二叉树习题(answer)
数据结构 二叉树练习题答案
数据结构第6章树和二叉树一、下面是有关二叉树的叙述,请判断正误(√)1.若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n-1个非空指针域。
n个结点的二叉树有n-1条分支(×)2.二叉树中每个结点的两棵子树的高度差等于1。
(√)3.二叉树中每个结点的两棵子树是有序的。
(×)4.二叉树中每个结点有两棵非空子树或有两棵空子树。
(×)5.二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。
(应当是二叉排序树的特点)(×)6.二叉树中所有结点个数是2k-1-1,其中k是树的深度。
(应2k-1)(×)7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。
(×)8.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i -1个结点。
(应2i-1)(√)9.用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。
(用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。
由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,即有后继链接的指针仅n-1个,还有n+1个空指针。
)采用二叉链表存储有2n个链域,空链域为:2n-(n-1)=n+1(√)10.具有12个结点的完全二叉树有5个度为2的结点。
最快方法:用叶子数=[ n/2] =6,再求n2=n0-1=5 [n/2] 除的结果四舍五入二、填空1.由3个结点所构成的二叉树有5种形态。
2. 一棵深度为6的满二叉树有n1+n2=0+ n2= n0-1=31 个分支结点和26-1 =32个叶子。
注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。
(或:总结点数为n=2k-1=26-1=63,叶子数为n0= [ n/2] =32,满二叉数没有度为1的结点,由n0=n2+1得n2=n0-1=32-1=31)3.一棵具有257个结点的完全二叉树,它的深度为9。
树与二叉树习题解析(答)
习题五树与二叉树一、选择题1、一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足。
A、所有的结点均无左孩子B、所有的结点均无右孩子C、只有一个叶子结点D、是任意一棵二叉树2、一棵完全二叉树上有1001个结点,其中叶子结点的个数是。
A、250B、500C、254D、505E、以上答案都不对3、以下说法正确的是。
A、若一个树叶是某二叉树前序遍历序列中的最后一个结点,则它必是该子树后序遍历序列中的最后一个结点B、若一个树叶是某二叉树前序遍历序列中的最后一个结点,则它必是该子树中序遍历序列中的最后一个结点C、在二叉树中,具有两个子女的父结点,在中序遍历序列中,它的后继结点最多只能有一个子女结点D、在二叉树中,具有一个子女的父结点,在中序遍历序列中,它没有后继子女结点4、以下说法错误的是。
A、哈夫曼树是带权路径长度最短得数,路径上权值较大的结点离根较近B、若一个二叉树的树叶是某子树中序遍历序列中的第一个结点,则它必是该子树后序遍历序列中的第一个结点C、已知二叉树的前序遍历和后序遍历并不能唯一地确定这棵树,因为不知道树的根结点是哪一个D、在前序遍历二叉树的序列中,任何结点其子树的所有结点都是直接跟在该结点之后的5、一棵有124个叶结点的完全二叉树,最多有个结点。
A、247B、248C、249D、250E、2516、任何一棵二叉树的叶结点在前(先)序、中序和后序遍历序列中的相对次序。
A、不发生变化B、发生变化C、不能确定7、设a、b为一棵二叉树上的两个结点。
在中序遍历时,a在b前面的条件是。
A、a在b的右方B、a在b的左方C、a是b的祖先D、a是b的子孙8、设深度为k的二叉树上只有度为0和度为2的结点,则这类二叉树上所含的结点总数为。
A、不确定B、2kC、2k-1D、2k+19、设有13个值,用它们组成一棵哈夫曼树,则该哈夫曼树共有个结点。
A、13B、12C、26D、2510、下面几个符号串编码集合中,不是前缀编码的是。
数据结构二叉树习题含答案
第6章树和二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树的形态是()。
A.唯一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子(2)由3 个结点可以构造出多少种不同的二叉树?()A.2 B.3 C.4 D.5(3)一棵完全二叉树上有1001个结点,其中叶子结点的个数是()。
A.250 B. 500 C.254 D.501(4)一个具有1025个结点的二叉树的高h为()。
A.11 B.10 C.11至1025之间 D.10至1024之间(5)深度为h的满m叉树的第k层有()个结点。
(1=<k=<h)A.m k-1 B.m k-1 C.m h-1 D.m h-1(6)利用二叉链表存储树,则根结点的右指针是()。
A.指向最左孩子 B.指向最右孩子 C.空 D.非空(7)对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用()遍历实现编号。
A.先序 B. 中序 C. 后序 D. 从根开始按层次遍历(8)若二叉树采用二叉链表存储结构,要交换其所有分支结点左、右子树的位置,利用()遍历方法最合适。
A.前序 B.中序 C.后序 D.按层次(9)在下列存储形式中,()不是树的存储形式?A.双亲表示法 B.孩子链表表示法 C.孩子兄弟表示法D.顺序存储表示法(10)一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足()。
