高一期末复习专题1:任意角的三角函数及诱导公式

合集下载

高一数学诱导公式汇总

高一数学诱导公式汇总

高一数学诱导公式汇总学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。

下面是店铺为大家整理的高一数学诱导公式大全,希望对大家有所帮助!高一数学诱导公式总结诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα诱导公式公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα诱导公式公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα诱导公式公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα诱导公式公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα诱导公式公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)。

任意角的三角函数⑵

任意角的三角函数⑵

1.任意角的三角函数的(代数表示)-----定义 设 为任意角, p ( x , y )是 终边与单位圆的交点。
y
P (x, y) 正弦: sin
1 余割: csc y

o
x
1 余弦: cos x 正割: sec x 正切: tan y 余切: cot x
y o x
α在第二象限如何?其它象限如何?
五.任意角的三角函数的 (几何表示)----三角函数线
y T P(x,y)

sin y MP
o M A(1,0) x
cos x OM
MP AT tan AT OM OA
1.设的终边与单位圆交于点P(x,y),
2.过点P作x轴的垂线,垂足为M
0
k Z
转化为求00 到3600 角的三角函数值。 可把求任意角的三角函数值,
练习:1.求值 9 1) cos 4

2) sin1470

19 4) sin( 1050 ) 5) tan 3
11 3) tan( ) 6 31 6) tan( ) 4
五.任意角的三角函数的 (几何表示)----三角函数线
y x y tan cos sin x r r
2.若角
3.角

的终边上一点P的坐标为 4a, 3a a 0
2sin cos 的值;
3 8 的终边过点P a, cos 则 a ______ 5

4.角的终边在直线3 x 4 y 0上, 求2sin cos
y T P(x,y)

sin y MP
o M A(1,0) x

任意角的三角函数及基本关系与诱导公式

任意角的三角函数及基本关系与诱导公式
览 全 局 · 网 络 构 建 备 高 考 · 策 略 指 导 固 基 础 · 自 主 落 实
提 知 能 · 典 例 探 究 明 考 情 · 高 考 体 验 课 后 限 时 自 测
第三章
任意角的三角函数
及基本关系与诱导公式
1.角的有关概念 (1)从运动的角度看,角可分为正角、负角 和零角. (2)从终边位置来看,可分为象限角与轴线角. (3)若 β 与 α 是终边相同的角,则 β 用 α 表示 为 β=2kπ+α(k∈Z) .
2 2
[ 答案]
2 5 - 5
【典例 4】
π 0<θ< ,则 4
4 (2014· 镇海中学模拟)已知 sin θ+cos θ= 3 )
sin θ-cos θ 的值为(
2 A. 3 1 C.3
2 B.- 3 1 D.-3
[ 解析]
4 ∵sin θ+cos θ= , 3
2
16 ∴(sin θ+cos θ) =1+sin 2θ= , 9 7 ∴sin 2θ= . 9 π 又 0<θ< ,∴sin θ<cos θ, 4 ∴sin θ-cos θ=- sin θ-cos θ2 2 =- 1-sin 2θ=- . 3 [ 答案] B

4 αα=2kπ+ π, 3
, 故 所 求 角 的 集 合 为
4 α=2kπ+3π,
π α α=2kπ+ , 3 π αα=kπ+ , 3
k∈Z
∪ α
k ∈ Z =
k∈Z.
3 (2)∵2kπ+π<α<2kπ+ π(k∈Z), 2 π α 3 ∴kπ+ < <kπ+ π(k∈Z). 2 2 4 π α 3 α 当 k=2n(n∈Z)时,2nπ+ < <2nπ+ π, 是第二象限 2 2 4 2 角, 3π α 7 α 当 k=2n+1(n∈Z)时,2nπ+ < <2nπ+ π, 是第四 2 2 4 2 象限角, α 综上知,当 α 是第三象限角时, 是第二或第四象限角. 2

高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学 知识点 三角函数  诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。

【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。

属于基础题型。

================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。

【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。

================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。

高一数学三角函数的诱导公式

高一数学三角函数的诱导公式
三角函数的诱导公式
能否再把 0 ~360间的角的三角函数求值,化为 我们熟悉的 0 ~ 90 间的角的三角函数求值问题呢?
如果能的话,那么任意角的三角函数求值,都可 以化归为锐角三角函数求值,并通过查表方法而得到 最终解决,本课就来讨论这一问题.
设 0 90,对于任意一个0 到360 的角 , 以下四种情形中有且仅有一种成立.
例题讲解
例1
求下列三角函数值:
(1) sin 225 ;

cos 1290 (2)



11 (3)cos 240 12 ;(4)sin . 10



例2
cos 180 sin 360 化简: . sin 180 cos 180
的三角函数值,等于 的同名函数值, 前面加上一个把 看成锐角时原函数值的符号, 简化成“函数名不变,符号看象限”的口诀.
利用诱导公式把任意角的三角函数转化为锐角三角 函数,一般按下面步骤进行: 任意负角的 三角函数
用公式三或一
任意正角的 三角函数
用公式一
0 到 360 的角
o
o
用公式 二或四
的三角函数
锐角三 角函数
例4
填写下表

sin


3
2 3
4 3
3 2
3 2
cos
1 2
1 2
3 2
5 3
3 2
7 3
3 2
1 2
1 2
1 2
练习反馈
1 (1)已知 cos ,求 tan 9 的值. 2
3 5 (2)已知 cos ,求 cos 的值. 6 3 6

高一数学:三角函数的诱导公式经典课件

高一数学:三角函数的诱导公式经典课件

π +α、- α、 π-α的诱导
问题提出
1 5730 p 2
t
1.任意角α 的正弦、余弦、正切是怎样 定义的?
sin y
cos x
y α 的终边
P(x,y)
O
y tan ( x 0) x
x
2. 2kπ +α (k∈Z)与α 的三角函数 之间的关系是什么?
公式三:
思考:利用π -α =π +(-α ),结合公式二、 三,你能得到什么结论?
sin( ) sin cos( ) cos tan( ) tan
sin( ) sin cos( ) cos tan( ) tan

2

cos( ) sin 2

的三角函数值,等于α 的同 2 名函数值,再放上将α 当作锐角时原函数
值的符号.
思考5:根据相关诱导公式推导,
3p sin( - a ), cos 2 3p cos( - a ), sin 2 3p sin( + a ), cos 2
sin(π +α )=-y cos(π +α )=-x
y tan(π +α )= x
o
Q(-x,-y) π+α 的终边
x
思考:对比sinα ,cosα ,tanα 的值, π +α 的三角函数与α 的三角函数有什 么关系?
sin( ) sin
公式二: cos( ) cos
tan( ) tan
知识探究(二):-α ,π -α 的诱导公式:
思考:对于任意给定的一个角α ,-α 的终边与α 的终边有什么关系?

高中三角函数及解三角形知识点总结(高考复习)

高中三角函数及解三角形知识点总结(高考复习)
3、三角形面积公式:
= 2 cos 2 α − 1 = 1 − 2 sin 2 α .
变形如下:
1 + cos 2α = 2 cos 2 α 升幂公式: 2 1 − cos 2α = 2sin α cos 2 α = 1 (1 + cos 2α ) 2 降幂公式: sin 2 α = 1 (1 − cos 2α ) 2
y = sin x 在 x ∈ [0, 2π ] 上的五个关键点为:
π 3π (0, 0) ( , , 1 ) ( , π, 0) ( , ,) -1( , 2π , 0) . 2 2
-1-
§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:
y
2、记住余切函数的图象:
y
y=tanx
y=cotx
y = A sin ω x
横坐标变为原来的 | 平 移
ϕ ω
2− 3
§ 3.1.2 、两角和与差的正弦、余弦、正切公式
1 ω
|倍
个 单 位
1、 sin (α + β ) = sin α cos β + cos α sin β 2、 sin (α − β ) = sin α cos β − cos α sin β
r = x2 + y 2 ) sin α = x y x y , cos α = , tan α = , cot α = y r r x
π sin + α = cos α , 2 π cos + α = − sin α . 2
§1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:
ymax + ymin . 2
ymax − ymin , 2

