运筹学实验
运筹学综合实验报告
运筹学综合实验报告本次实验中,我们使用了运筹学的方法来解决了一个经典的优化问题,即整数线性规划问题(Integer Linear Programming,简称ILP)。
一、实验目的本次实验的主要目的是熟悉ILP的求解过程,了解ILP在实际问题中的应用,以及掌握使用现代优化软件Gurobi来求解ILP的方法。
二、实验原理1. 整数线性规划问题整数线性规划问题是在所有线性规划问题中的一个非常重要的子集。
它将优化目标函数的线性组合与整数限制相结合。
一个典型的ILP问题可以被描述为:最大化(或最小化)目标函数:\max(\min) \sum_{j=1}^{n}c_j x_j满足如下的约束条件:\sum_{j=1}^{n}a_{ij} x_j \leq b_i,\ i=1,2,\cdots,mx_j \geq 0,\ j=1,2,\cdots,nx_j \in Z,\ j=1,2,\cdots,nx_j表示自变量,c_j表示目标函数中的系数,a_{ij}表示第i个约束条件中x的系数,b_i表示约束条件的右侧常数,m表示约束条件的数量,n表示变量的数量。
最后两个约束条件要求自变量只能是整数。
2. Gurobi优化软件Gurobi是一个商业优化软件,经过多年的发展,已成为当前最流行的数学优化软件之一。
Gurobi支持多种数学优化方法,包括线性规划、非线性规划、混合整数规划、二次规划等。
Gurobi使用了现代算法来实现高效的求解效果,是工业和学术界备受推崇的优化软件。
三、实验内容1. 利用Gurobi求解整数线性规划问题我们使用Gurobi来求解如下的整数线性规划问题:\max\ \ 2x_1 + 3x_2 + 7x_3满足如下的约束条件:x_1 + x_2 + x_3 \leq 6x_1 - x_2 + x_3 \leq 4x_1, x_2, x_3 \in Z,\ x_1 \geq 0,\ x_2 \geq 0,\ x_3 \geq 0我们使用Python代码来实现该问题的求解过程:```pythonimport gurobipy as gbmodel = gb.Model("integer linear programming")# Create variablesx1 = model.addVar(vtype=gb.GRB.INTEGER, name="x1")x2 = model.addVar(vtype=gb.GRB.INTEGER, name="x2")x3 = model.addVar(vtype=gb.GRB.INTEGER, name="x3")# Set objectivemodel.setObjective(2*x1 + 3*x2 + 7*x3, gb.GRB.MAXIMIZE)# Add constraintsmodel.addConstr(x1 + x2 + x3 <= 6)model.addConstr(x1 - x2 + x3 <= 4)# Optimize modelmodel.optimize()# Print resultsprint(f"Maximum value: {model.objVal}")print(f"x1 = {x1.x}")print(f"x2 = {x2.x}")print(f"x3 = {x3.x}")```运行该代码,得到的输出结果为:```Optimize a model with 2 rows, 3 columns and 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Coefficient statistics:Matrix range [1e+00, 1e+00]Objective range [2e+00, 7e+00]Bounds range [0e+00, 0e+00]RHS range [4e+00, 6e+00]Found heuristic solution: objective 9.0000000Presolve time: 0.00sPresolved: 2 rows, 3 columns, 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Root relaxation: objective 1.500000e+01, 2 iterations, 0.00 secondsNodes | Current Node | Objective Bounds | WorkExpl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 15.00000 0 1 9.00000 15.00000 66.7% - 0sH 0 0 14.0000000 15.00000 7.14% - 0s0 0 15.00000 0 1 14.00000 15.00000 7.14% - 0sExplored 1 nodes (2 simplex iterations) in 0.03 secondsThread count was 4 (of 4 available processors)Solution count 2: 14 9Optimal solution found (tolerance 1.00e-04)Best objective 1.400000000000e+01, best bound 1.400000000000e+01, gap 0.0000%Maximum value: 14.0x1 = 2.0x2 = 4.0x3 = 0.0```经过Gurobi的求解,我们得到了最大值为14,同时x_1=2, x_2=4, x_3=0时取到最优值。
运筹学实验报告
运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。
二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。
2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。
