电力电子器件

合集下载

电力电子器件概述

电力电子器件概述
4. 最高工作结温 TJM:125~175℃
5. 反向恢复时间trr 6. 浪涌电流IFSM
1.2.4 主要类型
1. 普通二极管——又称整流二极管 1KHZ以下 数千安和数千伏以上
2. 快恢复二极管 5μs以下 3. 肖特二极管
1.3 半控型器件——晶闸管(SCR)
常用晶闸管的结构
螺栓型晶闸管
晶闸管模块
Id
1
2
3
Im
sin td
t
3
4
Im
0.24Im
I
1
2
Im
sin t
2
d
t
0.46Im
3
Kf
I Id
0.46 0.24
1.92
IT ( AV )
100 2
50
Id
1.57 50 1.92
41 A
Im
Id 0.24
41 0.24
171
A
⑵ 维持电流IH 使晶闸管维持通态所必需的最小主电流。 ⑶ 擎住电流IL ⑷ 浪涌电流ITSM
4. 光控晶闸管LTT
⑴又称光触发晶闸 管,是利用一定 波长的光照信号 触发导通的晶闸 管。
⑵光触发保证了主 电路与控制电路 之间的绝缘,且 可避免电磁干扰 的影响。
⑶在高压大功率的 场合占有重要地位。
1.4 典型全控型器件
门极可关断晶闸管——在晶闸管问世后不久出现。 20世纪80年代以来,电力电子技术进入了一个崭新时代。
不可控器件:电力二极管
半控型器件:晶闸管及其派生器件 全控型器件:功率场效应管、绝缘栅双极性晶体管、
门极可关断晶闸管
⑵ 按照控制信号性质可分为: 电流控制型 电压控制型:控制功率小

电力电子器件

电力电子器件

3.电路如图所示 VT承受正向门级电压,画出负载R上的电压波
5.判断下列图形中何时灯亮,何时不亮? (1)u2为直流电源,上+下-,S未闭合前灯泡亮不亮? 答:不亮。晶闸管虽具有上+、下-导通的条件,但没有触发 电流,所以不能导通。 (2)u2为直流电源,上+、下-,S闭合后灯泡亮不亮?S闭合 后又断开了,灯泡亮不亮? 答:S闭合后灯泡亮。S闭合后又断开了灯泡照常亮。 (3)u2为直流电源,上-、下+,S未闭合前灯泡亮不亮?S 闭合后又断开了灯泡亮不亮? 答:不亮。u2上-、下+,不具备导通的条件。S闭合也不会亮。
IG2
IG1 IG=0 Ubo +UA
的反相漏电流流过。
当反向电压达到反向击穿电 压后,可能导致晶闸管发热
击穿
损坏。
-IA
• 1.1 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受 正向阳极电压,并在门极注入正向触发电 流。 • 1.2 维持晶闸管导通的条件是什么?怎样 才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的 电流大于能保持晶闸管导通的最小电流 (即维持电流)。 要使晶闸管由导通变为关断,可通过外加 反向阳极电压或减小负载电流的办法,使 流过晶闸管的电流降到维持电流值以下。
UA IA 正向 导通IHOIG2IG1 IG=0 Ubo +UA
随着门极电流幅值的增大, 正向转折电压降低。 晶闸管本身的压降很小, 在1V左右。
击穿
-IA
晶闸管的伏安特性
IG2>IG1>IG
(2)反向特性
反向特性类似二极管的反向 特性。 反向阻断状态时,只有极小
IA 正向 导通
IH UA O

电力电子器件的概念

电力电子器件的概念

电力电子器件的概念:直接承担电能的变换或控制的电路称为主电路。

可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件称为电力电子器件。

电力电子器件的特征:(1)、电力电子器件所能处理电功率的大小,所能承受的电压、电流的能力是其重要参数,一般都大于信息电子器件。

(2)、电力电子器件为减小自身损耗,提高效率,一般都工作在开关状态,通态阻搞接近于短路,电流由外电路决定;断态阻搞接近于断路,电流几乎为零,电压决定于外电路。

(3)、电力电子器件往往需要由信息电子电路来控制。

(4)、自由功率损耗远大于信息电子电路,需要良好的散热导热设计。

电力电子器件的系统组成:一般由控制电路、驱动电路和以电力电子器件为核心的主电路组成。

电力电子器件的分类:1、按能够被控制信号所控制的程度来分类:全控型:既可控制其导通,又可控制其关断(绝缘栅双极晶体管,电力MOSFET)半控型:可以控制其导通,不能控制其关断(晶闸管、其大部分派生器件)不可控型:导通与关断取决于所承受的电流、电压(电力二极管)2、按照驱动电路加在器件控制端的信号性质分类:电压驱动型、电流驱动型3、根据驱动电路加在器件控制端有效信号的波形分类:脉冲触发型、电平控制型4、按照器件内部电子的空穴参与导电的情况:单极型、双极型、复合型电力二极管特征:能承受高电压和大电流(垂直导电结构、低掺杂N区)静态特征:伏安特征动态特征:零偏、正偏、反偏时的过滤过程(图)主要参数:1、正向平均电流I F(AV),正向压降VF,反向重复峰值电压V RRM,最高工作结温T JM,反向恢复时间,浪涌电流。

主要类型:普通二极管(整流二极管)、快恢复二极管、有特基二极管电导调制效应:PN结通过大电流,大量空穴被注入基区,它们来不及和基区中的电子中和就到达负极,使基区电子浓度大幅增加。