1三角函数—基础及诱导公式

1三角函数—基础及诱导公式

三角函数及诱导公式重要知识1、任意角的三角函数(在平面直角坐标系中)(1)x y rx ry===αααtan cos sin (2)终边相同的角(用于大化小、负化正)2、同角三角函数的基本关系式:①平方关系1cos sin 22=+αα; ②商式关系αααtan cos sin =; ③倒数关系1cot tan =αα;3、诱导公式(可用十个字概括为“奇变偶不变,符号看象限”)典型例题题型一、诱导公式基础运算1、(2008•陕西)sin330°等于()A.B. C. D.2、(2013•梅州二模)sin660°的值为()A. B. C.D.﹣•广东)已知•南昌模拟)已知,则.•新余二模)若等于(•浙江模拟)已知,则8、(1)计算=____________.(2)计算.9、的值等于().A.B.C.D.题型二、三角函数的定义10、角α的终边终过点P(-3,4),那么sin α与cos α的值是 .11、已知角α的终边上一点P 与点A(-3,2)关于y 轴对称,角β的终边上一点Q 与点A 关于原点对称,求2sin α+3sin β的值.12、已知角α的终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4,且cos α<0,求sin α,tan α.13、如果角α的顶点在原点,始边在x 轴的正半轴重合,终边在函数y =-5x(x <0)的图象上,那么cos α的值为( )A.±2626B. 2626C.- 2626D.- 51 题型三、三角函数两大基本关系14、已知tan α=2,求下列各式的值:(1)sin α+2cox α(2)ααααsin cos 3sin 5cos +-(3)1sin cos sin 5cos 3cos sin sin 222++--ααααααα (4)2sin 2α-sin αcos α+cos 2α15、已知sin α+cos α=51,α是第二象限角,那么tan α= .16、(2012•鹰潭模拟)设tan α=,则sin α﹣cos α的值( ) A . B . C . D .高考真题,,则C,.﹣、已知,则,则﹣,且.±•潍坊模拟)已知,则C(﹣,).•辽宁)已知。

高一数学三角函数公式推导及三角函数公式

高一数学三角函数公式推导及三角函数公式

由基本性质4可得
log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}
再由换底公式
log(a^n)(b^m)=m/n*[log(a)(b)]
--------------------------------------------(性质及推导完)
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
所以log(a)(N)=log(b)(N)/log(b)(a)
性质二:(不知道什么名字)
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下
由换底公式[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(a^n)/ln(b^n)
余弦等于角A的邻边比斜边
正切等于对边比邻边,
三角函数恒等变形公式
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ

高一数学必修四知识点:三角函数诱导公式

高一数学必修四知识点:三角函数诱导公式

【导语】⼈⽣要敢于理解挑战,经受得起挑战的⼈才能够领悟⼈⽣⾮凡的真谛,才能够实现⾃我⽆限的超越,才能够创造魅⼒永恒的价值。

以下是©⽆忧考⽹⾼⼀频道为你整理的《⾼⼀数学必修四知识点:三⾓函数诱导公式》,希望你不负时光,努⼒向前,加油! 【公式⼀】 设α为任意⾓,终边相同的⾓的同⼀三⾓函数的值相等: sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 【公式⼆】 设α为任意⾓,π+α的三⾓函数值与α的三⾓函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 【公式三】 任意⾓α与-α的三⾓函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 【公式四】 利⽤公式⼆和公式三可以得到π-α与α的三⾓函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 【公式五】 利⽤公式⼀和公式三可以得到2π-α与α的三⾓函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 【公式六】 π/2±α及3π/2±α与α的三⾓函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 【⾼⼀数学函数复习资料】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。

任意角的三角函数、三角函数诱导公式----复习课

任意角的三角函数、三角函数诱导公式----复习课

复习课任意角的三角函数、三角函数诱导公式一、任意角的三角函数:【基础知识】1、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是ααP (),x y ,则,,.()0r r =>sin y r α=cos x r α=()tan 0y x x α=≠2、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.3、三角函数线:,,.sin α=MP cos α=OM tan α=AT 4、同角三角函数的基本关系: ;()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=- .()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭【典型例题】1.三角函数的定义:例1、已知sinαtanα≥0,则α的取值集合为 .例2、角α的终边上有一点P (m ,5),且,则sinα+cosα=______.)0(,13cos ≠=m m α例3、已知角θ的终边在直线y = x 上,则sin θ= ;= .33θtan 例4、设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 .例5、求角的正弦、余弦和正切值.43π例6、若角的终边落在直线上,求.αy x 815=ααtan sec log 2-例7、(1)已知角的终边经过点P(4,-3),求2sin +cos 的值;ααα(2)已知角的终边经过点P(4a,-3a)(a≠0),求2sin +cos 的值;ααα(3)已知角终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零),求2sin +cos αα的值.α2、三角函数线例1、sin (-1770°)·cos1500°+cos (-690°)·sin780°+tan405°= .例2、化简:= .ππππ37sin 3149sec 21613tan 3325cos 342222222m n n m --+例3、若-≤θ≤,利用三角函数线,可得sin θ的取值范围是 .2π3π6例4、若∣cosα∣<∣sinα∣,则 .∈α例5、试作出角α= 正弦线、余弦线、正切线.7π6例6、求下列三角函数值:(1)sin (-1080°) (2)tan (3)cos780°13π3例7、利用三角函数线,写出满足下列条件的角x 的集合.⑴ sin x ≥;⑵ cos x ≤ ;⑶ tan x ≥-1 ;(4)且.221221sin ->x 21cos >x 3、三角函数的基本关系一、选择题1、已知A 是三角形的一个内角,sin A +cos A = ,则这个三角形是 ( )23 A .锐角三角形 B .钝角三角形 C .不等腰直角三角形 D .等腰直角三角形2、若是方程的两根,则的值为θθcos ,sin 0242=++m mx x m A .B .C .D .51+51-51±51--3、已知sinαcosα = ,则cosα-sinα的值等于 ( )18 A .± B .± C . D .-342323234、已知是第三象限角,且,则 ( )θ95cos sin 44=+θθ=θθcos sin A . B . C . D . 3232-3131-5、如果角满足,那么的值是 ( )θ2cos sin =+θθθθcot tan + A . B . C . D .1-2-127、已知,则的值是21cos sin 1-=+x x 1sin cos -x x A . B . C .2 D .-22121-二、填空题1、若,则 ;.15tan =α=αcos =αsin 2、若,则的值为________________.3tan =ααααα3333cos 2sin cos 2sin -+3、已知,则的值为.2cos sin cos sin =-+ααααααcos sin 4、已知,则m=_________; .524cos ,53sin +-=+-=m m m m θθ=αtan三、解答题1、已知,求的值.51sin =αααtan ,cos 2、已知,求的值.22cos sin =+αααα22cos 1sin 1+3、已知,且.51cos sin =+ββπβ<<0(1)求、的值;(2)求、、的值.ββcos sin ββcos sin -βsin βcos βtan *4、已知:,,求,的值.m =αcot ()0≠m αsin αcos 4、化简与证明、诱导公式例1、化简:tanα(cosα-sinα)+.ααααcos 1)tan (sin sin ++例2、求证:.1tan 1tan cos sin cos sin 2122-+=-+αααααα例3、求证:.ααααααααcot tan cos sin 2cot cos tan sin 22+=++例4、已知cos B = cos θsin A , cos C = sin θsin A ,求证:sin 2A +sin 2B +sin 2C = 2.二、三角函数诱导公式:【基础知识】1、三角函数诱导公式()的本质是:奇变偶不变(对而言,指取奇数或偶数),符号看象限2k πα+k k (看原函数,同时可把看成是锐角).α2、三角函数的诱导公式:,,.()()1sin 2sin k παα+=()cos 2cos k παα+=()()tan 2tan k k παα+=∈Z ,,.()()2sin sin παα+=-()cos cos παα+=-()tan tan παα+=,,.()()3sin sin αα-=-()cos cos αα-=()tan tan αα-=-,,.()()4sin sin παα-=()cos cos παα-=-()tan tan παα-=-口诀:函数名称不变,符号看象限.,.()5sin cos 2παα⎛⎫-= ⎪⎝⎭cos sin 2παα⎛⎫-= ⎪⎝⎭,.()6sin cos 2παα⎛⎫+= ⎪⎝⎭cos sin 2παα⎛⎫+=- ⎪⎝⎭口诀:正弦与余弦互换,符号看象限.3、诱导公式的应用是求任意角的三角函数值,其一般步骤:(1)负角变正角,再写成2k +,πα;(2)转化为锐角三角函数。