A.所有的结点均无左孩子B.所有的结点均无右孩子C.只有一个叶子结点 D.是任意一棵二叉树(11)某二叉树的前序序列和后序序列正好相反,则该二叉树一定是()的二叉树。
A.空或只有一个结点 B.任一结点无左子树C.高度等于其结点数 D.任一结点无右子树(12)若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则X的前驱为()。
A.X的双亲 B.X的右子树中最左的结点C.X的左子树中最右结点 D.X的左子树中最右叶结点(13)引入二叉线索树的目的是()。
二叉树习题及答案(考试学习)
1.设一棵完全二叉树共有699个结点,则在该二叉树中的叶子结点数?1根据“二叉树的第i层至多有2^(i − 1)个结点;深度为k的二叉树至多有2^k − 1个结点(根结点的深度为1)”这个性质:因为2^9-1 < 699 < 2^10-1 ,所以这个完全二叉树的深度是10,前9层是一个满二叉树,这样的话,前九层的结点就有2^9-1=511个;而第九层的结点数是2^(9-1)=256 所以第十层的叶子结点数是699-511=188个;现在来算第九层的叶子结点个数。
由于第十层的叶子结点是从第九层延伸的,所以应该去掉第九层中还有子树的结点。
因为第十层有188个,所以应该去掉第九层中的188/2=94个;所以,第九层的叶子结点个数是256-94=162,加上第十层有188个,最后结果是350个2完全二叉树:若二叉树中最多只有最下面两层的结点的度可以小于2,并且最下面一层的结点(叶结点)都依次排列在该层最左边的位置上,这样的二叉树为完全二叉树。
比如图:完全二叉树除叶结点层外的所有结点数(叶结点层以上所有结点数)为奇数,此题中,699是奇数,叶结点层以上的所有结点数为保证是奇数,则叶结点数必是偶数,这样我们可以立即选出答案为B!如果完全二叉树的叶结点都排满了,则是满二叉树,易得满二叉树的叶结点数是其以上所有层结点数+1比如图:此题的其实是一棵满二叉树,我们根据以上性质,699+1=700,700/2=350,即叶结点数为350,叶结点层以上所有结点数为350-1=349。
3完全二叉树中,只存在度为2的结点和度为0的结点,而二叉树的性质中有一条是:n0=n2+1;n0指度为0的结点,即叶子结点,n2指度为2的结点,所以2n2+1=699 n2=349;n0=3502.在一棵二叉树上第5层的结点数最多是多少一棵二叉树,如果每个结点都是是满的,那么会满足2^(k-1)1。
所以第5层至多有2^(5-1)=16个结点!3.在深度为5的满二叉树中,叶子结点的个数为答案是16 ~ 叶子结点就是没有后件的结点~ 说白了~ 就是二叉树的最后一层~ 深度为K的二叉树~ 最多有2^k-1个结点~ 最多有2^(k-1)个结点~ 所以此题~ 最多有2^5-1=31个结点~ 最多有2^(5-1)=16个叶子结点~4.某二叉树中度为2的结点有18个,则该二叉树中有几个叶子结点?结点的度是指树中每个结点具有的子树个数或者说是后继结点数。
数据结构二叉树习题含答案
第6章树与二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树得形态就是().A。
唯一得B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子(2)由3个结点可以构造出多少种不同得二叉树?()A。
2B.3 C。
4D。
5(3)一棵完全二叉树上有1001个结点,其中叶子结点得个数就是()。
A。
250 B.500 C.254 D.501(4)一个具有1025个结点得二叉树得高h为( ).A。
11 B。
10 C.11至1025之间 D。
10至1024之间(5)深度为h得满m叉树得第k层有( )个结点。
(1=〈k=<h)A。
m k-1 B。
mk-1 C.m h-1 D。
m h—1(6)利用二叉链表存储树,则根结点得右指针就是()。
A.指向最左孩子 B.指向最右孩子 C。
空D.非空(7)对二叉树得结点从1开始进行连续编号,要求每个结点得编号大于其左、右孩子得编号,同一结点得左右孩子中,其左孩子得编号小于其右孩子得编号,可采用( )遍历实现编号。
A。
先序B、中序 C、后序D、从根开始按层次遍历(8)若二叉树采用二叉链表存储结构,要交换其所有分支结点左、右子树得位置,利用()遍历方法最合适。
A.前序 B.中序 C。
后序 D。
按层次(9)在下列存储形式中,()不就是树得存储形式?A.双亲表示法 B.孩子链表表示法 C.孩子兄弟表示法D.顺序存储表示法(10)一棵非空得二叉树得先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足( )。
A.所有得结点均无左孩子B.所有得结点均无右孩子C.只有一个叶子结点 D.就是任意一棵二叉树(11)某二叉树得前序序列与后序序列正好相反,则该二叉树一定就是( )得二叉树。
A。
空或只有一个结点 B.任一结点无左子树C.高度等于其结点数 D.任一结点无右子树(12)若X就是二叉中序线索树中一个有左孩子得结点,且X不为根,则X得前驱为( )。
A.X得双亲 B。
二叉树练习题及答案
一、选择题1.关于二叉树的下列说法正确的是(B )A.二叉树的度为2 B.二叉树的度可以小于2C.每一个结点的度都为2 D .至少有一个结点的度为2 2.在树中,若结点A有4个兄弟,而且B是A的双亲,则B的度为(C )A.3 B.4C.5 D .63.若一棵完全二叉树中某结点无左孩子,则该结点一定是(D )A.度为1的结点B.度为2的结点C.分支结点 D .叶子结点4.深度为k的完全二叉树至多有(C )个结点,至少有( B )个结点。