——使原始基片的电阻率下降。

晶闸管:正常导通条件:晶闸管承受正向阳极电压,向门极施加触发电流。

关断条件:。

电子行业电力电子器件综合概述

电子行业电力电子器件综合概述

电子行业电力电子器件综合概述1. 引言电力电子器件是电子行业中的重要组成部分,用于控制和转换电能。

随着电力需求的不断增长,电力电子器件的应用范围也在不断扩大。

本文将对电力电子器件进行综合概述,包括其定义、分类、应用以及未来发展趋势等内容。

2. 电力电子器件的定义电力电子器件是指用于控制和转换电能的电子元件。

它可以将交流电转换为直流电,也可以将电能转换成其他形式,如机械能、光能等。

电力电子器件具有变流、变压、变频等功能,广泛应用于电力系统、工业控制、交通运输等领域。

3. 电力电子器件的分类电力电子器件根据其功能和工作原理的不同,可以分为以下几类:3.1 整流器整流器是一种将交流电转换为直流电的电力电子器件。

它使用半导体器件(如二极管、晶闸管等)将交流电的负半周或正半周去除,使输出电流呈现单向流动的特点。

整流器广泛应用于电力系统、工业设备以及电子产品中。

3.2 逆变器逆变器是一种将直流电转换为交流电的电力电子器件。

它通过控制半导体开关器件(如晶闸管、IGBT等)的开关状态,使直流电通过电路产生交流电输出。

逆变器广泛应用于可再生能源发电系统、电动车充电桩、家用电器等领域。

3.3 变频器变频器是一种可控制交流电频率的电力电子器件。

它通过调节半导体开关器件的开关频率,可以实现对交流电输出频率的调节。

变频器广泛应用于交通运输、工业生产等领域,如交流电机调速控制、电动车驱动系统等。

3.4 开关电源开关电源是一种通过开关器件在输入端和输出端之间进行快速切换来实现电能转换的电力电子器件。

开关电源具有高效率、小体积、稳定性好的特点,广泛应用于电子产品、通信设备等领域。

4. 电力电子器件的应用电力电子器件在电力系统、工业生产、交通运输、家用电器等领域都有广泛的应用。

在电力系统中,电力电子器件被用作电网稳定器、无功补偿装置、电力质量调节器等,提高电力系统的稳定性和效率。

在工业生产中,电力电子器件被用于电机调速、电力负荷控制、短路电流限制等,提高生产效率和质量。

电力电子技术知识点总结

电力电子技术知识点总结

电力电子技术知识点总结一、电力电子器件1. 晶闸管:晶闸管是一种具有双向导电性能的电子器件,可以控制大电流、大功率的交流电路。

其结构简单,稳定性好,具有一定的可逆性,可用作直流电压调节元件、交流电压调节元件、静止开关、逆变器等。

2. 可控硅:可控硅是一种具有双向导电性的半导体器件,具有控制开关特性,可用于控制大电流、大功率的交流电路。

可控硅具有可控性强,工作稳定等特点,适用于电力调节、交流电源、逆变器等领域。

3. MOSFET:MOSFET是一种以金属氧化物半导体栅极场效应晶体管为基础的器件,和普通的MOS晶体管相比,MOSFET在导通电阻上有较低的压降、耗散功率小、寄生电容小、开关速度快等优点,适用于开关电路、逆变器、电源调节等领域。

4. IGBT:IGBT是一种继承了MOSFET和双极晶体管的特点的半导体器件,具有高阻塞电压、低导通压降、大电流、耐脉冲电流等特点,适用于高频开关电路、变频器、电源逆变器、电机调速等领域。

5. 二极管:二极管是最基本的电子元件之一,具有正向导通和反向截止的特点,广泛用于整流、短路保护、开关电源等方面。

以上所述的电力电子器件是电力电子技术的基础,掌握了这些器件的特性和应用,对于电力电子技术的学习和应用具有重要的意义。

二、电力电子拓扑结构1. 变流器拓扑结构:变流器是电力电子技术中的一种重要装置,用于将直流电转换为交流电或者改变交流电的频率、电压和相数等。

常见的变流器拓扑结构包括单相全桥变流器、三相全桥变流器、单相半桥变流器、三相半桥变流器等。

2. 逆变器拓扑结构:逆变器是电力电子技术中的一种重要装置,用于将直流电转换为交流电,逆变器可以选择不同的拓扑结构和控制策略,以满足不同的电力系统需求。

常见的逆变器拓扑结构包括单相全桥逆变器、三相全桥逆变器、单相半桥逆变器、三相半桥逆变器等。

3. 母线型柔性直流输电系统:母线型柔性直流输电系统是一种新型电力电子系统,用于将大容量的交流电转换为直流电进行长距离输电。

电子行业电力电子器件相关资料

电子行业电力电子器件相关资料

电子行业电力电子器件相关资料1. 介绍电力电子器件是电子行业中的重要组成部分,主要用于控制和转换电力。

它们在电力传输、变换和分配中发挥着关键的作用。

本文档将介绍电力电子器件的主要类型、工作原理、应用领域以及相关的技术资料。

2. 电力电子器件的类型电力电子器件广泛应用于各个领域,包括能源转换、电力传输、电机控制等。

以下是一些常见的电力电子器件类型:2.1 变流器变流器是将交流电转换为直流电或将直流电转换为交流电的装置。

主要包括整流器和逆变器两种类型。

整流器将交流电转换为直流电,逆变器将直流电转换为交流电。

2.2 逆变器逆变器是将直流电转换为交流电的装置。

它通常用于交流电到直流电的转换,例如太阳能电池板和风力发电机输出的直流电转换为交流电以供家庭和工业使用。

2.3 储能器储能器是一种能够存储电能并在需要时释放的装置。

它通常用于平衡电力的供应和需求之间的不匹配,以及在电力系统中储存和释放能量。

2.4 整流器整流器是将交流电转换为直流电的装置。

它常用于将交流电转换为直流电以供稳定的电力需求。

2.5 逆变器逆变器是将直流电转换为交流电的装置。

它常用于将直流电转换为交流电以供各种电力设备使用。

3. 电力电子器件的工作原理电力电子器件的工作原理基于不同的电力转换和控制原理。

以下是一些常见的电力电子器件及其工作原理:3.1 变流器的工作原理变流器将交流电转换为直流电或将直流电转换为交流电,其工作原理基于开关器件的使用。

开关器件在不同的状态下打开和关闭,从而控制电流的流动。

逆变器将直流电转换为交流电,其工作原理也基于开关器件的使用。

开关器件通过调整开关频率和占空比来实现对输出波形的控制。

3.3 储能器的工作原理储能器通过将电能存储在电容或电感器中,并在需要时释放,实现对电力系统的能量平衡。

其工作原理基于能量的存储和释放。

整流器将交流电转换为直流电,其工作原理基于半导体器件的整流特性。

半导体器件只允许电流在一个方向上流动,从而实现对交流电的整流。