1.2.1 任意角的三角函数重难点题型(举一反三)(解析版)

1.2.1 任意角的三角函数重难点题型(举一反三)(解析版)

1.2.1任意角的三角函数重难点题型【举一反三系列】【知识点1 三角函数的定义】1.任意角的三角函数定义2.三角函数的定义域:【知识点2 三角函数值的符号】第一象限角的各三角函数值都为正;第二象限角的正弦值为正,其余均为负;第三象限角的正切值为正,其余均为负;第四象限角的余弦值为正,其余均为负.注:一全正,二正弦,三正切,四余弦.【知识点3 诱导公式一】由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:【知识点4 单位圆的三角函数线定义】如图(1)PM表示α角的正弦值,叫做正弦线.OM表示α角的余弦值,叫做余弦线.如图(2)AT表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.【考点1 三角函数的定义】【分析】根据三角函数的定义,列方程求出m的值.【答案】解:角α的终边上一点(1,)P m,所以0m>,故选:B.【点睛】本题考查了三角函数的定义与应用问题,是基础题.A .4B .4±C .3D .3±【分析】由题意利用任意角的三角函数的定义,求得m 的值.故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.)【分析】由题意利用任意角的三角函数的定义,求得tan α的值.【答案】解:角故选:C .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.【变式1-3】(2019春•牡丹江期末)角α的终边上一点(P a ,2)(0)a a ≠,则2sin cos (αα-= )【分析】由题意利用任意角的三角函数的定义,分类讨论求得结果. 【答案】解:α的终边上一点(P a ,2)(0)a a ≠, 555a a =,22555a a =,555a a=-,2555a a=-故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题. 【考点2 利用象限角判断三角函数的符号】【例2】(2019春•湖北期中)下列命题成立的是( ) A .若θ是第二象限角,则cos tan 0θθ< B .若θ是第三象限角,则cos tan 0θθ> C .若θ是第四象限角,则sin tan 0θθ< D .若θ是第三象限角,则sin cos 0θθ>【分析】根据角所在的象限判断三角函数值的符号进行判断即可.【答案】解:若θ是第二象限角,则cos 0θ<,tan 0θ<,则cos tan 0θθ>,故A 错误, 若θ是第三象限角,则cos 0θ<,tan 0θ>,则cos tan 0θθ<,故B 错误, 若θ是第四象限角,则sin 0θ<,tan 0θ<,则sin tan 0θθ>,故C 错误, 若θ是第三象限角,则sin 0θ<,cos 0θ<,则sin cos 0θθ>,故D 正确, 故选:D .【点睛】本题主要考查三角函数值符号的判断,结合角的象限与三角函数值符号的关系是解决本题的关键. 【变式2-1】(2019春•珠海期末)已知点(sin ,tan )M θθ在第三象限,则角θ在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】由题意可得sin 0θ<且tan 0θ<,分别求得θ的范围,取交集得答案. 【答案】解:由题意,00sin tan θθ<⎧⎨<⎩①②,由①知,θ为第三、第四或y 轴负半轴上的角; 由②知,θ为第二或第四象限角. 则角θ在第四象限. 故选:D .【点睛】本题考查三角函数的象限符号,是基础题.【变式2-2】(2019春•玉山县校级月考)若sin cos 0θθ<,则θ在( ) A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限【分析】判断三角函数的符号,然后判断角所在象限即可.【答案】解:sin cos 0θθ<,可知sin θ与cos θ异号,说明θ在第或第四象限. 故选:D .【点睛】本题考查三角函数的符号的判断,角所在象限,是基本知识的考查. 【变式2-3】(2018秋•安庆期末)式子sin1cos2tan4的符号为( )A.正B.负C.零D.不能确定【分析】由1,2,4分别表示第一、二、三象限的角,由此可得答案.【答案】解:1,2,4分别表示第一、二、三象限的角,<,tan40>.∴>,cos20sin10故选:B.【点睛】本题考查三角函数值的符号,是基础题.【考点3 利用诱导公式一判断三角函数的符号】【例3】(2019秋•武邑县校级期中)下列三角函数值的符号判断正确的是()【分析】根据角所在的象限、诱导公式、三角函数值的符号逐项判断即可.【答案】解:A、因为156︒在第二象限,所以sin1560︒>,故A错误;︒=︒+︒=︒,且196︒在第三象限,D、因为tan556tan(360196)tan196所以tan5560︒>,故D错误;故选:C.【点睛】本题考查了三角函数的诱导公式,及三角函数在各象限的符号的应用,属于基础题.【变式3-1】(2019秋•西陵区校级期末)下列三角函数值的符号判断错误的是() A.sin1650︒<︒>D.tan3100︒>B.cos2800︒>C.tan1700【分析】直接利用诱导公式化简,判断符号即可.【答案】解:sin1650︒=︒>,正确;︒>,正确;cos280cos800tan1700︒=-︒<,正确;︒>,错误;tan310tan500故选:C.【点睛】本题考查诱导公式的应用,三角函数值的符号的判断,是基础题.【变式3-2】(2019春•武功县期中)下列值①sin(1000)-︒;④sin2是负值-︒;②cos(2200)-︒;③tan(10)的为()A.①B.②C.③D.④【分析】根据终边相同的角的三角函数值相同,利用三角函数符号判断方法,即可得出结论.【答案】解:①sin(1000)sin1000sin 2800-︒=-︒=-︒>; ②cos(2200)cos2200cos400-︒=︒=︒>; ③tan(10)tan100-︒=-︒<;综上,是负值的序号为③. 故选:C .【点睛】本题考查了终边相同的角与三角函数符号判断问题,是基础题.【变式3-3】(2019秋•夷陵区校级月考)给出下列各函数值:①sin(1- 000)︒;②cos(2- 200)︒;③tan(10)-;A .①④B .②③C .③⑤D .④⑤【分析】利用诱导公式分别对五个选项进行化简整理,进而根据三角函数的性质判断正负. 【答案】解:①,sin(1000)sin(2360280)sin 280cos100-︒=-⨯︒-︒=-︒=︒>; ②,cos(2200)cos(636040)cos400-︒=-⨯︒-︒=︒>; ③,tan(10)tan(30.58)tan(0.58)0π-=-+=-<;,πsin2cos3tan40∴<.∴其中符号为负的是:③⑤.故选:C .【点睛】本题主要考查了运用诱导公式化简求值,解题时应正确把握好函数值正负号的判定,是基础题. 【考点4 三角函数定义域】【分析】列出使函数有意义的不等式组,即由被开方数不小于零,得三角不等式组,分别利用正弦函数和余弦函数图象解三角不等式组即可【答案】解:要使函数有意义,需解得: (k ∈Z )即2k π+≤x ≤2k π+π (k ∈Z )故答案为Z )【点睛】本题考查了函数定义域的求法,三角函数的图象和性质,解简单的三角不等式的方法 可.【答案】解:函数【点睛】本题考查了函数的概念,三角函数的定义域,解三角函数的不等式,属于中档题. 【分析】由绝对值的特点得到sin α-和0的关系,由正弦曲线和角的正弦值可以得到角的范围,写出角的范围后注意加上k 的取值. 【答案】解:|sin |sin αα=-,sin 0α∴-, sin 0α∴,由正弦曲线可以得到[2k αππ∈-,2]k π,k Z ∈, 故答案为:[2k ππ-,2]k π,k Z ∈【点睛】本题主要考查三角函数不等式,解题时最关键的是要掌握三角函数的图象,通过数形结合得到要求的角的范围,这个知识点应用非常广泛,可以和其他知识结合来考查.