增速
* 2.双泵供油增速
1.液压缸差动连接迅速回路构成
液压缸差动连接迅速回路工作原理
电磁铁动作顺序表

(完整版)液压系统的基本回路总结,推荐文档

(完整版)液压系统的基本回路总结,推荐文档

目录1液压基本回路的原理及分类2换向回路3调压回路4减压回路5保压回路、6调速回路7卸荷回路8缓冲回路9平衡回路液压基本回路及原理由一些液压元件组成的,用来完成特定功能的典型回路称为液压基本回路。

常见液压回路有三大类:1方向控制回路:它在液压系统中的作用是控制执行元件的启动,停止或运动方向!2压力控制回路:他的作用是利用压力控制阀来实现系统的压力控制,用来实现稳压、减压、增压和多级调压等控制,以满足执行元件在力或转矩及各种动作对系统压力的要求3速度控制回路:它是液压系统的重要组成部分,用来控制执行元件的运动速度。

换向回路1用电磁换向阀的换向回路路:用二位三通、二位四通、三位四通换向阀均可使液压缸或液压马达换向!A1_1D 如A1-1是采用三位四通换向阀的换向回路,在这里的换向回路换向阀换向的时候会产生较大的冲击,因此这种回路适合于运动部件的运动速度低、质量较小、换向精度要求不高的场所。

A1-2电液换向阀的换向回路:图A1-2为用电液换向阀的换向回路。

电液换向阀是利用电磁阀来控制容量较大的液动换向阀的,因此适用于大流量系统。

这种换向回路换向时冲击小,因此适用于部件质量大、运动速度较高的场所。

调压回路负载决定压力,由于负载使液流受到阻碍而产生一定的压力,并且负载越大,油压越高!但最高工作压力必须有定的限制。

为了使系统保持一定的工作压力,或在一定的压力范围内工作因此要调整和控制整个系统的压力.1.单级调压回路o在图示的定量泵系统中,节流阀可以调节进入液压缸的流量,定量泵输出的流量大于进入液压缸的流量,而多余油液便从溢流阀流回油箱。

调节溢流阀便可调节泵的供油压力,溢流阀的调定压力必须大于液压缸最大工作压力和油路上各种压力损失的总和。

为了便于调压和观察,溢流阀旁一般要就近安装压力表。

3.多级调压回路在不同的工作阶段,液压系统需要不同的工作压力,多级调压回路便可实现这种要求。

o图(a)所示为二级调压回路。

图示状态下,泵出口压力由溢流阀3调定为较高压力,阀2换位后,泵出口压力由远程调压阀1调为较低压力。

图文动画展示系统组成和典型的液压基本回路

图文动画展示系统组成和典型的液压基本回路

图文动画展示系统组成和典型的液压基本回路
液压系统,也称为液压泵站、液压站、液压油站等。

液压系统通常都是由液压元件(动力元件、执行元件、控制元件、辅助元件)和工作介质两大部分组成。

液压系统按照电机安装方式,分为立式、卧式、旁置式液压系统。

用实拍图片来直观感受下液压系统的组成:
下图用线性流程图表示液压系统的组成:
来看看典型的液压基本回路:
任何液压系统都是由一些基本回路组成的,基本回路是由各类元件或辅件组成的。

参照典型液压基本回路设计液压系统,可以收到事半功倍的效果。

进油路节流调速回路
油路说明:在进油管路上设置节流阀,控制液压油流量,进而控制活塞杆移动速度
1.油缸:执行元件
2.电磁换向阀:液路系统中用来实现液路的通断或液流方向的改变
3.压力表:压力指示
4.节流阀:通过改变节流截面或节流长度以控制流体流量
5.溢流阀:定压溢流、稳压、系统卸荷和安全保护作用
6.单向阀:防止油流反向流动
7.油泵电机:提供动力源
快速工进回路
油路说明:液压油在进油管路上从1通过,活塞杆快速移动,从2通过时,活塞杆慢速移动,工进时速度减慢。

1.换向阀(二位二通):液路系统中用来实现液路的通断或液流方向的改变
2.节流阀:通过改变节流截面或节流长度以控制流体流量
3.换向阀(三位四通):液路系统中用来实现液路的通断或液流方向的改变
4.溢流阀:定压溢流、稳压、系统卸荷和安全保护作用
5.油泵电机:提供动力源
常用液压图标符号:
想第一时间获得最新知识,并获工程师一对一解答?。