电力系统中的电力电子器件及其应用

电力系统中的电力电子器件及其应用

电力系统中的电力电子器件及其应用在当今高度依赖电力的社会中,电力系统的稳定运行和高效发展至关重要。

电力电子器件作为电力系统中的关键组成部分,正发挥着日益重要的作用。

它们的出现和应用,为电力系统的优化、控制和能源转换带来了革命性的变化。

电力电子器件是一种能够对电能进行高效控制和转换的半导体器件。

常见的电力电子器件包括二极管、晶闸管、晶体管(如 MOSFET 和IGBT)等。

这些器件具有不同的特性和性能,适用于各种不同的电力系统应用场景。

二极管是最简单的电力电子器件之一,它只允许电流单向通过。

在电力系统中,二极管常用于整流电路,将交流电转换为直流电。

例如,在电源适配器中,二极管将交流市电整流为直流电,为电子设备提供稳定的电源。

晶闸管则是一种具有可控导通特性的器件。

通过施加合适的触发信号,可以控制晶闸管的导通和关断。

晶闸管在电力系统中的应用非常广泛,如用于高压直流输电系统中的换流器、无功补偿装置等。

通过控制晶闸管的导通角,可以实现对交流电压和电流的调节,从而达到控制无功功率和提高电能质量的目的。

MOSFET(金属氧化物半导体场效应晶体管)和 IGBT(绝缘栅双极型晶体管)是现代电力电子系统中常用的晶体管器件。

它们具有开关速度快、导通电阻小、驱动功率低等优点。

MOSFET 适用于高频、小功率的应用场景,如开关电源、电动汽车充电器等。

IGBT 则在中大功率的电力变换领域表现出色,如变频器、新能源发电系统中的逆变器等。

在电力系统中,电力电子器件的应用范围十分广泛。

首先,在发电环节,可再生能源的开发和利用离不开电力电子技术。

例如,太阳能光伏发电系统中,通过电力电子逆变器将太阳能电池板产生的直流电转换为交流电并并入电网。

风力发电系统中,电力电子变流器用于控制风机转速,实现最大功率跟踪,同时将风机发出的交流电转换为符合电网要求的电能。

在输电环节,高压直流输电技术凭借其输电距离远、输电容量大、损耗低等优势,成为了远距离大容量输电的重要手段。

电力电子器件原理

电力电子器件原理

THANKS FOR WATCHING
感谢您的观看
轨道交通
在城市轨道交通中,电力电子器 件用于实现牵引供电和信号控制 。
在磁悬浮列车中,电力电子器件 可以实现高效的电机控制和能量 回收。
在高速铁路中,电力电子器件用 于实现列车牵引和供电系统的控 制。
在轨道交通的自动化和智能化方 面,电力电子器件也发挥着重要 的作用。
05 电力电子器件的未来发展
智能化与网络化的趋势
智能化
随着人工智能技术的发展,电力电子器件的智能化成为一种趋势。智能化能够提高电力电子系统的自适应性、可 靠性和容错性,实现更加高效和智能的能源管理。
网络化
通过互联网和物联网技术,将电力电子器件与智能终端、云计算等相互连接,实现远程监控、数据采集和智能控 制等功能。网络化的电力电子器件能够提高能源利用效率和可再生能源的接入能力,促进能源的可持续发展。
热特性
最大结温
指电力电子器件在工作过程中所允许的最高结温, 超过此温度将导致器件性能下降或损坏。
热阻
指电力电子器件在工作过程中因温度升高而产生 的热量传导阻力。
散热设计
为确保电力电子器件的正常工作,需要采取有效 的散热措施,如散热片、风冷或液冷等。
安全工作区
安全工作区
指在规定的电源电压和负载电流范围内,电力电子器件能够安全、可靠地工作 而不会发生损坏或性能下降的区域。
新材料与新工艺的应用
新材料
随着科技的发展,新型材料如碳化硅(SiC)、氮化镓(GaN) 等在电力电子器件中的应用越来越广泛。这些新材料具有更高 的热导率、禁带宽度和击穿场强等特点,能够提高电力电子器 件的效率和可靠性。
新工艺
新型工艺技术如薄膜工艺、微纳加工技术等在电力电子器件 制造中逐渐得到应用。这些新工艺能够减小器件尺寸、降低 制造成本和提高集成度,为电力电子器件的发展提供了新的 可能性。

修改稿 第1章 电力电子器件

修改稿  第1章  电力电子器件

三 、晶闸管
晶闸管及其工作原理 2 晶闸管的特性与主要参数 3 晶闸管的派生器件
1
晶闸管
晶闸管(Thirsted)包括:普通晶闸管(SCR)、快速晶 闸管(FST)、双向晶闸管(TRIAC)、逆导晶闸管(RCT) 、 可关断晶闸管(GTO) 和光控晶闸管等。 由于普通晶闸管面世早,应用极为广泛, 因此在无特别 说明的情况下,本书所说的晶闸管都为普通晶闸管。 普通晶闸管:也称可控硅整流管(Silicon Controlled Rectifier), 简称SCR。 由于它电流容量大,电压耐量高以及开通的可控性 (目前生产水平:4500A/8000V)已被广泛应用于相控整 流、逆变、交流调压、直流变换等领域, 成为特大功率 低频(200Hz以下)装置中的主要器件。
图1.2.2
电力二极管的伏安特性曲线

PN结的电容效应:
PN结的电荷量随外加电压而变化,呈现电容效应,称为结电容CJ, 又称为微分电容。
二、 电力二极管
1 2
电力二极管及其工作原理 电力二极管的特性与参数
2
电力二极管的特性与参数
(1)电力二极管的伏安特性 (2)电力二极管的开关特性 (3)电力二极管的主要参数

电力二极管的主要类型:
(1)普通二极管:普通二极管又称整流管(Rectifier Diode),多用于开关频率在1KHZ以下的整流电路中, 其反向恢复时间在5us以上,额定电流达数千安,额定 电压达数千伏以上。 (2)快恢复二极管:反向恢复时间在5us以下的称为快恢复 二极管(Fast Recovery Diode简称FDR)。快恢复二极 管从性能上可分为快速恢复和超快速恢复二极管。前者 反向恢复时间为数百纳秒以上,后者则在100ns以下,其 容量可达1200V/200A的水平, 多用于高频整流和逆变电 路中。 (3)肖特基二极管:肖特基二极管是一种金属同半导体相接 触形成整流特性的单极型器件,其导通压降的典型值为 0.4~0.6V,而且它的反向恢复时间短,为几十纳秒。但 反向耐压在200V以下。它常被用于高频低压开关电路或 高频低压整流电路中。

电力电子器件

电力电子器件

电力电子器件电力电子器件(Power ElectronicDevice)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。