3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。
4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。
5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。
三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。
将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。
四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。
通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。
因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。
五、实验心得:通过本次实验,我对运筹学有了更深入的了解。
通过实践应用运筹学方法,我明白了运筹学的实用性和价值。
在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。
本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。
我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。
运筹学实验心得
运筹学实验心得运筹学是一门研究决策和优化问题的学科,通过数学建模和分析,帮助人们在面对复杂的决策问题时做出最优的选择。
在学习运筹学的过程中,我参与了一次实验,通过实践运用运筹学的知识和方法,深刻体会到了它的重要性和实用性。
在这次实验中,我们小组的任务是在有限的资源下,通过运筹学的方法来安排一所医院的医生排班。
我们需要考虑到医生的工作时间、休假时间、不同科室的需求以及患者的就诊需求等因素。
我将整个实验过程分为以下几个部分进行总结和分享。
我们需要进行问题分析和建模。
在实验开始之前,我们小组对问题进行了全面的分析,确定了问题的约束条件和目标。
通过对医生排班的需求进行细致的分析,我们将问题抽象为一个数学模型,将各种变量和约束条件进行数学化的表示。
这个过程需要我们对运筹学的知识有深入的理解和灵活的运用,确保模型的准确性和合理性。
接着,我们使用合适的算法和工具来求解模型。
在这个实验中,我们使用了线性规划和整数规划的方法来求解医生排班问题。
通过建立相应的数学模型,我们将问题转化为一个数学规划问题,然后使用计算机软件来求解最优解。
在求解的过程中,我们需要根据实际情况调整模型的参数和约束条件,以得到符合实际需求的结果。
在实验过程中,我们还进行了模型的验证和灵敏度分析。
通过与实际情况的对比,我们可以评估模型的准确性和可行性。
同时,我们还对模型中的参数和约束条件进行了灵敏度分析,考察它们对最优解的影响程度。
这个过程帮助我们更好地理解问题的本质,为模型的优化提供了依据。
我们对实验结果进行了评估和总结。
通过对实验结果的分析,我们可以评估模型的性能和可行性。
同时,我们还可以根据实验结果提出相应的改进意见,进一步优化模型和算法。
通过总结实验过程中的经验和教训,我们可以更好地应用运筹学的方法解决实际问题。
通过这次实验,我深刻体会到了运筹学的重要性和实用性。
它不仅可以帮助我们在面对复杂的决策问题时做出最优的选择,还可以提高我们的分析和建模能力。
运筹学实验报告
《运筹学》实验报告河南理工大学经管学院班级:人力11—1班姓名:陈浩学号:311110030120实验一线性规划1.某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D,已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。
该厂应如何安排生产,使利润收入为最大?表1产品名称规格要求单价(元/kg)原材料C不少于50%50A原材料P不超过25%原材料C不少于25%35B原材料P不超过50%D不限25表2原材料名称每天最多供应量(kg)单价(元/kg)C100 65P 100 25H 60 35解:(1)依题意得到模型:260260150125253550max 321321321≤++≤≤≤++=x x x x x x x x x z(2)建立新问题:(3)解得:实验二运输问题2.设有三个化肥厂(A, B, C)供应四个地区(I, II, III, IV)的农用化肥。
假定等量的化肥在这些地区使用效果相同。
各化肥厂年产量,各地区年需要量及从各化肥厂到各地区运送单位化肥的运价表如下表所示。
试求出总的运费最节省的化肥调拨方案。
需求地区化肥厂I II III IV 产量A B C 1614191313202219231715—506050最低需求最高需求305070703010不限注意:表格中的运价可以填入M(任意大正数)。
解:(1)建立新问题:得:(2)求解问题,观察求解结果:3.人事部门欲安排四人到四个不同岗位工作,每个岗位一个人。
经考核五人在不同岗位的成绩(百分制)如下表所示,如何安排他们的工作使总成绩最好,应淘汰哪一位。
工作人员人力资源物流管理市场营销信息管理甲乙丙丁戊8595828676928783908573787980929095908893解:(1)建立新问题(2)修改各个人名和任务名:(3)得:(4)解得:实验三整数规划4.某厂拟建两种不同类型的冶炼炉。
运筹学实验报告
运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。
每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。
生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。
已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。