液压基本回路(有图)

液压基本回路(有图)

液压泵
液压泵是主液压回路中负 责产生流体压力的元件。
辅助液压回路
1
液压阀
2
液压阀是辅助液压回路中的重要元件, 用于控制液压能量的流动和转换。
辅助液压回路概述
辅助液压回路是用于辅助主液压回路 的一组回路,实现特定的辅助功能。
液压缸
液压缸概述
液压缸是液压系统中的执行元件,用于产生力 和运动。
液压缸内部结构
自动化
液压系统将更多地与自动化技术结合,提高工作效率和准确性。
液压缸由缸筒、活塞和密封元件等部分组成。
液压缸的应用
液压缸广泛用于工业、农业、建筑等领域的各 种机械设备。
液压回路的工作流程示例
1
工作步骤1
液压泵供给液压能量。
工作步骤2
2
液压阀控制液压能量的流动和转换。
3
工作步骤3
液压缸执行具体的力和运动。
流体动力系统设计与优化

1 系统设计
根据实际需求进行合理 的系统设计和构建。
液压基本回路
液压系统是由液压泵、液压阀、液压缸等元件组成的流体动力系统。本节将 介绍液压基本回路的工作原理、组成和常见类型,以及液压回路中的元件和 功能。
主液压回路
主液压回路概述
主液压回路是液压系统中 的核心回路,负责传递液 压能量和控制工作部件的 运动。
常见的液压回路类型
单向液压回路和双向液压 回路是主液压回路的两种 常见类型。
2 优化方案
通过调整元件和参数等 方式来提高系统的效率 和性能。
3 技术创新
不断推动流体动力系统 的技术发展和创新。
常见的液压系统故障及排除方法
常见故障
如液压泵失效、液压阀堵塞等。

液压基本回路及典型液压系统资料课件

液压基本回路及典型液压系统资料课件
3
注塑机液压系统
油路及阀体
执行元件及工作部件
挖掘机液压系统
01
挖掘机液压系统概述
挖掘机定义及工作特点
02
挖掘机液压系统的组成及作用
03
挖掘机液压系统
挖掘机液压系统工作原理 工作装置回路 转向回路
挖掘机液压系统
制动回路 先导控制回路 挖掘机液压系统主要元件及作用
挖掘机液压系统
液压泵 液压马达 液压缸
液压缸
单作用缸
只能实现单向运动,需要配重块或弹簧实现复位。
双作用缸
可以实现双向运动,输入和输出均可以作用于活塞的两端。
液压阀
方向阀
控制液体的流动方向,实现液压 缸或液压马达的运动方向控制。
压力阀
控制液体的压力,实现液压缸或 液压马达的运动速度控制。
流量阀
控制液体的流量,实现液压缸或 液压马达的运动加速度控制。
液压系统故障诊断与排除
总结词
及时诊断和排除液压系统的故障可以保障生产线的正常 运行。
详细描述
液压系统在使用过程中可能会出现各种故障,如压力异 常、流量不足、噪音等。为了及时诊断和排除这些故障, 需要对液压系统进行全面检查和分析。应通过观察、听 诊、检测等方法对液压系统进行检查,并分析故障原因, 采取相应的措施进行维修和排除故障。同时,应建立完 善的故障记录和维修档案,以便对今后的维护和保养提 供参考和依据。
液压元件维护与保养
要点一
总结词
对液压元件进行定期维护和保养可以保障液压系统的正常 运行。
要点二
详细描述
液压元件是液压系统中的重要组成部分,包括液压泵、液 压缸、液压阀等。这些元件在长期使用过程中可能会出现 磨损、堵塞等问题,因此需要定期进行维护和保养。应定 期检查液压元件的外观、清洗滤油器、更换密封件等,以 确保液压元件的正常运行。