【变式4-3】求下列函数的定义域:(2)(2sin1)=-;y lg x【分析】利用函数的定义域以及三角函数线化简求解即可.【答案】解:(1)要使y=有意义,可得cos x≥0,解得{x|﹣,k∈Z};(2)要使y=lg(2sin x﹣1)有意义,可得2sin x﹣1>0,即:sin x,解得{x|,k∈Z};(3)要使y=有意义,可得sin x≠﹣1.所以函数的定义域为:{x|x=﹣+2kπ,k∈Z}.【点睛】本题考查三角函数的定义域的求法,三角函数线的应用,考查计算能力.【考点5 利用诱导公式一化简求值】【例5】(2019春•娄星区期中)求下列各式的值:(2)sin1170cos1440tan1845︒+︒-︒【分析】(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;【答案】(本题满分10分)(2)sin1170cos1440tan1845︒+︒-︒sin(336090)cos(43600)tan(536045)=⨯︒+︒+⨯︒+︒-⨯︒+︒ sin90cos0tan45=︒+︒-︒1=.【点睛】此题考查了运用诱导公式化简求值,以及特殊角的三角函数值,熟练掌握诱导公式是解本题的关键.【变式5-1】求下列各式的值(2)9cos2708cos03tan011sin180︒+︒+︒+︒.【分析】由特殊角的三角函数值即可计算得解.1(1)(1)=+-+-1=-.(2)9cos2708cos03tan011sin180︒+︒+︒+︒ 08100=+⨯++ 8=.【点睛】本题主要考查了特殊角的三角函数值在三角函数化简求值中的应用,属于基础题. 【变式5-2】(2019春•船营区校级月考)计算下列各式的值: (1)sin(1395)cos1140cos(1020)sin750-︒︒+-︒︒; tan 4ππ; 【分析】(1)原式中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果. (2)利用诱导公式即可计算得解.【答案】解:(1)原式sin(144045)cos(108060)cos(108060)sin(72030)=-︒+︒︒+︒+-︒+︒︒+︒ sin45cos60cos60sin30=︒︒+︒︒tan 4ππ )0【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,属于基础题. 【变式5-3】(2019春•平罗县校级期中)求下列各式的值 )cos(570)cos(1140)tan(210)sin(690)︒-︒-︒-︒-︒【分析】(1)利用诱导公式以及特殊角的三角函数化简求值即可. (2)利用诱导公式以及特殊角的三角函数化简求值即可. )cos(570)cos(1140)tan(210)sin(690)-︒-︒=-︒-︒25)sin cos tan 463πππ=+-【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力. 【考点6 利用三角函数线解不等式】【例6】(2019春•泗县校级月考)利用单位圆,求适合下列条件的角的集合:【分析】在单位圆中画出三角函数线. (1)由[0,2π)内,,结合正弦线得的解集;(2)由[0,2π)内,,结合余弦线得的解集.【答案】解:在单位圆内作三角函数线如图:(1)∵在[0,2π)内,,OA,OB分别为的终边,由正弦线可知,满足的角的终边在劣弧AB内,∴的解集为{α|};(2))∵在[0,2π)内,,OC,OD分别为的终边,由余弦线可知,满足的终边在劣弧CD内,∴的解集为{α|}.【点睛】本题考查了三角函数线,考查了三角不等式的解法,训练了数形结合的解题思想方法,是中低档题.【变式6-1】求下列不等式的解集:【分析】作出单元圆,利用三角函数线进行求解即可.【答案】解:(1)正弦线大于0的角为x轴的上方,对应的角为2kπ<x<2kπ+π,k∈Z,则不等式的解集为(2kπ,2kπ+π),k∈Z.(2)余弦线小于0的角为y轴的左侧,对应的角为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(3)sin x>对应的区域在阴影部分,对应角的范围为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(4)cos x≤﹣对应的区域在阴影部分,对应角的范围为2kπ+≤x≤2kπ+,k∈Z,则不等式的解集为[2kπ+,2kπ+],k∈Z.【点睛】本题主要考查三角不等式的求解,利用三角函数的三角函数线是解决本题的关键.【变式6-2】利用三角函数线,写出满足下列条件的角x的集合:(2)tan x≥﹣1.【分析】根据三角函数线分别进行求解即可.【答案】解:(1)作出y=﹣,交单位圆于B,C,则sin x>﹣对应的区域为阴影部分,作出x=,交单位圆于E,D,则cos x>对应的区域为阴影部分OD,OE之间,则sin x>﹣且cos x>对应的区域为OC到OE之间,其中OC对应的角为﹣,OE对应的角为,则阴影部分对应的范围是2kπ﹣<x<2kπ+,k∈Z,即sin x>﹣且cos x>对应的范围是{x|2kπ﹣<x<2kπ+,k∈Z}(2)作出正切函数线AT=﹣1,则tan x≥﹣1对应的区域为阴影部分,OT对应的角为﹣,则阴影部分对应的角的范围是kπ﹣≤x<kπ+,即不等式的解集为{x|kπ﹣≤x<kπ+,k∈Z}【点睛】本题主要考查三角函数对应不等式的求解,利用三角函数线是解决本题的关键.【变式6-3】利用三角函数线,写出满足下列条件的角x的集合.(3)tan x≥﹣1;【分析】作出单位圆,由三角函数值先求出角在[0,2π]内的取值范围,再由终边相同的角的概念加上周期,由此能求出满足条件的角x的集合.【答案】解:(1)由sin x,作出单位圆,如下图,∵sin x,∴,∴满足sin x≥的角x的集合为{x|2kπ+,k∈Z}.(2)由cos x≤,作出单位圆,如下图,∵cos x≤,∴,∴满足cos x≤的角x的集合为{x|2kπ+≤x≤2kπ+,k∈Z}.(3)由tan x≥﹣1,作出单位圆,如下图,∵tan x ≥﹣1,∴﹣≤x <, ∴满足tan x ≥﹣1的角x 的集合为{x |k π﹣,k ∈Z }. (4)由sin x >且cos x >,作出单位圆,如下图,∵sin x >且cos x >,∴,∴满足sin x >且cos x >x 的集合为{x |2k π+,k ∈Z }. 【点睛】本题考查角的取值范围的求法,是基础题,解题时要注意单位圆和三角函数线的合理运用.【考点7 利用三角函数线比较大小】【例7】比较下列各组数的大小:【分析】(1)根据余弦函数单调性的大小进行比较(2)利用三角函数的诱导公式以及作差法进行比较即可.704π<-cos(π∴-02πα<<则0sin(cos <cos(sin )α222ππ-<【点睛】本题主要考查三角函数值的大小比较,结合三角函数的诱导公式以及三角函数的单调性是解决本题的关键.【变式7-1】利用三角函数线比较下列各组三角函数值的大小:【分析】根据题意,依次作出各个角的三角函数值对应的三角函数线,进而比较大小即可得答案.【点睛】本题考查的知识点是三角函数线,三角函数值的大小比较,关键是掌握三角函数线的定义.【变式7-2】比较大小:可知:21AT AT >,可知:BD BC >,【点睛】本题考察了诱导公式的化简运用,正切线的画法,属于三角函数线的基础题目.【变式7-3】比较下列各组数的大小:【分析】根据三角函数线进行比较即可.)5 cos7π=在单位圆中作出对应的三角函数线如图,则余弦线为OM,正弦线为MP,(2)在单位圆中作出对应的三角函数线如图,则正切线为AT,正弦线为MP,则AT MP>,【点睛】本题主要考查三角函数值的大小比较,根据三角函数线是解决本题的关键.。