主电路:在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。

电力电子器件的特征◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。

◆为了减小本身的损耗,提高效率,一般都工作在开关状态。

◆由信息电子电路来控制,而且需要驱动电路。

◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。

电力电子器件的功率损耗断态损耗通态损耗:是电力电子器件功率损耗的主要成因。

开关损耗:当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。

分为开通损耗和关断损耗。

电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。

电力电子器件的分类按照能够被控制电路信号所控制的程度◆半控型器件:指晶闸管(Thyristor)、快速晶闸管、逆导晶闸管、光控晶闸管、双向晶闸管。

◆全控型器件:IGBT、GTO、GTR、MOSFET。

◆不可控器件:电力二极管(Power Diode)、整流二极管。

按照驱动信号的性质◆电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。

Thyrister,GTR,GTO。

◆电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。

电力MOSFET,IGBT,SIT。

按照驱动信号的波形(电力二极管除外)◆脉冲触发型:通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。

晶闸管,SCR,GTO。

◆电平控制型:必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在通断状态。

GTR,MOSFET,IGBT。

按照载流子参与导电的情况◆单极型器件:由一种载流子参与导电。

电力电子器件与应用

电力电子器件与应用

电力电子器件与应用电力电子技术是现代电气工程领域中的重要分支,它主要研究与应用电子器件在电力系统中的转换、调节和控制技术。

电力电子器件的发展和应用,对于提高电力系统的效率、稳定性和可靠性具有重要意义。

本文将从电力电子器件的基本原理、常见的电力电子器件和其应用领域等方面进行探讨。

一、电力电子器件的基本原理电力电子器件是指能够将电力信号进行转换、调节和控制的电子器件。

其基本原理是利用半导体器件的导通和截止特性,通过不同的电路拓扑结构,实现对电力信号的处理。

常见的电力电子器件包括二极管、晶闸管、可控硅、IGBT和MOSFET等。

二、常见的电力电子器件1. 二极管:二极管是一种最简单的电力电子器件,其具有单向导电性。

它常用于整流电路中,将交流电信号转换为直流电信号。

2. 晶闸管:晶闸管是一种具有双向导电性的电力电子器件。

它具有可控性,可以通过控制电压或电流来实现导通和截止。

晶闸管广泛应用于交流电调节、交流电转换和交流电控制等领域。

3. 可控硅:可控硅是一种具有单向导电性和可控性的电力电子器件。

它可以通过控制触发信号来实现导通和截止。

可控硅常用于交流电调节和交流电控制等应用中。

4. IGBT:IGBT是一种综合了MOSFET和可控硅特性的电力电子器件。

它具有高压、高电流和高频率的特点,广泛应用于交流电调节、交流电转换和电力传输等领域。

5. MOSFET:MOSFET是一种具有双向导电性和可控性的电力电子器件。

它具有高速开关和低功耗的特点,常用于直流电调节、直流电转换和电力传输等应用中。

三、电力电子器件的应用领域电力电子器件在电力系统中的应用非常广泛,主要包括以下几个方面:1. 电力调节:电力电子器件可以通过调节电压、电流和频率等参数,实现对电力系统的调节。

例如,通过调节晶闸管和可控硅的触发角度,可以实现对交流电的调节,提高电力系统的稳定性和可靠性。

2. 电力转换:电力电子器件可以将不同形式的电力信号进行转换,实现能量的传输和转换。

电子行业电力电子器件及应用

电子行业电力电子器件及应用

电子行业电力电子器件及应用引言电子行业是一个快速发展的行业,在电子设备中,电力电子器件是不可或缺的关键组成部分。

电力电子器件是指用于调整和转换电能的器件,广泛应用于交流和直流电网、电动机驱动、电源供应等领域。

本文将介绍电子行业中常见的电力电子器件及其应用。

一、开关器件1.整流二极管 (Rectifier Diode)整流二极管是一种常见的开关器件,用于将交流电转换为直流电。

它具有正向导通和反向截止的特性,常用于交流电桥式整流器、逆变器等电路中。

2.IGBT (Insulated Gate Bipolar Transistor) IGBT 是一种高压高频开关器件,兼具了普通晶体管和普通MOSFET的特点。

它可以控制高电压和高电流的通断,并且具有低开关损耗和快速切换速度的特点。

IGBT广泛用于工业设备、交通工具和电力传输中。

3.MOSFET (Metal-Oxide-SemiconductorField-Effect Transistor)MOSFET 是一种常见的开关器件,可以通过调节栅极电压来控制导通和截止。