A.2k-1-1 B.2k-1C.2k-1 D .2k5.在具有200个结点的完全二叉树中,设根结点的层次编号为1,则层次编号为60的结点,其左孩子结点的层次编号为( C 2i ),右孩子结点的层次编号为( D 2i+1),双亲结点的层次编号为(60/2=30 A )。
A.30 B.60C.120 D .1216.一棵具有124个叶子结点的完全二叉树,最多有(B )个结点。
A.247 B.248C.249 D .250二、填空题1.树中任意结点允许有零个或多个孩子结点,除根结点外,其余结点有且仅有一个双亲结点。
2.若一棵树的广义表表示法为A(B(E,F),C(G(H,I,J,K),L),D(M (N))),则该树的度为 4 ,树的深度为 4 ,树中叶子结点的个数为8 。
3.若树T中度为1、2、3、4的结点个数分别为4、3、2、2,则T中叶子结点的个数为14 。
n=n0+n1+n2+n3+n4=n0+4+3+2+2=n0+11n=1+孩子=1+4+6+6+8+25n0+11=25n0=144.一棵具有n个结点的二叉树,若它有m个叶子结点,则该二叉树中度为1的结点个数是n-2m+1 。
5.深度为k(k>0)的二叉树至多有2k -1 个结点,第i层上至多有2i-1个结点。
6.已知二叉树有52个叶子结点,度为1的结点个数为30,则总结点个数为133 。
7.已知二叉树中有30个叶子结点,则二叉树的总结点个数至少是30+29+0=59 。
数据结构二叉树习题含答案-推荐下载
B
(2)设一棵二叉树的先序序列: A B D F C E G H ,中序序列: B F D A G E H C ①画出这棵二叉树。 ②画出这棵二叉树的后序线索树。 ③将这棵二叉树转换成对应的树(或森林)。FBiblioteka DA AG
(1)
E
H
C
null
B
F
D
(3) 假设用于通信的电文仅由 8 个字母组成,字母在电文中出现的频率分别为
D.5
D.501
D.mh-1
C.空
D.10 至 1024 之间
D. 从根开始按层次遍历
D.按层次
B.为了能在二叉树中方便的进行插入与
D.使二叉树的遍历结果唯一
D.非空
(14)线索二叉树是一种( )结构。
A.逻辑
B. 逻辑和存储
(15)设 F 是一个森林,B 是由 F 变换得的二叉树。若 F 中有 n 个非终端结点,则 B
G
(2)
C.物理
E
C. n+1
H
C
D.线性
D. n+2
A
BM D F
(3)
C
EM H G
(40)
(100)
19 21 32 (28)
方案比较:
编号
字母
1
2
3
4
5
6
编码
对应
1100
00
11110
1110
10
11111
(60)
(17) (11)
7 10 6 (5)
频率
出现
0.07
0.19
0.02
0.06
结论:哈夫曼编码优于等长二进制编码
二叉树习题及答案
二叉树习题及答案1.设一棵完全二叉树共有699 个结点,则在该二叉树中的叶子结点数?1根据二叉树的第i层至多有2A(i - 1)个结点;深度为k的二叉树至多有2A k - 1 个结点(根结点的深度为1)”这个性质:因为2A9-1 < 699 < 2A10-1 , 所以这个完全二叉树的深度是10,前9 层是一个满二叉树,这样的话,前九层的结点就有2A9-1=511 个;而第九层的结点数是2A(9-1)=256 所以第十层的叶子结点数是699-511=188 个;现在来算第九层的叶子结点个数。
由于第十层的叶子结点是从第九层延伸的,所以应该去掉第九层中还有子树的结点。
因为第十层有188 个,所以应该去掉第九层中的188/2=94 个;所以,第九层的叶子结点个数是256-94=162,加上第十层有188 个,最后结果是350 个2完全二叉树:若二叉树中最多只有最下面两层的结点的度可以小于2,并且最下面一层的结点(叶结点) 都依次排列在该层最左边的位置上,这样的二叉树为完全二叉树。
比如图:完全二叉树除叶结点层外的所有结点数(叶结点层以上所有结点数)为奇数,此题中,699 是奇数,叶结点层以上的所有结点数为保证是奇数,则叶结点数必是偶数,这样我们可以立即选出答案为B!如果完全二叉树的叶结点都排满了,则是满二叉树,易得满二叉树的叶结点数是其以上所有层结点数+1 比如图:此题的其实是一棵满二叉树,我们根据以上性质,699+1=700,700/2=350,即叶结点数为350,叶结点层以上所有结点数为350-1=349。
3完全二叉树中,只存在度为2 的结点和度为0 的结点,而二叉树的性质中有一条是:nO=n2+1 ; nO指度为0的结点,即叶子结点,n2指度为2的结点,所以2n2+1=699 n2=349 ;n0=3502.在一棵二叉树上第5 层的结点数最多是多少一棵二叉树,如果每个结点都是是满的,那么会满足2A(k-1)1 。
数据结构第6章二叉树作业与答案教材
(r )13 、线索二叉树是一种逻辑结构。 (√ )14、深度为 K 的完全二叉树至少有 2K-1 个结点。
( √ )15 、具有 n 个结点的满二叉树,其叶结点的个数为( n+1)/2 。
( √ )16 、前序和中序遍历用线索树方式存储的二叉树,不必使用栈。
( ╳ )17 、哈夫曼树是带权路径长度最短的树,路径上权值较大的点离根较远。
树里对应结点的 C ,而 N 的右子女是它在原树里对应结点的 D 。
供选择的答案
A: ①是特殊的树 ②不是树的特殊形式 ③是两棵树的总称 ④有是只有二个根结点
的树形结构
B: ①左子结点 ② 右子结点 ③ 左子结点或者没有右子结点
④ 兄弟
C~D: ①最左子结点 ② 最右子结点 ③ 最邻近的右兄弟
④ 最邻近的左兄弟
}
一次,输出结果为: A B C C E E B A D F F D G G 特点:①每个结点肯定都会被打印两次;②但出现的顺序不同,其规律是:凡是有左子树的 结点,必间隔左子树的全部结点后再重复出现;如 A,B,D 等结点。反之马上就会重复出现。
如 C,E,F,G等结点。
时间复杂度以访问结点的次数为主,精确值为 2*n ,时间渐近度为 O(n).