期末复习一——任意角的三角函数

期末复习一——任意角的三角函数

期末复习一——(任意角的三角函数)一、知识点归纳(1)正角、负角、零角、象限角、终边相同的角、角度制、弧度制; (2)1弧度角的规定、弧长公式、扇形面积公式;(3)任意圆中圆心角弧度的算法; (4)三角函数值的定义; (5)三角函数线:正弦线、余弦线、正切线; (6)三角函数值的符号判定; (7)同角三角函数间的关系公式 ①平方关系:22sin cos 1αα+= 注意: ②商数关系sin tan cos ααα= 公式的逆向使用(8)特殊角的三角函数值。

(必须熟记);(9)诱导公式:奇变偶不变,符号看象限。

二、例题解析例1(1)若弧度数为2的圆心角所对的弦长也是2cm,则这个圆心角所对的弧长是 它们所构成的扇形面积是 。

(2)若角θ满足sin θcos θ<0,cos θ-sin θ<0,则θ为第 象限角例2.(1)角θ的顶点与坐标原点O 重合,其始边与x 轴的正半轴重合,角θ的终边上有一点P(2t, -4t)(其中t ≠0),求sin θ、cos θ、tan θ的值.(2)已知sin 2cos ,θθ=-求sin θ,cos θ,tan θ.例3.求值:(1)sin(-1740°)²cos1470°+cos(-660°)²sin750°+tan405°(2)22251172sin tan ()tan()434πππ+-∙-例4.已知3sin 2cos 0αα-=,求下列各式的值22cos sin cos sin (1);(2)2sin 2sin cos 4cos .cos sin cos sin αααααααααααα-++-++-例5化简44661cos sin ;;(3)1cos sin αααα----任意角的三角函数一、选择题:1.sin600°的值是( )A.21 B.-21 C.23 D.-232.下列转化结果错误的是 ( )A.0367' 化成弧度是π83radB.π310-化成度是-600度C. 150-化成弧度是π67rad D.12π化成度是15度3.扇形的半径变为原来的2倍,而弧长也增加到原来的2倍,则( )A .扇形的面积不变B .扇形的圆心角不变C .扇形的面积增大到原来的2倍D .扇形的圆心角增大到原来的2倍 4、如果sin θ= m,m<0,180°<θ<270°,那么tan θ等于( )A .21m m- B .-21m m- C .±21mm- D .-m m 21-5、若sin θ=53+-m m ,cos θ=524+-m m ,其中θ为第二象限角,则m 的取值范围是 ( )A .m = 8B .3<m<9C .m=0或m=8D .-5<m < 9 6、使0cos sin <⋅αα成立的角α是( )A .第三、四象限角 B.第一、三象限角 C.第二、四象限角 D.第一、四象限角 7、已知θ的终边过点P (4a ,-3a ),且53sin =θ,则=θtan ( )(A )43-(B )34-(C )43(D )34 8、若βα,的终边关于y 轴对称,则必有 ( ) A Z k k ∈+=+,)12(πβα B 2πβα=+C Z k k ∈=+,2πβαD Z k k ∈+=+,22ππβα9、y =xx x x x x tan |tan ||cos |cos sin |sin |++的值域是 ( )A .{1,-1}B . {-1,1,3}C . {-1,3}D .{1,3}二、填空题:10、已知扇形的圆心角是72︒,半径为20cm,则扇形的弧长为面积为11、比较下列大小: sin1、 cos1、 tan1 ; > >12、(1)已知600,sin cos,sin cos169απαααα<<∙=--=则。

三角函数专题复习 第一讲 任意角、弧度制及任意角的三角函数 同角三角函数的基本关系与诱导公式学案 .docx

三角函数专题复习 第一讲 任意角、弧度制及任意角的三角函数 同角三角函数的基本关系与诱导公式学案  .docx

三角函数专题复习第一讲学案【知识网络】一、任意角和弧度制及任意角的三角函数【知识梳理】1.角概念的推广角可以看成平而内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

一条射线由原來的位置0A,绕着它的端点0按逆时针方向旋转到终止位置0B,就形成角旋转开始时的射线0A叫做角的始边,0〃叫终边,射线的端点。

叫做叫G的顶点。

(1)按旋转方向不同分为正角、负角、零角;我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。

如果一条射线没冇做任何旋转,我们称它形成了一个零角。

(2)按终边位置不同分为象限角和轴线角。

角的顶点与原点重合,角的始边与x轴的非负半轴重合。

那么,角的终边(除端点外)在第儿象限,我们就说这个角是第儿彖限角。

耍特别注意:如果角的终边在坐标轴上,就认为这个角不屈于任何一个象限,称为轴线角或非象限角。

①象限角及其集合表示:2.终边相同的角终边相同的角是指与某个角a具有同终边的所有角,它们彼此相差2kn(kez),即卩w{B住!Ji +4 kWZ},根据三角函数的定义,终边相同的角的各种三角函数值都相等。

3.弧度制(1)1弧度的角长度等于半径长的狐所对的闘心角叫做1弧度的角,用符号KK1表示。

角有正负零角之分,它的弧度数也应该有正负零Z 分,如-7T. -2n等等,一般地,正和的弧度数是一个正数,负角的弧度数是一个负数,零角的狐度数是0,角的正负主耍苗角的旋转方向来决定。

(2)角a的呱度数如果半径为r的圆的圆心角a所对弧的长为/,那么角a的弧度数的绝对值是问=?.(3)弧度与角度互换公式:1说=兰2。

心57.30七57°18'、1。

=工=0.01745 (rad)。

n180(4)弧长、扇形面积的公式弧长公式:l=\a\r (a是圆心角的弧度数),扇形面积公式:lr = -\a\r2.2 24.三角函数定义在a的终边上任取一点P(a.b),它与原点的距离r = >Ja2+b2 > 0 .过P作x轴的垂线,垂足为M,则MP b OM a MP b线段OM 的长度为-线段MP 的长度为/?.WiJsina = —= -;cosa = —= -;tana = —= -oOP r OP r OM a利用单位圆左义任意角的三角函数,设Q是一个任意角,它的终边与单位圆交于点P(x,y),那么:(l)y叫做a的止眩,记做sin a,即sin a = y ;⑵x叫做a的余弦,记做cosa Jl|J cos a = x;三角函数线是通过有向线段直观地表示出角的齐种三角函数值的种图示方法。