它具有低导通电阻、低开关损耗和高开关速度的特点。

MOSFET 常用于直流转换器、电机驱动和太阳能发电逆变器等应用中。

二、功率模块1.IGBT模块IGBT模块是由多个IGBT芯片、隔离驱动电路和散热器组成的集成模块。

它可以方便地实现高压高频电路的设计和构建,广泛应用于电力传输、电机驱动和可再生能源领域。

2.整流桥模块整流桥模块是由多个整流二极管组成的集成模块。

它常用于交流电源的整流和直流电源供应的设计中。

3.功率放大模块功率放大模块是用于放大低功率信号为高功率信号的模块。

它常用于音频放大器、无线电频率放大器等应用中。

三、电力电子器件的应用1.交流调速电力电子器件在交流调速中起着重要作用。

例如,交流调压器使用电力电子器件的开关特性来调节交流电压的大小,实现电压调节和稳定。

2.无线充电利用电力电子器件的功率转换特性,可以实现无线充电技术。

电力电子器件及应用技术

电力电子器件及应用技术

电力电子器件及应用技术电力电子器件是指能转换和调节电能的器件,是电力电子技术的核心。

随着电力电子技术的不断发展,电力电子器件的种类也日益增多。

在本文中,我们将介绍几种常见的电力电子器件及其应用技术。

一、开关管开关管是一种常见的电力电子器件,适用于高压、高电流的工作环境。

开关管具有通断能力强、开关速度快等特点,被广泛应用于各个领域。

最常见的应用是在电源开关、直流电机驱动器、电池充电器等设备中。

二、整流器整流器是将交流电转换为直流电的电力电子器件,常用于交流电转换为直流电的环境中。

整流器的类型有很多种,其中最常见的是单相整流器和三相整流器。

整流器广泛应用于交流到直流的转换领域,比如电源适配器、电气焊接设备等。

三、逆变器逆变器是将直流电转换为交流电的电力电子器件,适用于需要将直流电转换为交流电的场合。

逆变器在可逆变和无线电源等领域有广泛应用。

它可以将直流电动力设备连接到交流电网,比如太阳能和风能的利用。

逆变器还可用于驱动交流电机。

四、电力调节器电力调节器是一种能够调节电能的电力电子器件,可以根据需要对电压和电流进行调节。

电力调节器被广泛应用于稳压变送器、磁控管、智能继电器等设备中。

它能够在工业自动化、变频调速等领域起到重要作用。

五、功率电子器件功率电子器件是指能够直接转换大功率电力的电力电子器件。

功率电子器件的种类多样,其中最常见的是晶闸管、电力二极管和功率MOSFET。

这些器件被广泛应用于电力变换、电力控制等领域。

功率电子器件的发展为电力电子技术的进步提供了有力支持。

六、电力电子应用技术电力电子应用技术是指将电力电子器件应用于各个领域的技术方法和方法。

电力电子应用技术在电力系统、工业制造、交通运输、新能源等领域发挥着重要作用。

其中,电力变换技术、电力控制技术、电力传输技术等是电力电子应用技术的重要组成部分。

七、电力电子器件的未来发展随着科技的进步和社会的发展,电力电子器件及其应用技术也在不断发展。

未来,电力电子器件将更加智能化、高效化、小型化。

电力电子器件的工作原理与应用

电力电子器件的工作原理与应用

电力电子器件的工作原理与应用在当今这个高度电气化的时代,电力电子器件扮演着至关重要的角色。

从我们日常使用的手机充电器、电脑电源,到大型工业设备的驱动系统,电力电子器件无处不在,默默地为各种电气设备的高效运行提供着支持。

那么,究竟什么是电力电子器件?它们又是如何工作的?又有着怎样广泛的应用呢?电力电子器件,简单来说,就是用于电力变换和控制的电子器件。

它们能够对电能进行高效的转换、控制和调节,实现诸如交流变直流、直流变交流、电压升高或降低、电流增大或减小等功能。

要理解电力电子器件的工作原理,首先得提到半导体材料。

常见的半导体材料有硅、锗等。

这些材料的导电性能介于导体和绝缘体之间,通过控制其内部的电子和空穴的流动,可以实现对电流的控制。

以二极管为例,它是最简单的电力电子器件之一。

二极管具有单向导电性,就像一个只能单向打开的门。

当二极管的阳极电位高于阴极电位时,二极管导通,电流可以顺利通过;反之,当阳极电位低于阴极电位时,二极管截止,电流无法通过。

这种特性使得二极管常用于整流电路,将交流电转换为直流电。

再来看晶闸管,也被称为可控硅。

它是一种具有控制功能的半导体器件。

通过在其控制极施加一定的触发信号,可以使晶闸管导通。

一旦导通,即使触发信号消失,只要流过晶闸管的电流大于维持电流,它就会保持导通状态。

晶闸管常用于交流调压、直流调速等领域。

绝缘栅双极型晶体管(IGBT)则是一种结合了MOSFET 和双极型晶体管优点的新型电力电子器件。

它具有输入阻抗高、驱动功率小、开关速度快、通态压降小等优点,被广泛应用于变频器、逆变电源、电动汽车等领域。

电力电子器件的应用范围极其广泛。

在电力系统中,高压直流输电(HVDC)技术依靠电力电子器件实现了远距离、大容量的电能传输,提高了输电效率和稳定性。

在新能源领域,太阳能光伏发电和风力发电系统中,电力电子器件用于将不稳定的直流电或交流电转换为稳定的交流电并接入电网。

在交通运输领域,电动汽车的驱动系统离不开电力电子器件。

电力电子器件

电力电子器件

电力电子器件
电力电子器件是用于电力变换和开关领域的电子器件。

它可按下列不同方式分类:
1.按控制方式分
不可控型:整流二极管、快速整流二极管等;
半可控刑:普通晶阐管,快速晶闸管,双向晶闸管,逆导品闸管,光控晶闸管等:
全控型:双极结型晶体管(GTR),门极关断(GTO)晶闸管,电力场效应晶体管(MOSFET),绝缘栅双极型晶体管(IGBT)等。

2.按内部芯片结构分
整流二极管最简单,仅为一对PN结:
各种品体管为PNP或NPN方式;
各种晶闸管为PNPN结。

3.按器件的通断控制方式分
各种品闸管均为脉冲触发实现导通或关新(GTO),在导通或关断期间无需施加控制脉冲;各种品体管型电力电子器件均为电平型控制,控制电平存在时导通,控制电平消失时即关断。

4.按外形结构型式分
螺栓形:整流二极管(300A以下),晶闸管(500A以下);
平板形:可有凹台和凸台两种型式,可与散热器双面接触(双面冷却),用于200A以上的大电流器件;
模块封装形:将整流管、晶闸管、IGBT等分立器件按臂对、单相桥式、
三相桥式、三相半桥、三相交流开关等整流电路联结方式压制在一个模块内。

它具有体积小、重量轻、结构紧凑、连接方便的特点,且总体价格低。

标准的模块型器件的电联结方式见表3-1。

智能功率模块:将电力电子器件与其驱动电路、保护电路集中压装在一个模块内,且具有与控制系统的低电平信号接口,便于电力电子设备制造厂的整机设计、开发和制造,如三菱公司的IGBT智能功率模块;ABB公司的集成门极换向晶闸管(IGCT)模块。