二、填空
1. 由3个结点所构成的二叉树有
5 种形态。
2. 一棵深度为 6 的满二叉树有 n1+n2=0+ n 2= n 0-1=31 个分支结点和 26-1 =32 个叶子。
注:满二叉树没有度为 1 的结点,所以分支结点数就是二度结点数。
3. 一棵具有257个结点的完全二叉树,它的深度为
9。
( 注:用 log 2(n) +1= 8.xx +1=9
数据结构(树与二叉树)习题与答案
一、单选题1、已知一算术表达式的中缀形式为 A-B/C+D*E,前缀形式为+-A/BC*DE,其后缀形式为( )。
A.ABC/-DE*+B.AB/C-D*E+C. A-BC/DE*+D. ABCDE/-*+正确答案:A2、有关二叉树下列说法正确的是()。
A.二叉树中任何一个结点的度都为2B.一棵二叉树的度可以小于2C.二叉树中每个结点的度都为2D.二叉树中至少有一个结点的度为2正确答案:B3、在一棵高度为k的满二叉树中,结点总数为()。
A.2k-1B. 2k-1C. 2k-1+1D.2k正确答案:B4、某二叉树中有60个叶子结点,则该二叉树中度为2的结点个数为()。
A.不确定B.60C.59D.61正确答案:C解析:任意二叉树中,n0=n2+15、高度为7的完全二叉树,最少有()个结点。
A.127B.128C.63D.64正确答案:D解析:前6层都是满的,最后一层(第7层)近1个结点。
可保证题目条件。
6、高度为7的二叉树,最少有()个结点。
A.7B.127C.13D.64正确答案:A解析:每层只有1个结点。
共7个即可构成一个高度为7的二叉树。
7、对任意一棵有n个结点的树,这n个结点的度之和为( )。
A.n-1B.2*nC.n+2D.n正确答案:A解析:所有结点的度之和为分支个数,分支个数即为结点个数-18、在下列存储形式中,()不是树的存储形式。
A.双亲表示法B.孩子-兄弟表示法C.孩子链表表示法D.顺序存储表示法正确答案:D9、对二叉树中的结点进行编号,要求根结点的编号最小,左孩子结点编号比右孩子结点编号小。
则应该采用()遍历方法对其进行编号。
A.层次B.先序C.后序D.中序正确答案:B10、某二叉树中有60个叶子结点,则该二叉树中度为2的结点个数为()。
A. 59B.61C.60D.不一定正确答案:A11、树的后根遍历,相当于对应二叉树的()遍历。
A.中序B.后序C.层次D.先序正确答案:A二、判断题1、完全二叉树一定存在度为1的结点。
数据结构二叉树习题含答案
第6章树和二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树的形态是()。
A.唯一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子(2)由3 个结点可以构造出多少种不同的二叉树?()A.2 B.3 C.4 D.5(3)一棵完全二叉树上有1001个结点,其中叶子结点的个数是()。
A.250 B. 500 C.254 D.501(4)一个具有1025个结点的二叉树的高h为()。
A.11 B.10 C.11至1025之间 D.10至1024之间(5)深度为h的满m叉树的第k层有()个结点。
(1=<k=<h)A.m k-1 B.m k-1 C.m h-1 D.m h-1(6)利用二叉链表存储树,则根结点的右指针是()。
A.指向最左孩子 B.指向最右孩子 C.空 D.非空(7)对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用()遍历实现编号。
A.先序 B. 中序 C. 后序 D. 从根开始按层次遍历(8)若二叉树采用二叉链表存储结构,要交换其所有分支结点左、右子树的位置,利用()遍历方法最合适。
A.前序 B.中序 C.后序 D.按层次(9)在下列存储形式中,()不是树的存储形式?A.双亲表示法 B.孩子链表表示法 C.孩子兄弟表示法D.顺序存储表示法(10)一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足()。
A.所有的结点均无左孩子B.所有的结点均无右孩子C.只有一个叶子结点 D.是任意一棵二叉树(11)某二叉树的前序序列和后序序列正好相反,则该二叉树一定是()的二叉树。
A.空或只有一个结点 B.任一结点无左子树C.高度等于其结点数 D.任一结点无右子树(12)若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则X的前驱为()。
A.X的双亲 B.X的右子树中最左的结点C.X的左子树中最右结点 D.X的左子树中最右叶结点(13)引入二叉线索树的目的是()。
二叉树的习题
二叉树习题1、二叉树的第k层的结点数最多为( ).A.2k-1 B.2K+1 C.2K-1 D. 2k-12、假定一棵树的广义表表示为A(C,D(E,F,G),H(I,J)),则树中所含的结点数为__________个,树的深度为___________,树的度为_________。
3、若用链表存储一棵二叉树时,每个结点除数据域外,还有指向左孩子和右孩子的两个指针。
在这种存储结构中,n个结点的二叉树共有________个指针域,其中有________个指针域是存放了地址,有________________个指针是空指针。
4、在堆排序的过程中,对任一分支结点进行筛运算的时间复杂度为________,整个堆排序过程的时间复杂度为________。
5、设哈夫曼树中的叶子结点总数为m,若用二叉链表作为存储结构,则该哈夫曼树中总共有()个空指针域。
(A) 2m-1 (B) 2m (C) 2m+1 (D) 4m6、设某棵二叉树的中序遍历序列为ABCD,前序遍历序列为CABD,则后序遍历该二叉树得到序列为()。
(A) BADC (B) BCDA (C) CDAB (D) CBDA7、设某棵二叉树中有2000个结点,则该二叉树的最小高度为()。