高一数学三角函数章节期末复习

高一数学三角函数章节期末复习

三角函数期末复习一、任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:长度等于半径的圆弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”作单位来度量角的制度叫做弧度制.比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2,二、任意角的三角函数(1)任意角的三角函数定义设P (x ,y )是角α终边上任一点,且|PO |=r (r >0),则有sin α=y r ,cos α=x r ,tan α=yx ,它们都是以角为自变量,以比值为函数值的函数.(2)三角函数在各象限内的正值口诀是:Ⅰ全正、Ⅱ正弦、Ⅲ正切、Ⅳ余弦.三.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos α,sin α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.(1)三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦.(2)终边落在x 轴上的角的集合{β|β=k π,k ∈Z };终边落在y 轴上的角的集合⎩⎨⎧⎭⎬⎫β| β=π2+k π,k ∈Z ;终边落在坐标轴上的角的集合可以表示为⎩⎨⎧⎭⎬⎫β⎪⎪β=k π2,k ∈Z . 一个命题规律近几年主要考查运用三角函数概念解题,判断角的象限及三角函数值的符号,运用同角三角函数关系式、诱导公式进行化简、求值,是三角函数化简、求值、证明的必要前提. 实战检验1.已知角α(0≤α<2π)的终边过点P ⎝⎛⎭⎫sin 2π3,cos 2π3,则α=________. 2.若-π2<α<0,则点P (cos α,sin α)位于第________象限.3.若点A (x ,y )是300°角终边上异于原点的一点,则yx的值为________.4.下列命题:①第二象限角为钝角;②锐角是第一象限角;③若α是第二象限角,则α+180°是第四象限角;④角α与π+α终边在一条直线上.其中正确的是________. 5.已知点P (tan α,cos α)在第二象限,则角α的终边在第________象限. 6.已知角α的终边与π6的终边关于角π4的终边对称,则α的取值集合为________.7.已知一扇形的圆心角为α(α>0),所在圆的半径为R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?8.已知角α的终边经过点(2,-2),则sin α=________,cos α=________,tan α=________. 9.若点(a,9)在函数y =3x 的图象上,则tan a π6=________.10.已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 11.已知sin αtan α<0且cos α·tan α<0,则角α是第________象限角.12.已知点P ⎝⎛⎭⎫sin 3π4,cos 3π4落在角α的终边上,且α∈[0,2π),则α的值为________. 13.已知一扇形的中心角α=60°,所在圆的半径R =10 cm ,则扇形的弧长为________cm ,面积为________cm 2.14.已知角α终边经过点P(x,-2)(x≠0),且cos α=36x,求sin α,tan α的值.同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系(1)平方关系:sin2_α+cos2_α=1.(2)商数关系:sin αcos α=tan_α.2.下列各角的终边与角α的终边的关系3.六组诱导公式(1)三角函数诱导公式k π2+α(k ∈Z )的本质是:奇变偶不变,符号看象限.(2)对诱导公式口诀“奇变偶不变,符号看象限”含义的理解:即诱导公式的左边为π2·k +α(k ∈Z )的正弦或余弦函数,当k 为奇数时,右边的函数名称正余互变;当k 为偶数时,右边的函数名称不改变,这就是“奇变偶不变”的含义,再就是将α“看成”锐角(可能并不是锐角,也可能是大于锐角或小于锐角还有可能是任意角),然后分析π2·k +α(k ∈Z )为第几象限角,再判断公式左边这个三角函数(原函数)是正还是负,也就是公式右边的符号. 实战1.计算sin 23π6等于________.2.已知sin α=13,且α∈⎝⎛⎭⎫π2,π,则tan α=________. 3.已知sin(2π-α)-2cos(2 013π+α)=0,则cos α=________. 4.已知α∈⎝⎛⎭⎫-π2,0,sin α=-35,则cos(π-α)=________. 5. 已知α∈⎝⎛⎭⎫0,π2,sin α-cos α=15. (1)求sin α+cos α的值; (2)求2sin 2α+sin 2α1-tan α的值.练习 已知α∈⎝⎛⎭⎫π4,π2,sin α·cos α=18. (1)求cos α-sin α的值; (2)求sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值.6.(1)化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)(k ∈Z ).(2)已知α是第三象限角,且f (α)=tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-α-π)tan (-π-α).①化简f (α);②若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值.练习 (1)化简tan (π+α)cos (2π+α)sin ⎝⎛⎭⎫α-3π2cos (-α-3π)sin (-3π-α);(2) 已知f (x )=sin (π-x )cos (2π-x )tan (-x +π)cos ⎝⎛⎭⎫-π2+x ,求f ⎝⎛⎭⎫-31π3的值.7. (1)求证:sin θ(1+tan θ)+cos θ⎝⎛⎭⎫1+1tan θ=1sin θ+1cos θ.(2)已知sin(α+β)=1,求证:tan(2α+β)+tan β=0.(3)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α)=-tan α.8.已知sin α-cos α=2,α∈(0,π),则tan α=________. 9.已知α是第二象限角,tan α=-12,则cos α=________.10.若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=________. 11.计算cos ⎝⎛⎭⎫-113π=________. 12.已知cos(π+x )=35,x ∈(π,2π),则tan x =________.13.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为________.14.已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. 15.已知0<α<π2,若cos α-sin α=-55,试求2sin αcos α-cos α+11-tan α的值.三角函数的图象与性质1.“五点法”作图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0). (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). 2.正弦、余弦和正切函数的图象和性质(下表格中的k ∈Z )一般地,对于函数f (x ),如果存在一个非零的常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期).函数y =A sin(ωx +φ)或y =A cos(ωx +φ)(ω>0且为常数)的周期T =2πω,函数y =A tan(ωx +φ)(ω>0且为常数)的周期T =πω.两条规律(1)周期性:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(2)奇偶性:三角函数中奇函数一般可化为y =A sin ωx 或 y =A tan ωx ,偶函数一般可化为y =A cos ωx +b 的形式. 一个命题规律主要考查三角函数的图象、周期性、单调性、对称性、有界性、奇偶性、函数的解析式与图象的关系以及三角函数图象的平移,题型以填空题为主,难度以容易、中档题为主,在对三角函数其他知识的考查中,直接或间接考查本讲的基本方法与技能.1.函数f (x )=2sin ⎝⎛⎭⎫πx +14的最小正周期是________. 2.已知函数f (x )=3sin x2,如果存在实数x 1,x 2,使得对任意的实数x ,都有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值为________.3.函数y =sin x -cos x 的定义域为________; 4.函数y =2cos 2x -sin x 的值域为________.5.写出下列函数的单调区间及周期: ①y =sin ⎝⎛⎭⎫-2x +π3;②y =|tan x |.练习 求下列函数的单调区间: (1) y =12sin ⎝⎛⎭⎫π4-2x 36..设函数f (x )=2sin(2x +φ)⎝⎛⎭⎫0<φ<π2与y 轴的交点为(0,3),则下列结论:①图象关于点⎝⎛⎭⎫π4,0对称;②图象关于直线x =π12对称;③在⎣⎡⎦⎤0,π6上是增函数;④f (x )图象向左平移π12个单位所得函数为偶函数,其中所有正确的结论序号是________.7.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间为________.8.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于________.9.设定义在区间⎝⎛⎭⎫0,π2上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,则线段P 1P 2的长为________. 10.函数f (x )=A sin ⎝⎛⎭⎫ωx -π6+1(A >0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为π2. (1)求函数f (x )的解析式;(2)设α∈⎝⎛⎭⎫0,π2,f ⎝⎛⎭⎫α2=2,求α的值.11.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )的最小正周期为________. 12.函数y =sin ⎝⎛⎭⎫x -π4的图象的对称中心为________. 13.(2012·苏北五市期末联考)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),若f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π2,且f (x )在区间⎝⎛⎭⎫π6,π2内有最大值,无最小值,则ω=________.函数y =A sin(ωx +φ)的图象与性质1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点 如下表所示2.函数y =sin x 的图象变换得到y =A sin(ωx +φ)(ω>0)的图象的步骤3.当函数y =A sin(ωx +φ)(A >0,ω>0,x ∈(0,+∞))表示一个振动时,A 叫做振幅,T =2πω叫做周期,f =1T 叫做频率,ωx +φ叫做相位,φ叫做初相.确定y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π)中参数的方法在由图象求解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.一个复习指导抓住正弦型函数y =A sin(ωx +φ)的图象的“五点法”作图和图象的变换以及应用正弦型函数解析式解决三角函数的性质问题.通过适量的训练,掌握解决问题的通性通法.例题讲解与练习1.函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈(0,π))的图象如图所示,则φ=________. 2.若函数y =A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的最小值为-2,其图象上相 邻最高点与最低点的横坐标之差为π2,且图象过点(0,3),则其解析式是________.3.把函数y =sin ⎝⎛⎭⎫5x -π2的图象向右平移π4个单位,再把所得函数图象上各点的横坐标缩短为原来的12,所得的函数解析式为________. 4.设ω>0,函数y =sin ⎝⎛⎭⎫ωx +π3+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是________.5. 已知函数y =2sin ⎝⎛⎭⎫2x +π3, (1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到.6. 设函数f (x )=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32. (1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象; (3)若f (x )>22,求x 的取值范围.7. 如图为y =A sin(ωx +φ)(A >0,ω>0,-π<φ<0)的图象的一段. (1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位后得y =f (x ),求f (x )的对称轴方程.8. 已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤0,π12时,求f (x )的最值.9.要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象向左平移________个单位. 10.将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________________.11.已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω>0,0<φ<π2)的部分图象如图所示.(1)求函数f (x )的解析式;。

高一数学三角函数诱导公式

高一数学三角函数诱导公式

,sin ).如下图所示。
(4)si9n3 0si3 n0 (518 )0 si3 n0 (18 )0
si3n01. 2
例4 求下列各三角函数的值:

解(:1( )1 s) is n(i 565n 5 π)π ; ( ) 5 ( 2) cs os1iπ 14n π ;9 π (( 3) ) ta n( ( 1s 43πiπ );() n 4 )s1 i; n870.题讲解
第二学时:互为补角、余角的三角函数关系
1.互为补角的三角函数关系
新 课
探究3: 与 - 的终边关于 y 轴对称,
讲 它们的三角函数之间有什么关系? 如图所示。

y
公式4
P (-x,y)
-
O
P(x,y) x
sin (- )=sin cos (- )=-cos tan (- )=- tan
互为补角的两个角正弦值相等,余弦值、正切值互为相反数.
6
6
62
( 2 )c1 o π s 1 co π s 3 π ( ) co π π s ) ( co π s2 ;
4
4
4
42
(3 )ta 1 nπ ( 4 ) taπ n 5 π () taπn 3 ;
3
3
3
(4)sin 870sin3 ( 0 518)0

y

P( cos ,sin )
sin
O cos
x
第一学时:诱导公式
1. 角与 + k·2 (k Z)的三角函数间的关系
新 课
角与 + k· 2 (k Z)的终边相同,根据三角函