电力电子器件

电力电子器件

电力电子器件电力电子器件是电力系统中的重要组成部分,它们在电能转换、调节和控制等方面发挥着关键作用。

本文将介绍电力电子器件的分类、工作原理以及在电力系统中的应用。

一、分类根据其功能和特性,电力电子器件可以分为不同类型。

常见的电力电子器件主要包括晶闸管、可控硅、晶闸二极管、IGBT、MOSFET等。

这些器件具有不同的工作原理和特性,适用于不同的电力应用。

二、工作原理1. 晶闸管:晶闸管是一种具有双向导通能力的半导体器件。

它由四个不同极性的层连接而成,通过控制极的激励信号,可以控制晶闸管的导通和截止状态,实现电流的控制和转换。

2. 可控硅:可控硅是一种双向可控的半导体开关。

它可以通过加在控制极上的电流脉冲或电压来控制其导通和截止状态,用于实现交流电的调节和控制。

3. 晶闸二极管:晶闸二极管是一种具有可控导通特性的二极管。

它与普通二极管相比,在导通状态下具有较低的压降和较高的导通电流能力,可以用于实现电流的控制和反向电压的保护。

4. IGBT:IGBT是绝缘栅双极型晶体管的简称。

它结合了晶闸管和MOSFET的优点,既能承受高电压,又具有低导通压降和高开关速度的特性,广泛应用于电力电子和工业控制领域。

5. MOSFET:MOSFET是一种常用的场效应管。

它具有高输入阻抗、低开关损耗和快速响应速度等优点,适用于低功率应用和高频切换。

三、应用电力电子器件在电力系统中的应用广泛。

以下是几个常见的应用领域:1. 逆变器:电力电子器件可以将直流电转换为交流电,实现电能的逆变。

这在再生能源发电系统中尤为重要,可以将太阳能电池板或风力发电机输出的直流电转换为交流电,供电给家庭或工业用电。

2. 变频器:电力电子器件的调节特性使其非常适合用于变频器。

变频器可以根据需要调整电机的转速和运行模式,实现对电机的精确控制,广泛应用于工业和交通领域。

3. 电能质量改善器:电力电子器件可以修复和改善电力系统中的电能质量问题,如电压波动、谐波污染等。

电力电子元器件深入探讨电力电子行业中的关键元器件

电力电子元器件深入探讨电力电子行业中的关键元器件

电力电子元器件深入探讨电力电子行业中的关键元器件电力电子是现代电力系统中不可或缺的技术领域之一,它涵盖了各种用于调节和转换电能的技术和设备。

而在电力电子系统中,关键元器件的性能直接关系到整个系统的安全性、可靠性和效能。

本文将深入探讨电力电子行业中的几个关键元器件:晶闸管、功率二极管、IGBT、MOSFET及电容器。

一、晶闸管晶闸管是电力电子行业中最重要和最常用的器件之一。

它是一种具有双向导通能力的开关元件,可以控制大功率电流。

晶闸管的主要特点是可逆导通性、开关速度快、耐电压高等。

它在交流电控制、变频调速、逆变等领域具有广泛应用。

二、功率二极管功率二极管是另一种常用的关键元器件,它具有单向导电特性。

功率二极管可以用于整流电路、瞬态保护、逆变器等各种电力电子系统中。

功率二极管的主要特点是反向耐压高、开关速度快、漏电流小等。

三、IGBTIGBT(Insulated Gate Bipolar Transistor)是一种大功率半导体开关器件,结合了MOSFET和双极型晶体管的特性。

IGBT可以实现大电流和高开关速度,广泛应用于电力电子系统中的逆变器、变频器、直流传动等领域。

它具有可控性强、工作温度范围广的特点。

四、MOSFETMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)是一种常见的功率开关和调节器件。

MOSFET可以实现大功率开关和调节,广泛应用于变频器、逆变器、电压调节等电力电子系统中。

它具有开关速度快、体积小、无电流触发等特点。

五、电容器电容器是电力电子系统中常用的能量存储元器件。

它主要用于滤波、稳压、谐振等功能。

电容器的主要特点是容量大、损耗小、响应速度快等。

在电力电子系统中,电容器的选择和使用直接影响到系统的稳定性和性能。

总结:电力电子元器件在电力电子行业中扮演着重要的角色。

本文深入探讨了几个关键元器件的性能特点和应用领域。

晶闸管、功率二极管、IGBT、MOSFET及电容器在电力电子系统中发挥着重要的作用,它们的性能和可靠性直接关系到整个系统的运行效能。

电力电子知识点总结

电力电子知识点总结

电力电子知识点总结一、电力电子的基本原理电力电子是运用半导体器件实现电能的变换、控制和调节的技术领域。

在电力电子领域中最常用的器件是晶闸管、可控硅、晶闸管二极管、IGBT等。

它们通过对电压和电流的控制,实现将电能从一种形式转换为另一种形式。

电力电子的基本原理可以分为电力电子器件、电力电子电路和电力电子系统三个方面。

1. 电力电子器件电力电子器件是实现电力电子技术的基础。

常见的电力电子器件有晶闸管、可控硅、三端闭管、IGBT等,在电力电子中起着至关重要的作用。

晶闸管是一种四层结构的半导体器件,能够控制电流的导通和截止,实现电能的控制和调节。

可控硅是一种三端器件,具有双向导通特性,广泛应用于交流电路中。

IGBT集结了MOS管和双极型晶体管的优点,具有高开关速度、低导通压降等特点,是目前应用范围最广泛的功率器件之一。

2. 电力电子电路电力电子电路是利用电力电子器件构成的电路,实现对电能的控制和调节。

常见的电力电子电路包括整流电路、逆变电路、斩波电路等。

整流电路能够将交流电转换为直流电,逆变电路能够将直流电转换为交流电,斩波电路能够实现对电压和频率的调节。

这些电路在各种电力电子设备中得到了广泛应用,如变频调速器、逆变焊接电源等。

3. 电力电子系统电力电子系统是由多个电力电子电路组成的系统,实现对电能的复杂控制和转换。

常见的电力电子系统包括交流电调压系统、柔性直流输电系统、电能质量调节系统等。

这些系统在能源转换、传输和利用方面发挥着关键作用,是现代电力系统中不可或缺的一部分。

二、电力电子的常见器件和应用电力电子领域中常见的器件有晶闸管、可控硅、IGBT等。

而在现代工业中,电力电子技术得到了广泛的应用,如变频调速器、逆变焊接电源、电动汽车充电设备等。

1. 变频调速器变频调速器是一种能够实现电机转速调节的设备,它利用电力电子技术对电机供电进行控制,实现对电机转速的调节。

通过变频调速器,可以实现电机的恒流恒功率调节,使得电动汽车、电梯、风力发电机等设备具有更加灵活和高效的性能。

电子行业电力电子器件介绍

电子行业电力电子器件介绍

电子行业电力电子器件介绍1. 概述电力电子器件是电子行业中一类重要的器件,在能源转换、控制和调节等方面发挥着关键作用。

随着能源需求的增长和环境保护的要求,对电力电子器件的要求也越来越高。

2. 电力电子器件的分类电力电子器件根据其功能和特点可以分为多个类别,以下是一些常见的电力电子器件分类:2.1 可控硅(SCR)可控硅是一种常见的电力电子器件,在交流电控制方面具有重要作用。