液压基本回路及分析

液压基本回路及分析
1、换向回路 2、锁紧回路
三、课堂小结 四、练习
返回 退出
1、换向回路 、
★ 功用: 功:
使执行元件能改变运动方向。 对换向回路的要求: ★ 对换向回路的要求: 保证换向迅速、准确、平稳。
★ 典型的换向回路
用二位三通换向阀的换向回路 用二位四通换向阀的换向回路
退出
第三节 液压基本回路及分析
1 液压回路的定义
液压回路是指由液压元件组成,用来完 成特定功能的典型回路。
2 类型
方向控制回路 压力控制回路 速度控制回路
退出
方向控制回路
一、定义
在液压系统中,执行元件的起动、停止或改变 方向是利用液流通、断及改变流向来实现的,实现 这些控制的回路称为方向控制回路。
二、类型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目四 液压基本回路和典型液压回路分析任务4-1液压基本回路分析液压基本回路就是由有关的液压元件组成用来完成某种特定功能的典型回路。

一些液压设备的液压系统虽然很复杂,但它通常都由一些基本回路组成,所以掌握一些基本回路的组成、原理和特点将有助于认识分析一个完成的液压系统。

单元1:方向控制回路功能分析方向控制回路是液压系统中控制液流方向的基本回路,方向控制回路也称换向回路,主要由方向控制阀组成。

其功能是通过控制进入执行元件液流的通、断或变换方向来实现执行元件的启动、停止、换向和锁紧等。

知识点4-1-1换向回路换向回路主要由各种换向阀来实现,三位换向阀不同的中位机能,可以满足液压系统的不同要求,如图4-1(g )所示的换向回路由三位四通M 型换向阀实现,在此中位泵的输出压力近似为零,泵卸荷,减少功率损失 。

图片资源链接动画资源链接视频资源链接网页链接文本资源链接知识点4-1-2锁紧回路图4-1(g ) 采用M 型中位换向阀的换向回路 图4-2(g )采用两个液控单向阀的锁紧回路锁紧回路是执行元件在任意停留或停止工作时,为防止因外界因素而发生位移或窜动,把液压缸活塞锁定在任意位置的回路。

锁紧回路可以由单向阀、液控单向阀、O型及M型中位机能换向阀、液压锁来实现。

如图4-2(g)所示为两个液控单向阀(也称液压锁)的锁紧回路,其锁紧精度高,此回路的锁紧精度只受液压缸泄漏和油液压缩性的影响。

使用液控单向阀的锁紧回路,换向阀的中位机能应使液控单向阀的控制口油液泄压(采用H 或Y型中位机能,不宜采用O型和M型),此时单向阀立即关闭,活塞停止运动。

该回路锁紧可靠,经得起负载变化的干扰。

采用如图3-18(g)所示的O型中位换向阀的锁紧回路或4-1(g)所示的M 型中位换向阀的锁紧回路,利用中位封闭液压缸的两腔,可以将液压缸锁紧。

这种锁紧回路由于受到滑阀泄漏的影响,锁紧效果差,只适用于短时间的锁紧或锁紧程度要求不高的场合。

图片资源链接动画资源链接视频资源链接网页链接文本资源链接单元3:压力控制回路功能分析压力控制回路是利用压力控制阀来控制系统整体或某一部分的压力,以满足液压执行元件对力或转矩要求的回路,这类回路包括调压、减压、增压、保压、卸荷和平衡等多种回路。

知识点4-1-3调压回路调压回路的功用是使液压系统整体或部分的压力保持恒定或不超过某个数值。

在定量泵系统中,液压泵的供油压力可以通过溢流阀来调节。

在变量泵系统中,用安全阀来限定系统的最高压力,防止系统过载。

若系统中需要二种以上的压力,则可采用多级调压回路。

1.单级调压回路如图3-21(g)a所示,在液压泵出口处设置并联溢流阀2即可组成单级调压回路,从而控制了液压系统的工作压力。

2.二级调压回路如图4-3(g)a所示为二级调压回路,可实现两种不同的系统压力控制。

由溢流阀2和溢流阀4各调一级,当二位二通电磁阀3处于图示位置时,系统压力由阀2调定,当阀3得电后处于右位时,系统压力由阀4调定,但要注意:阀4的调定压力一定要小于阀2的调定压力,否则不能实现;当系统压力由阀4调定时,溢流阀2的先导阀口关闭,但主阀开启,液压泵的溢流流量经主阀回油箱。

3.多级调压回路 如图4-3(g )b 所示的由溢流阀1、2、3分别控制系统的压力,从而组成了三级调压回路。

当两电磁铁均不带电时,系统压力由阀1调定,当1YA 得电,由阀2调定系统压力;当2YA 带电时系统压力由阀3调定。

但在这种调压回路中,阀2和阀3的调定压力都要小于阀1的调定压力,而阀2和阀3的调定压力之间没有什么一定的关系。

4.连续、按比例进行压力调节的回路 如图4-3(g )c 所示调节先导型比例电磁溢流阀的输入电流I ,即可实现系统压力的无级调节,这样不但回路结构简单,压力切换平稳。