数定义,它们的三角函数值相等.如图所示。

高一三角函数公式及诱导公式习题(附答案)

高一三角函数公式及诱导公式习题(附答案)

三角函数公式1. 同角三角函数根本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α 〔二〕 sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)〔1-tanαtanβ〕tanα-tanβ=tan(α-β)〔1+tanαtanβ) (4)万能公式〔用tanα表示其他三角函数值〕sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形〔如何变形〕1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα假设A、B是锐角,A+B=π4,那么〔1+tanA〕(1+tanB)=28.在三角形中的结论假设:A+B+C=π, A+B+C2=π2那么有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1三角函数的诱导公式1一、选择题1.如果|cos x |=cos 〔x +π〕,那么x 的取值集合是〔 〕 A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .〔2k +1〕π≤x ≤2〔k +1〕π〔以上k ∈Z 〕2.sin 〔-6π19〕的值是〔 〕 A .21 B .-21 C .23 D .-23 3.以下三角函数:①sin 〔n π+3π4〕;②cos 〔2n π+6π〕;③sin 〔2n π+3π〕;④cos [〔2n +1〕π-6π];⑤sin [〔2n +1〕π-3π]〔n ∈Z 〕.其中函数值与sin 3π的值相同的是〔 〕 A .①② B .①③④ C .②③⑤ D .①③⑤4.假设cos 〔π+α〕=-510,且α∈〔-2π,0〕,那么tan 〔2π3+α〕的值为〔 〕 A .-36B .36C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,以下关系恒成立的是〔 〕 A .cos 〔A +B 〕=cos C B .sin 〔A +B 〕=sin C C .tan 〔A +B 〕=tan CD .sin2B A +=sin 2C6.函数f 〔x 〕=cos 3πx〔x ∈Z 〕的值域为〔 〕 A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.假设α是第三象限角,那么)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin 〔-660°〕cos420°-tan330°cot 〔-690°〕.10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.cos α=31,cos 〔α+β〕=1,求证:cos 〔2α+β〕=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:〔1〕sin 〔2π3-α〕=-cos α; 〔2〕cos 〔2π3+α〕=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos 〔α+β〕=1,∴α+β=2k π.∴cos 〔2α+β〕=cos 〔α+α+β〕=cos 〔α+2k π〕=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:〔1〕sin 〔2π3-α〕=sin [π+〔2π-α〕]=-sin 〔2π-α〕=-cos α. 〔2〕cos 〔2π3+α〕=cos [π+〔2π+α〕]=-cos 〔2π+α〕=sin α.三角函数的诱导公式2一、选择题: 1.sin(4π+α)=23,那么sin(43π-α)值为〔 〕 A.21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为〔 〕 A.23 B. 21 C. 23± D. —233.化简:)2cos()2sin(21-•-+ππ得〔 〕A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.α和β的终边关于x 轴对称,那么以下各式中正确的选项是〔 〕 A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于〔 〕, A. 51〔4+5〕 B. 51〔4-5〕 C. 51〔4±5〕 D. 51〔5-4〕二、填空题: 6.cos(π-x)=23,x ∈〔-π,π〕,那么x 的值为 . 7.tanα=m ,那么=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin 〔-π+α〕,那么α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.:sin 〔x+6π〕=41,求sin 〔)67x +π+cos 2〔65π-x 〕的值.11. 求以下三角函数值: 〔1〕sin 3π7;〔2〕cos 4π17;〔3〕tan 〔-6π23〕;12. 求以下三角函数值:〔1〕sin3π4·cos 6π25·tan 4π5; 〔2〕sin [〔2n +1〕π-3π2].13.设f 〔θ〕=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f 〔3π〕的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:〔1〕sin 3π7=sin 〔2π+3π〕=sin 3π=23.〔2〕cos4π17=cos 〔4π+4π〕=cos 4π=22.〔3〕tan 〔-6π23〕=cos 〔-4π+6π〕=cos 6π=23.〔4〕sin 〔-765°〕=sin [360°×〔-2〕-45°]=sin 〔-45°〕=-sin45°=-22. 注:利用公式〔1〕、公式〔2〕可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:〔1〕sin 3π4·cos 6π25·tan 4π5=sin 〔π+3π〕·cos 〔4π+6π〕·tan 〔π+4π〕 =〔-sin3π〕·cos 6π·tan 4π=〔-23〕·23·1=-43.〔2〕sin [〔2n +1〕π-3π2]=sin 〔π-3π2〕=sin 3π=23.13.解:f 〔θ〕=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f 〔3π〕=cos 3π-1=21-1=-21.。

任意角的三角函数及诱导公式

任意角的三角函数及诱导公式

任意角的三角函数及诱导公式基本知识点:1.三角函数定义在α的终边上任取一点(,)P a b ,过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .;利用单位圆定义任意角的三角函数,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:(1)y 叫做α的正弦,记做sin α,即sin y α=; (2叫做α的余弦,记做cos α,(3叫做α的正切,记做tan α, 2.常用的同角三角函数的基本关系式1cos sin 22=+αα ααα222cos 1sec tan 1==+ αααcos sin tan =3.诱导公式:(1)ααπsin )2sin(=+k , ααπc o s )2c o s(=+k , ααπtan )2tan(=+k (2)ααπsin )sin(-=+, ααπcos )cos(-=+, ααπt a n )t a n(=+ (3)ααπsin )sin(=-, ααπcos )cos(-=-, ααπtan )tan(-=- (4) ααsin )sin(-=-, ααc o s )c o s(=-, ααt a n )t a n (-=- (5)ααπcos )2sin(=-, ααπsin )2cos(=-, ααπcot )2tan(=- (6)ααπcos )2sin(=+, ααπsin )2cos(-=+, ααπcot )2tan(-=+(7)ααπcos )23sin(-=+, ααπsin )23cos(=+, ααπcot )23tan(-=+典型例题练习:1. 已知0cot cot tan tan cos cos sin sin =+++αααααααα,确定)2tan(sin )sin(cos αα⋅的符号?2. 利用三角函数线比较下列各组数的大小: (1)32sin π与54sin π;(2)32tan π与54tan π;(3) 32cos π与54cos π3. 若20πα<<,证明:(1)1cos sin >+αα;(2)αααtan sin <<4. 化简:1sec 1sec 1sec 1sec )sin 1sin 1sin 1sin 1(+---+⋅+---+αααααααα5. 已知11tan tan -=-αα,求下列各式的值:(1)ααααcos sin cos 3sin +-; (2)2cos sin sin 2++ααα6. 化简下列各式:(1)400sin 12- (2)10sin 110sin 10cos 10sin 212---(3)ααααααcos sin 1cos sin 2cos sin 1+++++7. 证明:ααααααααcos sin 1)sin (cos 2cos 1sin sin 1cos ++-=+-+8. 已知ππ-<<-x 23,化简:22)2tan 1()2tan 1(x x -++9. 已知ααcos ,sin 是关于x 的方程02=+-a ax x 的两个根。

三角函数公式大全(高一所有的三角函数公式)

三角函数公式大全(高一所有的三角函数公式)

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 余切:y x =αcot 正割:x r =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限) ⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- 五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。

三角函数基础知识复习1

三角函数基础知识复习1

三角函数基础知识复习(一)一、任意角:知识点1、角的概念的推广:1、“旋转”形成角(角包括顶点、始边、终边);2、角的分类:正角、负角、零角(逆时针、顺时针、没有旋转)。

例1、(1)钟表经过10分钟,分针转了______度;(2)若将钟表拨慢10分钟,则时针转了______度,分针转了______度。

知识点2、象限角和轴线角:1、象限角:角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角;2、轴线角:如果角的终边在坐标轴上,则这个角叫轴线角,它不属于任何象限。

如:00,900,1800,2700,3600,-900,-1800,-3600,等等。

例2、(1)3700位于第___象限;(2)-1200位于第___象限;(3)2900位于第___象限;(4)-2600位于第____象限;(5)4弧度的角位于第___象限。