(A) 9 (B) 10 (C) 11 (D) 128、设某棵二叉树中度数为0的结点数为N0,度数为1的结点数为N1,则该二叉树中度数为2的结点数为_________;若采用二叉链表作为该二叉树的存储结构,则该二叉树中共有_______个空指针域。
9、设一棵树T中边的集合为{(A,B),(A,C),(A,D),(B,E),(C,F),(C,G)},要求用孩子兄弟表示法(二叉链表)表示出该树的存储结构并将该树转化成对应的二叉树。
10、设有一组数据为(45,80,48,40,22,78),要求构造一棵Huffman树,并求WPL。
11、设一棵完全二叉树中有500个结点,则该二叉树的深度为__________;若用二叉链表作为该完全二叉树的存储结构,则共有___________个空指针域。
第6章 树和二叉树-习题-答案
第6章树和二叉树习题答案1.从概念上讲,树,森林和二叉树是三种不同的数据结构,将树,森林转化为二叉树的基本目的是什么,并指出树和二叉树的主要区别。
答:树的孩子兄弟链表表示法和二叉树二叉链表表示法,本质是一样的,只是解释不同,也就是说树(树是森林的特例,即森林中只有一棵树的特殊情况)可用二叉树唯一表示,并可使用二叉树的一些算法去解决树和森林中的问题。
树和二叉树的区别有三:一是二叉树的度至多为2,树无此限制;二是二叉树有左右子树之分,即使在只有一个分枝的情况下,也必须指出是左子树还是右子树,树无此限制;三是二叉树允许为空,树一般不允许为空(个别书上允许为空)。
2.请分析线性表、树、广义表的主要结构特点,以及相互的差异与关联。
答:线性表属于约束最强的线性结构,在非空线性表中,只有一个“第一个”元素,也只有一个“最后一个”元素;除第一个元素外,每个元素有唯一前驱;除最后一个元素外,每个元素有唯一后继。
树是一种层次结构,有且只有一个根结点,每个结点可以有多个子女,但只有一个双亲(根无双亲),从这个意义上说存在一(双亲)对多(子女)的关系。
广义表中的元素既可以是原子,也可以是子表,子表可以为它表共享。
从表中套表意义上说,广义表也是层次结构。
从逻辑上讲,树和广义表均属非线性结构。
但在以下意义上,又蜕变为线性结构。
如度为1的树,以及广义表中的元素都是原子时。
另外,广义表从元素之间的关系可看成前驱和后继,也符合线性表,但这时元素有原子,也有子表,即元素并不属于同一数据对象。
3.在二叉树的Llink-Rlink存储表示中,引入“线索”的好处是什么?答:在二叉链表表示的二叉树中,引入线索的目的主要是便于查找结点的前驱和后继。
因为若知道各结点的后继,二叉树的遍历就变成非常简单。
二叉链表结构查结点的左右子女非常方便,但其前驱和后继是在遍历中形成的。
为了将非线性结构二叉树的结点排成线性序列,利用结点的空链域,左链为空时用作前驱指针,右链为空时作为后继指针。
数据结构二叉树习题含答案
2.1 创建一颗二叉树创建一颗二叉树,可以创建先序二叉树,中序二叉树,后序二叉树。
我们在创建的时候为了方便,不妨用‘#’表示空节点,这时如果先序序列是:6 4 2 3 # # # # 5 1 # # 7 # #,那么创建的二叉树如下:下面是创建二叉树的完整代码:穿件一颗二叉树,返回二叉树的根2.2 二叉树的遍历二叉树的遍历分为:先序遍历,中序遍历和后序遍历,这三种遍历的写法是很相似的,利用递归程序完成也是灰常简单的:2.3 层次遍历层次遍历也是二叉树遍历的一种方式,二叉树的层次遍历更像是一种广度优先搜索(BFS)。
因此二叉树的层次遍历利用队列来完成是最好不过啦,当然不是说利用别的数据结构不能完成。
2.4 求二叉树中叶子节点的个数树中的叶子节点的个数= 左子树中叶子节点的个数+ 右子树中叶子节点的个数。
利用递归代码也是相当的简单,2.5 求二叉树的高度求二叉树的高度也是非常简单,不用多说:树的高度= max(左子树的高度,右子树的高度) + 12.6 交换二叉树的左右儿子交换二叉树的左右儿子,可以先交换根节点的左右儿子节点,然后递归以左右儿子节点为根节点继续进行交换。
树中的操作有先天的递归性。
2.7 判断一个节点是否在一颗子树中可以和当前根节点相等,也可以在左子树或者右子树中。
2.8 求两个节点的最近公共祖先求两个节点的公共祖先可以用到上面的:判断一个节点是否在一颗子树中。
(1)如果两个节点同时在根节点的右子树中,则最近公共祖先一定在根节点的右子树中。
(2)如果两个节点同时在根节点的左子树中,则最近公共祖先一定在根节点的左子树中。
(3)如果两个节点一个在根节点的右子树中,一个在根节点的左子树中,则最近公共祖先一定是根节点。
当然,要注意的是:可能一个节点pNode1在以另一个节点pNode2为根的子树中,这时pNode2就是这两个节点的最近公共祖先了。
显然这也是一个递归的过程啦:可以看到这种做法,进行了大量的重复搜素,其实有另外一种做法,那就是存储找到这两个节点的过程中经过的所有节点到两个容器中,然后遍历这两个容器,第一个不同的节点的父节点就是我们要找的节点啦。
二叉树答案
1. ⎣log2i⎦=⎣log2j⎦2. (1)0 (2)(n-1)/2 (3)(n+1)/2 (4) ⎣log2n⎦ +13. 2k-24.995.(1) n1-1 (2)n2+n36. 697. (1)完全二叉树 (2)单枝树,树中任一结点(除最后一个结点是叶子外),只有左子女或只有右子女。
8. N+19. (1) FEGHDCB (2)BEF(该二叉树转换成森林,含三棵树,其第一棵树的先根次序是BEF)10. 任何结点至多只有右子女的二叉树。