而且更容易使系统实现远距离控制或程序控制。

图片资源链接动画资源链接视频资源链接网页链接文本资源链接知识点4-1-4减压回路减压回路的功用是使系统中的某一部分油路具有较系统压力低的稳定压力。

最常见的减压回路通过定值减压阀与主油路相连,如图4-4(g )a 所示。

回路中的单向阀供主油路压力降低(低于减压阀调整压力)时防止油液倒流,起短时保压之用,减压回路中也可以采用类似两级或多级调压的方法获得两级或多级减压,图4-3(g ) 调压回路图4-4(g )b 所示为利用先导型减压阀1的远控口接一远控溢流阀2,则可由阀1、阀2各调得一种低压,但要注意,阀2的调定压力值一定要低于阀1的调定压力值。

图片资源链接动画资源链接视频资源链接网页链接文本资源链接知识点4-1-5卸荷回路1.采用复合泵的卸荷回路图4-5(g )所示利用复合泵作液压钻床的动力源。

当液压缸快速推进时,推动液压缸活塞前进所需的压力较左右两边的溢流阀所设定压力还低,故大排量泵和小排量泵的压力油全部送到液压缸使活塞快速前进。

当钻头和工件接触时,液压缸活塞移动速度要变慢且在活塞上的工作压力变大,此时往液压缸管路的油压力上升到比右边的卸荷阀设定的工作压力大时,卸荷阀被打开,低压大排量泵所排除的液压油经卸荷阀送回油箱。

单向阀受高压油作用的关系,故低压泵所排出的油根本就不会经单向阀流到液压缸。

可知在钻削进给的阶段,液压缸的油液就由高压小排量泵来供给。

因为这种回路的动力几乎完全是由高压泵在消耗而已,故可达到节约能源的目的。

卸荷阀的调定压力通常比溢流阀的调定压力要低0.5MPa 以上。

图4- 4(g ) 减压回路2.利用二位二通阀旁路卸荷的回路图4-6(g )所示为利用二位二通换向阀的卸荷回路。

当二位二通阀左位工作,泵排除的液压油以接近零压状态流回油箱以节省动力并避免油温上升。

图中二位二通阀系以手动操作,亦可使用电磁操作。

注意二位二通阀的额定流量必须和泵的流量相适宜。

3.利用换向阀卸载的回路图4-7(g )所示为利用换向阀中位机能的卸荷回路。

它采用中位串联型(M型中位机能)换向阀,当阀位处于中位置时,泵排出的液压油直接经换向阀的PT 通路流回油箱,泵的工作压力接近于零。

使用此种方式卸载,方法比较简单,但压力损失较多,且不适用于一个泵驱动两个或两个以上执行元件的场所。

注意三位四通换向阀的流量必须和泵的流量相适宜。

图4- 5(g ) 采用复合泵的卸荷回路4.利用溢流阀远程控制口卸载的回路图4-8(g )所示为利用溢流阀远程控制口卸荷的回路,将溢流阀的远程控制口和二位二通电磁阀相接。

当二位二通电磁阀通电,溢流阀的远程控制口通油箱,这时溢流阀的平衡活塞上移,主阀阀口打开,泵排出的液压油全部流回油箱,泵出口压力几乎是零,故泵成卸荷运转状态。

注意图中二位二通电磁阀只通过很少流量,因此可用小流量规格(尺寸为1/8或1/4)。

在实际应用上,此二位二通电磁阀和溢流阀组合在一起,此种组合称为电磁控制溢流阀。

图片资源链接动画资源链接视频资源链接网页链接文本资源链接图4- 6(g )利用二位二通换向阀的卸荷回路 图4-7(g ) 利用换向阀中位机能的卸荷回路 图4-8(g )利用溢流阀远程控制口卸荷回路知识点4-1-6 增压回路1.利用串连液压缸的增压回路图4-9(g)所示为利用串联液压缸的增压回路。