例3、A={小于900的角},B={第一象限的角},则A∩B=()A、{锐角}B、{小于900的角}C、{第一象限的角}D、以上都不对例4、已知集合A={α|α=k·900-360,k∈Z},B={β|-1800<β<1800},则A∩B=()A、{-360,540} B、{-1260,1440} C、{-1260,-360,540,1440} D、{-1260,540}知识点3、终边相同的角:所有与α终边相同的角(包括α本身在内)构成一个集合, 这个集合可表示为{β|β=________________________},终边相同的角相差3600的整数倍。

例5、已知角α=450,则在区间[-7200,00]内且与α终边相同的角是____________________。

例6、已知α是第二象限的角,且2α与7α的终边相同,则α=________________________。

例7、用描述法写出下列角的集合:(1)第一象限的角___________________;(2)第二象限的角___________________;(3)第三象限的角___________________;(4)第四象限的角___________________;(5)x轴正半轴上的角________________;(6)x轴负半轴上的角_____________________;(7)x轴上的角_______________;(8) y轴正半轴上的角_________________;(6)y轴负半轴上的角___________________________;(7)y轴上的角________________;(8)坐标轴上的角______________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一期末复习专题1:任意角的三角函数及诱导公式一.【课标要求】1.任意角、弧度:了解任意角的概念和弧度制,能进行弧度与角度的互化; 2.三角函数(1)借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;(2)借助单位圆中的三角函数线推导出诱导公式(π/2±α, π±α的正弦、余弦、正切)。

二.【要点精讲】1.任意角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α。

旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。

为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。

如果一条射线没有做任何旋转,我们称它形成了一个零角。

2.终边相同的角、区间角与象限角角的顶点与原点重合,角的始边与x 轴的非负半轴重合。

那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。

要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。

终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2k π(k ∈Z),即β∈{β|β=2k π+α,k ∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。

区间角是介于两个角之间的所有角,如α∈{α|6π≤α≤65π}=[6π,65π]。

3.弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。

角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。

角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径。

角度制与弧度制的换算主要抓住180rad π︒=。

弧度与角度互换公式:1rad =π180°≈57.30°=57°18ˊ、1°=180π≈0.01745(rad )。

弧长公式:r l ||α=(α是圆心角的弧度数), 扇形面积公式:2||2121r r l S α==。

4.三角函数定义在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .则sin MP b OP r α==;cos OM a OP r α==;tan MP bOM aα==。

利用单位圆定义任意角的三角函数,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:(1)y 叫做α的正弦,记做sin α,即sin y α=; (2)x 叫做α的余弦,记做cos α,即cos x α=; (3)yx叫做α的正切,记做tan α,即tan (0)y x x α=≠。

5.三角函数线三角函数线是通过有向线段直观地表示出角的各种三角函数值的一种图示方法。

利用三角函数线在解决比较三角函数值大小、解三角方程及三角不等式等问题时,十分方便。

以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米)。

当角α为第一象限角时,则其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x ⊥轴交x 轴于点M ,根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==。

我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O 为始点、M 为终点,规定:当线段OM 与x 轴同向时,OM 的方向为正向,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负向,且有正值x ;其中x 为P 点的横坐标.这样,无论那种情况都有cos OM x α==同理,当角α的终边不在x 轴上时,以M 为始点、P 为终点,规定:当线段MP 与y 轴同向时,MP 的方向为正向,且有正值y ;当线段MP 与y 轴反向时,MP 的方向为负向,且有正值y ;其中y 为P 点的横坐标这样,无论那种情况都有sin MP y α==。

像MP OM 、这种被看作带有方向的线段,叫做有向线段。

如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan yAT xα==我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线。

6.同角三角函数关系式使用这组公式进行变形时,经常把“切”、“割”用“弦”表示,即化弦法,这是三角变换非常重要的方法几个常用关系式:sin α+cos α,sin α-cos α,sin α·cos α;(三式之间可以互相表示)同理可以由sin α-cos α或sin α·cos α推出其余两式。

②21sin 1sin 2αα⎛⎫+=+ ⎪⎝⎭. ③当0,2x π⎛⎫∈ ⎪⎝⎭时,有sin tan x x x <<。

7.诱导公式可用十个字概括为“奇变偶不变,符号看象限”。

诱导公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,其中k Z ∈诱导公式二:sin(180)α+=o sin α-; cos(180)α+=-ocos α诱导公式三:sin()sin αα-=-; cos()cos αα-= 诱导公式四:sin(180)sin αα-=o; cos(180)cos αα-=-o诱导公式五:sin(360)sin αα-=-o; cos(360)cos αα-=o-α απ-απ+απ-2()Z k k ∈+απ2απ-2sin -sin α sin α -sin α -sin α sin α cos α coscos α-cos α-cos αcos αcos αsin α(1)要化的角的形式为180k α⋅±o(k 为常整数); (2)记忆方法:“函数名不变,符号看象限”;(3)sin(k π+α)=(-1)k sin α;cos(k π+α)=(-1)k cos α(k ∈Z); (4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭。

三.【典例解析】题型1:象限角例1.已知角︒=45α;(1)在区间]0,720[︒︒-内找出所有与角α有相同终边的角β; 例2.若sin θcos θ>0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限例3.()的形式是化成把Z k ∈︒<≤︒+︒⋅︒-,3600360k 1485αα例4.扇形AOB 的周长为8cm ,若这个扇形的面积为32cm ,其圆心角为 ; 题型2:三角函数定义例5.已知角α的终边过点(,2)(0)a a a ≠,求α的四个三角函数值。

题型3:诱导公式例7.已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=( )A.43-B.54C.34-D.45例8.化简:(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-o o o o; (2)()()()()()⎪⎭⎫⎝⎛+----⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛++-απαπαπαπαπαπαπαπ29sin sin 3sin cos 211cos 2cos cos 2sin例9.课本28页第7题:例10.(1)证明:()ααααααααcos 1sin sin 1cos cos sin 1sin cos 2+-+=++-; (2)求证:cos 1sin 1sin cos x xx x+=-。

四.【综合题目练习】一、选择题1. sin585°的值为A. 2-B.2C.2-D.22.下列各角中,与角330°的终边相同的有是( )A .510°B .150°C .-150°D .-390° 3.函数)(),12cos()12sin()(x f x x x f 则ππ--=的最小正周期是( )A .2πB .2πC .πD .4π4.已知α、β都是锐角,ββααsin ,135)cos(,54sin 则=+=的值为 ( )A .6553 B .6533 C .6516 D .6513-5.已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是 A. 函数)(x f 的最小正周期为2π B. 函数)(x f 在区间[0,2π]上是增函数 C .函数)(x f 的图象关于直线x =0对称 D . 函数)(x f 是奇函数 6.下列关系式中正确的是( )A .000sin11cos10sin168<<B .000sin168sin11cos10<< C .0sin11sin168cos10<< D .0sin168cos10sin11<< 二、填空题7.若4sin ,tan 05θθ=->,则cos θ= .8.=-++)425tan(325cos 625sinπππ .9. 设31sin (), tan(),522πααππβ=<<-=则tan(2)αβ-的值等于__ .三.综合训练10.已知),0(,,55cos ,31tan πβαβα∈=-= (1)求βsin 的值;(2)求)tan(βα+的值.11.已知)43,2(,102)4cos(πππ∈=-x x (1)求x sin 的值;(2)求)32sin(π+x 的值.五.【思维总结】2.α、2、2α之间的关系。

若α终边在第一象限则2α终边在第一或第三象限;2α终边在第一或第二象限或y 轴正半轴。

若α终边在第二象限则2α终边在第一或第三象限;2α终边在第三或第四象限或y 轴负半轴。

若α终边在第三象限则2α终边在第二或第四象限;2α终边在第一或第二象限或y 轴正半轴。

若α终边在第四象限则2α终边在第二或第四象限;2α终边在第三或第四象限或y 轴负半轴。

3.任意角的概念的意义,任意角的三角函数的定义,同角间的三角函数基本关系、诱导公式由于本重点是任意角的三角函数角的基础,因而三学习本节内容时要注意如下几点:(1)熟练地掌握常用的方法与技巧,在使用三角代换求解有关问题时要注意有关范围的限制;(2)要注意差异分析,又要活用公式,要善于瞄准解题目标进行有效的变形,其解题一般思维模式为:发现差异,寻找联系,合理转化只有这样才能在高考中夺得高分。

相关文档
最新文档