11. (1)前驱 (2)后继12. 6913. (1)top++ (2) stack[top]=p->rchild (3)top++ (4)stack[top]=p->lchild14. (1) p=p->lchild // 沿左子树向下(2)p=p->rchild15.(1)*ppos // 根结点(2)rpos=ipos (3)rpos–ipos (4)ipos (5)ppos+116. (1) p<>thr // 未循环结束(2)p->ltag=0 (3)p->lchild(4)p->rtag=1 && p->rchild!=thr (5) p=p->rchild (6)p=p->rchild17. 1)tree->lchild (2)null (3)pre->rchild(4)pre->rtag=1 (5) pre->right=tree; (6) tree->right (注(4)和(5)顺序可换)18.(1)node->rflag==0 (2)*x=bt (3) *x=node->right三、应用题1.树的孩子兄弟链表表示法和二叉树二叉链表表示法,本质是一样的,只是解释不同,也就是说树(树是森林的特例,即森林中只有一棵树的特殊情况)可用二叉树唯一表示,并可使用二叉树的一些算法去解决树和森林中的问题。
二叉树练习
五.算法设计题 1、假设二叉树采用二叉链表的方式存储,编写一个函数判断两棵二 、假设二叉树采用二叉链表的方式存储, 叉树是否相似。 叉树是否相似。 都是空的二叉树; 所谓二叉树 t1 和 t2 相似指的是 t1 和 t2 都是空的二叉树;或者 t1 的根结点是相似的, 和 t2 的根结点是相似的,t1 的左子树和 t2 的左子树是相似的且 t1 的右子树和 t2 的右子树是相似的。(提示:可用递归实现)。 的右子树是相似的。(提示:可用递归实现)。 。(提示 函数原型为int like(BiTreeNode *t1, BiTreeNode *t2); 函数原型为
三.解答题 1.说明分别满足下列条件的二叉树各是什么? .说明分别满足下列条件的二叉树各是什么? ⑴先序遍历和中序遍历相同; 先序遍历和中序遍历相同; ⑵中序遍历和后序遍历相同; 中序遍历和后序遍历相同; ⑶先序遍历和后序遍历相同; 先序遍历和后序遍历相同;
(1)空树、只有一个根节点、右单分支二叉树 空树、只有一个根节点、 空树 (2)空树、只有一个根节点、左单分支二叉树 空树、 空树 只有一个根节点、 (3)空树、只有一个根节点 空树、 空树
a b c e d h g i j f
题每题7分 四.算法填空题(前3题每题 分,第4题10分) 算法填空题( 题每题 题 分
1.下列算法实现二叉树中序遍历的非递归算法,请在空白处填入正确的C语句或表达式。 下列算法实现二叉树中序遍历的非递归算法,请在空白处填入正确的 语句或表达式 语句或表达式。 下列算法实现二叉树中序遍历的非递归算法 void inorder(BiTreeNode *T) { BiTreeNode *stack[maxsize], *p=T; //设立栈,存放指针 设立栈, 设立栈 int top=0; //栈顶标记,top==0为空 栈顶标记, 栈顶标记 为空 do p!=NULL { while ( ) //扫描左子树,非空则进栈 扫描左子树, 扫描左子树 { stack[top]=p; top++; ; } p=p->leftChild if(top>0) { Top-; ; p=stack[top]; printf(p->data); //访问结点的值 访问结点的值 ; p=p->rightChild } } while ( p!=NULL || top!=0 ) }
【免费下载】数据结构二叉树习题含答案
编号
0
0101
19 21 32 01
0 10 1 7 10 6
01 23
D.5
D.501
D.mh-1
C.空
D.10 至 1024 之间
D. 从根开始按层次遍历
D.按层次
B.为了能在二叉树中方便的进行插入与
D.使二叉树的遍历结果唯一
D.非空
(14)线索二叉树是一种( )结构。
A.逻辑
B. 逻辑和存储
(15)设 F 是一个森林,B 是由 F 变换得的二叉树。若 F 中有 n 个非终端结点,则 B
结论:哈夫曼编码优于等长二进制编码
23
(4)已知下列字符 A、B、C、D、E、F、G 的权值分别为 3、12、7、4、2、8,11, 试填写出其对应哈夫曼树 HT 的存储结构的初态和终态。
初态:
1 2 3 4 5 6 7 8 9 10 11 12 13
weight 3 12 7 4 2 8 11
parent 0 0 0 0 0 0 0 0 0 0 0 0 0
中右指针域为空的结点有( )个。
A. n-1
B.n
2.应用题 (1)试找出满足下列条件的二叉树
① 先序序列与后序序列相同 ②中序序列与后序序列相同 ③ 先序序列与中序序列相同 ④中序序列与层次遍历序列相同 先序遍历二叉树的顺序是“根—左子树—右子树”,中序遍历“左子树—根—右子树”, 后序遍历顺序是:“左子树—右子树―根",根据以上原则,本题解答如下: (1) 若先序序列与后序序列相同,则或为空树,或为只有根结点的二叉树 (2) 若中序序列与后序序列相同,则或为空树,或为任一结点至多只有左子树的二叉 树. (3) 若先序序列与中序序列相同,则或为空树,或为任一结点至多只有右子树的二叉 树. (4) 若中序序列与层次遍历序列相同,则或为空树,或为任一结点至多只有右子树 的二叉树
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、下面是有关二叉树的叙述,请判断正误()(). 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。
().二叉树中每个结点的两棵子树的高度差等于1。
().二叉树中每个结点的两棵子树是有序的。
().二叉树中每个结点有两棵非空子树或有两棵空子树。
()二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。
(应当是二叉排序树的特点)().二叉树中所有结点个数是2k-1-1,其中k是树的深度。
(应2i-1)().二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。
().对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。