将小直径液压缸和大直径液压缸串联可使冲柱急速推出,且在低压下可得很大的力量输出。

将换向阀移到左位,泵所送过来的油液全部进入小直径液压缸活塞后侧,冲柱急速推出,此时大直径液压缸由单向阀将油液吸入,且充满大液压缸后侧空间。

当冲柱前进达尽头受阻时,泵送出的油液压力升高,而使顺序阀动作,此时油液以溢流阀所设定的压力作用在大小直径液压缸活塞后侧,故推力等于大小直径液压缸活塞后侧面积和乘上溢流阀所调定的压力。

当然如想以单独使用大直径液压缸以同样速度运动话,势必选用更大容量的泵,而采用这种串联液压缸则只要用小容量泵就够了,节省许多动力。

2.利用增压器的增压回路图4-10(g)所示是采用单作用增压器作为液压压床冲柱增压用。

将三位四通换向阀移到右位工作时,泵将油液经引导型单向阀送到液压缸活塞后侧使冲柱向下压,同时增压器的活塞也受到油液作用向右移动,但达到规定的压力自然就停止,使它成为只要一有油送进增压器活塞大直径侧就能够马上前进的状态。

于是当冲柱下降碰到工件(即产生负荷),则泵的输出立即升高并打开顺序阀,经减压阀减压的后油液以减压阀所调定的压力作用在增压器的大活塞上,于是使增压器小直径侧产生3倍减压阀所调定压力的高压油液进入冲柱上方而产生更强的加压作用。

当换向阀移到阀左位时,冲柱上升,换向阀如在中位时,可以暂时防止冲柱向下掉。

如果要完全防止其向下掉,则必须在冲柱下降时油的出口处装一液控单向阀。

3. 气压-液压的增压回路 图4-11(g )所示为气、液联合使用的增压回路,是把上方油箱的油液先送入增压器的出口侧,再由压缩空气作用在增压器大活塞面积上使出口侧油液压力增强。

把手动操作换向阀移到阀右位工作时,空气进入上方油箱把上方油箱的油液经增压器小直径活塞下部送到三个液压缸。

当液压缸冲柱下降碰到工件时,造成阻力使空气压力上升打开顺序阀,使空气进入增压器活塞的上部来推动活塞。

增压器的活塞下降会遮住通往上方油箱的油路,活塞继续下移,使小直径活塞下侧的油液变成高油液并注到三支液压缸。

一旦把换向阀移到阀左位时,下方油箱的油会从液压缸下侧进入把冲柱上移,液压缸冲柱上侧的油液流经增压器并回到上方油箱,增压器恢复原来位置。

图4- 9(g ) 利用串联液压缸的增压回路 图4- 10(g ) 利用增压器的增压回路图片资源链接动画资源链接视频资源链接网页链接文本资源链接知识点4-1-7保压回路有的机械设备在工作过程中,常常要求液压执行机构在其行程终止时,保持压力一段时间,这时需采用保压回路。

所谓保压回路,也就是使系统在液压缸不动或仅有工件变形所产生的微小位移下稳定地维持住压力,最简单的保压回路是使用密封性能较好的液控单向阀的回路,但是阀类元件处的泄漏使得这种回路的保压时间不能维持太久。

常用的保压回路有以下几种:1.利用液压泵保压的保压回路利用液压泵的保压回路也就是在保压过程中,液压泵仍以较高的压力(保压所需压力)工作,此时,若采用定量泵则压力油几乎全经溢流阀流回箱,系统功率损失大,易发热,故只在小功率的系统且保压时间较短的场合下才使用;若采用变量泵,在保压时,泵的压力较高,但输出流量几乎等于零。

因而,液压系统的功率损失小,这种保压方法且能随泄漏量的变化而自动调整输出流量,因而其效率也较高。

2.利用蓄能器的保压回路图4- 11(g)气-液联合使用的增压回路这种蓄能器借助蓄能器来保持系统压力,补偿系统泄漏。

图4-12(g )所示为利用虎钳做工件的夹紧装置。

将换向阀移到阀左位时,活塞前进将虎钳夹紧,这时泵继续输出的压力油将蓄能器充压,直到卸荷阀被打开卸载,此时作用在活塞上的压力由蓄能器来维持并补充液压缸的漏油作用在活塞上,当工作压力降低到比卸荷阀所调定的压力还低时,卸荷阀又关闭,泵的液压油再继续送往蓄能器。

相关文档
最新文档