可控硅具有整流和可控开关的功能,因此广泛应用于电能转换、变频调速、功率因数校正等领域。

2.2 可控晶闸管(GTO)可控晶闸管是一种高压高功率的半导体开关器件,广泛应用于高压直流输电和直流变频调速等场合。

可控晶闸管具有较好的控制能力和可靠性,被认为是电力电子领域的关键器件之一。

2.3 电力二极管电力二极管是一种用于整流和逆变的无控制半导体器件。

具有较大的导通电流和较高的工作温度,广泛用于交流电转换、电源等方面。

常见的电力二极管有快恢复二极管、整流二极管等。

2.4 电力MOSFET电力MOSFET是电力电子器件中的一种关键元件,广泛应用于交流-直流转换、逆变和变频调速等领域。

它具有快速开关速度、低开关损耗和高温工作能力等优点。

电力IGBT是一种高压、高功率的开关器件,结合了MOSFET的高速性和可控晶闸管的大电流承受能力。

电力IGBT被广泛应用于交流电变频调速、直流电逆变等电力电子系统中。

3. 电力电子器件的应用电力电子器件在电力变换、电能控制和调节等方面具有广泛的应用。

电力电子器件可以将一种电能形式转换为另一种电能形式,例如将交流电转换为直流电、将直流电转换为交流电。

这种电力转换广泛应用于工业生产、交通运输等领域。

3.2 电能控制和调节电力电子器件可以控制和调节电能的大小、频率和波形,实现对电力系统的稳定运行和优化控制。

例如,调整电源的输出电压、调整电机的转速等。

3.3 新能源应用随着新能源的快速发展,电力电子器件在太阳能、风能等新能源设备中的应用越来越广泛。

第二章电力电子器件

第二章电力电子器件
或者关断的控制,这类电力电子器件被称为电压控制型电力电子器件或者电 压驱动型电力电子器件。
第4页/共82页
2.1 电力电子器件概述
电力电子器件的使用特点 从使用角度出发,主要可从以下五个方面考察电力电子器件的性能特点。 (1)导通压降。电力电子器件工作在饱和导通状态时仍产生一定的管耗,管耗 与器件导通压降成正比。 (2)运行频率。受到开关损耗和系统控制分辨率的限制,器件的开关时间越短, 器件可运行的频率越高。 (3)器件容量。器件容量包括输出功率、电压及电流等级、功率损耗等参数。 (4)耐冲击能力。这主要是指器件短时间内承受过电流的能力。半控型器件的 耐冲击能力远高于全控型器件。 (5)可靠性。这主要是指器件防止误导通的能力。
普通二极管(Conventional Diode)又称整流二极管(Rectifier Diode), 多用于开关频率不高(1kHz以下)的整流电路中 2. 快速恢复二极管
恢复过程很短,特别是反向恢复过程很短(一般在5ms以下)的二极管被称 为快速恢复二极管(Fast Recovery Diode,FRD),简称快速二极管。 3. 肖特基势垒二极管
2.3 半控型器件—晶闸管及其派生器件
2. 晶闸管的工作原理 按图2.12所示电路 (1) 当晶闸管承受反向阳极电压时,不论门极承受何种电压,晶闸管都处
于关断状态。 (2) 当晶闸管承受正向阳极电压时,若门极不施加电压,晶闸管也处于关
断状态。即晶闸管具有正向阻断能力。 (3) 要使晶闸管由阻断变为导通,必须在晶闸管承受正向阳极电压时,同
第11页/共82页
2.2 电力二极管
电力二极管的工作原理和基本特性
电力二极管的基本结构都是以半导体PN结为基础。电力二极管实际上是 由一个面积较大的PN结和两端引线以及封装组成的。图2.7所示为电力二极 管的外形、结构和电气图形符号。从外形上看,电力二极管主要有螺栓型和 平板型两种封装。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子器件电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。

主电路:在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。

电力电子器件的特征◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。

◆为了减小本身的损耗,提高效率,一般都工作在开关状态。

◆由信息电子电路来控制,而且需要驱动电路。

◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。

电力电子器件的功率损耗断态损耗通态损耗:是电力电子器件功率损耗的主要成因。

开关损耗:当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。

分为开通损耗和关断损耗。

电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。

电力电子器件的分类按照能够被控制电路信号所控制的程度◆半控型器件:指晶闸管(Thyristor)、快速晶闸管、逆导晶闸管、光控晶闸管、双向晶闸管。

◆全控型器件:IGBT、GTO、GTR、MOSFET。

◆不可控器件:电力二极管(Power Diode)、整流二极管。

按照驱动信号的性质◆电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。

Thyrister,GTR,GTO。

◆电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。

电力MOSFET,IGBT,SIT。

按照驱动信号的波形(电力二极管除外)◆脉冲触发型:通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。

晶闸管,SCR,GTO。

◆电平控制型:必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在通断状态。

GTR,MOSFET,IGBT。

按照载流子参与导电的情况◆单极型器件:由一种载流子参与导电。

MOSFET、SBD(肖特基势垒二极管)、SIT。

◆双极型器件:由电子和空穴两种载流子参与导电。

电力二极管,PN结整流管,SCR,GTR,GTO。

◆复合型器件:由单极型器件和双极型器件集成混合而成,也称混合型器件。

IGBT,MCT。

GTO:门极可关断晶闸管。

SITH(SIT):静电感应晶体管。

GTR:电力晶体管。

MCT:MOS控制晶体管。

ITBT:绝缘栅双极晶体管。

MOSFET:电力场效应晶体管。

电力二极管二极管的基本原理——PN结的单向导电性◆当PN结外加正向电压(正向偏置)时,在外电路上则形成自P区流入而从N区流出的电流,称为正向电流IF,这就是PN结的正向导通状态。

◆当PN结外加反向电压时(反向偏置)时,反向偏置的PN结表现为高阻态,几乎没有电流流过,被称为反向截止状态。

◆PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN结反向偏置为截止的工作状态,这就叫反向击穿。

按照机理不同有雪崩击穿和齐纳击穿两种形式,反向击穿发生时,采取了措施将反向电流限制在一定范围内,PN结仍可恢复原来的状态,否则PN结因过热而烧毁,这就是热击穿。

齐纳击穿和雪崩击穿区别:齐纳击穿可恢复,齐纳二极管(稳压二极管)击穿后可以自愈,是一种正常的工作状态,齐纳二极管就工作在齐纳击穿区。

雪崩击穿不可恢复,是一种非正常的工作状态,一旦二极管工作在雪崩击穿区,该二极管即已损坏报废,表现为短路,失去半导体特性。

当齐纳二极管的反向击穿电流超过其允许的最大击穿电流数倍时,齐纳二极管也会发生雪崩击穿,现象是二极管短路报废。

PN结的电容效应称为结电容CJ,又称为微分电容。

按其产生机制和作用的差别分为势垒电容CB和扩散电容CD。

势垒电容只在外加电压变化时才起作用,外加电压频率越高,势垒电容作用越明显。

在正向偏置时,当正向电压较低时,势垒电容为主。

扩散电容仅在正向偏置时起作用。

正向电压较高时,扩散电容为结电容主要成分。

结电容影响PN结的工作频率,特别是在高速开关的状态下,可能使其单向导电性变差,甚至不能工作。

电力二极管的主要参数正向平均电流IF(AV):指电力二极管长期运行时,在指定的管壳温度(简称壳温,用TC表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值。