(应2i-1)()用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。
(正确。
用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。
由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,还有n+1个空指针。
)即有后继链接的指针仅n-1个。
(√)10.具有12个结点的完全二叉树有5个度为2的结点。
最快方法:用叶子数=[n/2]=6,再求n2=n0-1=5二、填空()1.由3个结点所构成的二叉树有5种形态。
2. 一棵深度为6的满二叉树有n1+n2=0+ n2= n0-1=31 个分支结点和26-1 =32个叶子。
注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。
3.一棵具有257个结点的完全二叉树,它的深度为9。
(注:用 log2(n) +1= +1=94.设一棵完全二叉树有700个结点,则共有350个叶子结点。
答:最快方法:用叶子数=[n/2]=3505. 设一棵完全二叉树具有1000个结点,则此完全二叉树有500个叶子结点,有499个度为2的结点,有1个结点只有非空左子树,有0个结点只有非空右子树。
答:最快方法:用叶子数=[n/2]=500 ,n2=n0-1=499。
另外,最后一结点为2i属于左叶子,右叶子是空的,所以有1个非空左子树。
完全二叉树的特点决定不可能有左空右不空的情况,所以非空右子树数=0.6.一棵含有n个结点的k叉树,可能达到的最大深度为n,最小深度为2。
答:当k=1(单叉树)时应该最深,深度=n(层);当k=n-1(n-1叉树)时应该最浅,深度=2(层),但不包括n=0或1时的特例情况。
教材答案是“完全k叉树”,未定量。
)7.二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。
因而二叉树的遍历次序有六种。
最常用的是三种:前序法(即按N L R次序),后序法(即按L R N次序)和中序法(也称对称序法,即按L N R次序)。
这三种方法相互之间有关联。
若已知一棵二叉树的前序序列是BEFCGDH,中序序列是FEBGCHD,则它的后序序列必是F EGH D C B。
解:法1:先由已知条件画图,再后序遍历得到结果;法2:不画图也能快速得出后序序列,只要找到根的位置特征。
由前序先确定root,由中序先确定左子树。
例如,前序遍历BEFCGDH中,根结点在最前面,是B;则后序遍历中B一定在最后面。
法3:递归计算。
如B在前序序列中第一,中序中在中间(可知左右子树上有哪些元素),则在后序中必为最后。
如法对B的左右子树同样处理,则问题得解。
8.中序遍历的递归算法平均空间复杂度为 O(n)。
答:即递归最大嵌套层数,即栈的占用单元数。
精确值应为树的深度k+1,包括叶子的空域也递归了一次。
9.用5个权值{3, 2, 4, 5, 1}构造的哈夫曼(Huffman)树的带权路径长度是 33 。
解:先构造哈夫曼树,得到各叶子的路径长度之后便可求出WPL=(4+5+3)×2+(1+2)×3=33(15)(9) (6) (注:两个合并值先后不同会导致编码不同,即哈夫曼编码不唯一) 4 5 3 (3) (注:合并值应排在叶子值之后)1 2(注:原题为选择题:A.32 B.33 C.34 D.15)三、单项选择题()(C)1.不含任何结点的空树。
(A)是一棵树; (B)是一棵二叉树;(C)是一棵树也是一棵二叉树; (D)既不是树也不是二叉树答:以前的标答是B,因为那时树的定义是n≥1(C)2.二叉树是非线性数据结构,所以。
(A)它不能用顺序存储结构存储; (B)它不能用链式存储结构存储;(C)顺序存储结构和链式存储结构都能存储; (D)顺序存储结构和链式存储结构都不能使用( C)3.具有n(n>0)个结点的完全二叉树的深度为。
(A) log2(n) (B) log2(n) (C) log2(n) +1 (D) log2(n)+1注1:x 表示不小于x的最小整数; x表示不大于x的最大整数,它们与[ ]含义不同!注2:选(A)是错误的。
例如当n为2的整数幂时就会少算一层。
似乎 log2(n) +1是对的(A)4.把一棵树转换为二叉树后,这棵二叉树的形态是。
(A)唯一的(B)有多种(C)有多种,但根结点都没有左孩子(D)有多种,但根结点都没有右孩子5. 从供选择的答案中,选出应填入下面叙述内的最确切的解答,把相应编号写在答卷的对应栏内。
树是结点的有限集合,它A 根结点,记为T。
其余的结点分成为m(m≥0)个 B的集合T1,T2,…,Tm,每个集合又都是树,此时结点T称为T i的父结点,T i称为T的子结点(1≤i≤m)。
一个结点的子结点个数为该结点的 C 。
供选择的答案A:①有0个或1个②有0个或多个③有且只有1个④有1个或1个以上B: ①互不相交②允许相交③允许叶结点相交④允许树枝结点相交C:①权②维数③次数(或度)④序答案:ABC=1,1,36.从供选择的答案中,选出应填入下面叙述内的最确切的解答,把相应编号写在答卷的对应栏内。
二叉树 A 。
在完全的二叉树中,若一个结点没有 B ,则它必定是叶结点。
每棵树都能惟一地转换成与它对应的二叉树。
由树转换成的二叉树里,一个结点N的左子女是N在原树里对应结点的 C ,而N的右子女是它在原树里对应结点的 D 。
供选择的答案A:①是特殊的树②不是树的特殊形式③是两棵树的总称④有是只有二个根结点的树形结构B: ①左子结点②右子结点③左子结点或者没有右子结点④兄弟C~D:①最左子结点②最右子结点③最邻近的右兄弟④最邻近的左兄弟⑤最左的兄弟⑥最右的兄弟答案:A= B= C= D=答案:ABCDE=2,1,1,3四、简答题()1.一棵度为2的树与一棵二叉树有何区别答:度为2的树从形式上看与二叉树很相似,但它的子树是无序的,而二叉树是有序的。
即,在一般树中若某结点只有一个孩子,就无需区分其左右次序,而在二叉树中即使是一个孩子也有左右之分。
2.设如下图所示的二叉树B的存储结构为二叉链表,root为根指针,结点结构为:(lchild,data,rchild)。
其中lchild,rchild分别为指向左右孩子的指针,data为字符型,root为根指针,试回答下列问题:1.对下列二叉树B,执行下列算法traversal(root),试指出其输出结果;2.假定二叉树B共有n个结点,试分析算法traversal(root)的时间复杂度。
(共8分) 二叉树B解:这是“先根再左再根再右”,比前序遍历多打印各结点一次,输出结果为:A B C C E E B A D F F D G G特点:①每个结点肯定都会被打印两次;②但出现的顺序不同,其规律是:凡是有左子树的结点,必间隔左子树的全部结点后再重复出现;如A ,B ,D 等结点。
反之马上就会重复出现。
如C ,E ,F ,G 等结点。
时间复杂度以访问结点的次数为主,精确值为2*n ,时间渐近度为O(n). 3.给定二叉树的两种遍历序列,分别是:前序遍历序列:D ,A ,C ,E ,B ,H ,F ,G ,I ; 中序遍历序列:D ,C ,B ,E ,H ,A ,G ,I ,F , 试画出二叉树B ,并简述由任意二叉树B 的前序遍历序列和中序遍历序列求二叉树B 的思想方法。
解:方法是:由前序先确定root ,由中序可确定root 的左、右子树。
然后由其左子树的元素集合和右子树的集合对应前序遍历序列中的元素集合,可继续确定root 的左右孩子。
将他们分别作为新的root ,不断递归,则所有元素都将被唯一确定,问题得解。
DAC FE G B H I4.给定如图所示二叉树T ,请画出与其对应的中序线索二叉树。
解:要遵循中序遍历的轨迹来画出每个前驱和后继。
中序遍历序列:55 40 25 60 28 08 33 5425 3340 60 08 5455五、阅读分析题()1.试写出如图所示的二叉树分别按先序、中序、后序遍历时得到的结点序列。
答:DLR :A B D F J G K C E H I L M LDR: B F J D G K A C H E L I M LRD :J F K G D B H L M I E C A2. (P60 4-27)把如图所示的树转化成二叉树。
答:注意全部兄弟之间都要连线(包括度为2的兄弟),并注意原有连线结点一律归入左子树,新添连线结点一律归入右子树。
A BE C KF H D LG I M J3.阅读下列算法,若有错,改正之。
BiTree InSucc(BiTree q){//已知q 是指向中序线索二叉树上某个结点的指针,答:这是找结点后继的程序。
共有3处错误。
4.画出和下列二叉树相应的森林。
答:注意根右边的子树肯定是森林,而孩子结点的右子树均为兄弟。
六、算法设计题()1.编写递归算法,计算二叉树中叶子结点的数目。
解:思路:输出叶子结点比较简单,用任何一种遍历递归算法,凡是左右指针均空者,则为叶子,将其打印出来。
法一:核心部分为:DLR(liuyu *root) /*中序遍历递归函数*/{if(root!=NULL){if((root->lchild==NULL)&&(root->rchild==NULL)){sum++; printf("%d\n",root->data);}DLR(root->lchild);DLR(root->rchild); }return(0);}法二:int LeafCount_BiTree(Bitree T) 127 172 11 16 214 9 13编程:生成二叉树排序树之后,再中序遍历排序查找结点的完整程序如下:说明部分为:#include <>#include <>typedef struct liuyu{int data;struct liuyu *lchild,*rchild;}test;liuyu *root;int sum=0;int m=sizeof(test);void insert_data(int x) /*如何生成二叉排序树参见教材P43C程序*/ { liuyu *p,*q,*s;s=(test*)malloc(m);s->data=x;s->lchild=NULL;s->rchild=NULL;if(!root){root=s; return;}p=root;while(p) /*如何接入二叉排序树的适当位置*/{q=p;if(p->data==x){printf("data already exist! \n");return;}else if(x<p->data)p=p->lchild; else p=p->rchild;}if(x<q->data)q->lchild=s;else q->rchild=s;}DLR(liuyu *root) /*中序遍历递归函数*/{if(root!=NULL){if((root->lchild==NULL)&&(root->rchild==NULL)){sum++; printf("%d\n",root->data);} DLR(root->lchild);DLR(root->rchild); }return(0);}main() /*先生成二叉排序树,再调用中序遍历递归函数进行排序输出*/{int i,x;i=1;root=NULL; /*千万别忘了赋初值给root!*/do{printf("please input data%d:",i);i++;scanf("%d",&x); /*从键盘采集数据,以-9999表示输入结束*/if(x==-9999){DLR(root);printf("\nNow output count value:%d\n",sum);return(0); }else insert_data(x);} /*调用插入数据元素的函数*/while(x!=-9999);return(0);}v1.0 可编辑可修改执行结果:若一开始运行就输入-9999,则无叶子输出,sum=0。