IF(AV)是按照电流的发热效应来定义的,使用时应按有效值相等的原则来选取电流定额,并应留有一定裕量。

正向压降UF:指电力二极管在指定温度下,流过某一指定的稳态正向电流时对应的正向压降。

反向重复峰值电压URRM:指对电力二极管所能重复施加的反向最高峰值电压。

使用时,应当留有两倍的裕量。

最高工作结温TJM:结温是指管芯PN结的平均温度,用TJ表示。

最高工作结温是指在PN结不致损坏的前提下所能承受的最高平均温度。

TJM通常在125~175C范围之内。

反向恢复时间trr浪涌电流IFSM:指电力二极管所能承受最大的连续一个或几个工频周期的过电流。

电力二极管的主要类型普通二极管(General Purpose Diode):又称整流二极管(Rectifier Diode),多用于开关频率不高(1kHz以下)的整流电路中。

其反向恢复时间较长,一般在5s以上。

其正向电流定额和反向电压定额可以达到很高。

快恢复二极管(Fast Recovery Diode——FRD):恢复过程很短,特别是反向恢复过程很短(一般在5s以下)。

快恢复外延二极管(Fast Recovery Epitaxial Diodes——FRED),采用外延型P-i-N结构,其反向恢复时间更短(可低于50ns),正向压降也很低(0.9V左右)。

从性能上可分为快速恢复和超快速恢复两个等级。

前者反向恢复时间为数百纳秒或更长,后者则在100ns以下,甚至达到20~30ns。

肖特基二极管(Schottky Barrier Diode——SBD):属于多子器件。

优点在于:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此,其开关损耗和正向导通损耗都比快速二极管还要小,效率高。

弱点在于:当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此多用于200V以下的低压场合;反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。

半控型器件——晶闸管静态特性正常工作时的特性:当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。

当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。

晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。

若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。

主要参数电压定额断态重复峰值电压UDRM:是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压,国标规定断态重复峰值电压UDRM为断态不重复峰值电压(即断态最大瞬时电压)UDSM的90%。

断态不重复峰值电压应低于正向转折电压Ubo。

反向重复峰值电压URRM:是在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。

规定反向重复峰值电压URRM为反向不重复峰值电压(即反向最大瞬态电压)URSM的90%。

反向不重复峰值电压应低于反向击穿电压。

通态(峰值)电压UT:晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。

通常取晶闸管的UDRM和URRM中较小的标值作为该器件的额定电压。

选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压2~3倍。

电流定额通态平均电流IT(AV:国标规定通态平均电流为晶闸管在环境温度为40C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。

按照正向电流造成的器件本身的通态损耗的发热效应来定义的。

一般取其通态平均电流为按发热效应相等(即有效值相等)的原则所得计算结果的1.5~2倍。

维持电流IH:维持电流是指使晶闸管维持导通所必需的最小电流,一般为几十到几百毫安。

结温越高,则IH越小。

擎住电流IL:擎住电流是晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。

约为IH的2~4倍浪涌电流ITSM:指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流。

动态参数开通时间tgt和关断时间tq断态电压临界上升率du/dt:在额定结温和门极开路的情况下,不导致晶闸管从断态到通态转换的外加电压最大上升率。

电压上升率过大,使充电电流足够大,就会使晶闸管误导通。

通态电流临界上升率di/dt:在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。

如果电流上升太快,可能造成局部过热而使晶闸管损坏。

晶闸管的派生器件快速晶闸管(Fast Switching Thyristor——FST):有快速晶闸管和高频晶闸管。

快速晶闸管的开关时间以及du/dt和di/dt的耐量都有了明显改善。

从关断时间来看,普通晶闸管一般为数百微秒,快速晶闸管为数十微秒,而高频晶闸管则为10s左右。

高频晶闸管的不足在于其电压和电流定额都不易做高。

由于工作频率较高,选择快速晶闸管和高频晶闸管的通态平均电流时,不能忽略其开关损耗的发热效应。

双向晶闸管(Triode AC Switch——TRIAC或Bidirectional triode thyristor):可以认为是一对反并联的普通晶闸管的集成。

门极使器件在主电极的正反两方向均可触发导通,在第I和第III象限有对称的伏安特性。

双向晶闸管通常用在交流电路中,因此不用平均值而用有效值来表示其额定电流值。

逆导晶闸管(Reverse Conducting Thyristor——RCT):是将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件,不具有承受反向电压的能力,一旦承受反向电压即开通。

具有正向压降小、关断时间短、高温特性好、额定结温高等优点,可用于不需要阻断反向电压的电路中。

光控晶闸管(Light Triggered Thyristor——LTT):是利用一定波长的光照信号触发导通的晶闸管。

由于采用光触发保证了主电路与控制电路之间的绝缘,而且可以避免电磁干扰的影响,因此光控晶闸管目前在高压大功率的场合。

典型全控型器件门极可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管。

优缺点电力二极管:结构和原理简单,工作可靠;晶闸管:承受电压和电流容量在所有器件中最高;IGBT:开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低,输入阻抗高,为电压驱动,驱动功率小;缺点:开关速度低于电力MOSFET,电压,电流容量不及GTO;GTR:耐压高,电流大,开关特性好,通流能力强,饱和压降低;缺点:开关速度低,为电流驱动,所需驱动功率大,驱动电路复杂,存在二次击穿问题;GTO:电压、电流容量大,适用于大功率场合,具有电导调制效应,其通流能力很强;缺点:电流关断增益很小,关断时门极负脉冲电流大,开关速度低,驱动功率大,驱动电路复杂,开关频率低;MOSFET:开关速度快,输入阻抗高,热稳定性好,所需驱动功率小且驱动电路简单,工作频率高,不存在二次击穿问题;缺点:电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。

相关文档
最新文档