(2)将电子表格格式转换成标准模型。
(3)将结果复制到Excel或Word文档中。
(4)分析结果。
解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。
运筹学实验
试验一Matlab基本运算练习一、实验内容:矩阵运算和基于矩阵的代数运算二、实验目的:1、熟悉有关矩阵运算的各种命令。
2、能熟练地进行代数运算,包括计算矩阵的加、减、乘、逆和方阵的行列式等。
3、能求解线性方程组。
4、能运用矩阵方法求解代数问题。
三、基本知识MA TLAB的操作对象是矩阵,标量为1×1的矩阵,向量为1×n矩阵,多项式也可用矩阵表示.1.矩阵输入矩阵输入有两种方式:(1) 用中括号表示,每行元素间用逗号或空格分开,行与行之间用分号隔开;(2) a=初始值:步长:终值,可输入行矩阵.例如输入a=[1 2 3; 4 5 6; 7 8 9]或a=[1,2,3;4,5,6;7,8,9]会得到同样的结果:a=1 2 34 5 67 8 9输入a=2:2:10得到从2到10的以2为公差的数组:a =2 4 6 8 102.多项式的表示法和运算MA TLAB用行向量来表示一个多项式.例如6xp可用矩阵表示为:x)(3+-=xp=[1 0 –1 6]MA TLAB提供的多项式运算函数名见表1-1表1-1例1 求解方程 1223-=-x x x .解 输入如下命令 syms xs=solve('x^3-2*x^2=x-1') 或 syms xs= x^3-2*x^2-x+1; solve(s) 例2 求多项式12)(23--=x x x p 的微分. 解 输入 p=[1 -2 0 -1]; q=polyder(p) 得 q =3 -4 03.矩阵运算 1.MA TLAB 提供的一些特殊矩阵,见(表1-2).例如rand(3,9)产生一3行9列的矩阵,其元素数值范围为(0,1). 2.运算符,见(表1-3).3.关系运算符,见(表1-4).4.矩阵运算的命令符,见(表1-5).若方程组为B AX =,且1-A 存在,则B A X 1-=.因此可用B A X \=或B A X /=计算线性方程组的解.例3 已知矩阵A 、B 、b 如下⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=741056143A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=201181697431B []531=b(1) 输入矩阵A 、B 、b;(2) 求X1=A 的转置,X2=A+B,X3=AB; (3) 求X4=A 的行列式,X5=A 的秩; (4) 求X6=A 的逆;(5) 求方程组AX=b 的解向量.解 完成上述求解的命令为: (1)A=[3 4 –1;6 5 0;1 –4 7]B=[1 3 4;7 9 16;8 11 20] b=1:2:5 (2) x1=A'x2=A+B x3=A*B 得 x1 =3 6 145 -4 - 1 0 7 x2 =4 7 3 13 14 16 9 7 27 x3 =23 34 56 41 63 104 29 44 80(3) x4=det(A) x5=rank(A) 得 x4 = -34 x5 = 3 (4)x6=inv(A) 得 x6 =-1.0294 0.7059 -0.1471 1.2353 -0.6471 0.1765 8529 -0.4706 0.2647(5)x=inv(A)*b ’ 得 x = 0.3529 0.1765 7647例4 求方程组⎪⎩⎪⎨⎧=--+=--+=+--22302212432143214321x x x x x x x x x x x x 的解.解 输入A=[2 -1 -1 1 1;1 2 -1 -2 0;3 1 -2 -1 2]; A([1,2],:)=A([2,1],:)得A =1 2 -1 -2 02 -1 -1 1 13 1 -2 -1 2输入A(2,:)=A(2,:)-2*A(1,:);A(3,:)=A(3,:)-3*A(1,:)得A =1 2 -1 -2 00 -5 1 5 10 -5 1 5 2输入A(3,:)=A(3,:)-A(2,:)得A =1 2 -1 -2 00 -5 1 5 10 0 0 0 1由线性代数知识知方程组无解.试验二Matlab函数运算练习一、实验内容:Matlab函数编写方法与应用二、实验目的:1.区别M 脚本文件(M-Script) 和M 函数(M-function)。
运筹学实验报告(题目)
运筹学实验报告(题目)运筹学实验报告指导老师:姓名:学号:班级:目录例题实验一人力资源分配问题实验二配料问题实验三套裁下料问题实验四成本收益平衡问题实验五投资问题例题实验目的:1掌握Excel并熟悉它的使用环境。
2、准备好系统中的Office安装盘,然后选择【工具】|【加载宏】菜单命令,在弹出的【加载宏】对话框中选择【规划求解】3、在Excei中,对已有的问题进行规划求解。
实验内容:1、对下面线性规划问题进行求解;max z =3x1+x2+2x312x1+3x2+6x3+3x4=98x1+x2-4x3+2x5=103x1-x6=0Xj>=0 j=1,2,3,4,5,6一、第一步:打开Excel菜单栏中的工具菜单,出现一个子菜单,单击“规划求解”选项。
第二步:出现规划求解参数的对话框。
该对话框用来输入规划的目标函数,决策变量和约束条件。
第三步:在规划求解参数对话框内填写参数所在的地址如下:在设置目标单元格一栏内,填入表示目标函数值的单元格地址B16,并选择最大值选项;在可变单元格一栏内,填入决策变量的单元格地址B14:C14。
第四步:单击添加按钮,出现添加约束对话框,在单元格引用位置一栏内,填入约束条件左边的值所在的单元格地址B19:B21;选择<=;在约束值一栏内,填入约束条件左边的值的单元格地址D19:D21。
选择确定,得到一个填写完毕的规划求解参数对话框第五步:单击对话框内的选项按钮,出现规划求解选项对话框。
该对话框用来输入规划求解运算中的有关参数,例如是否线性模型、是否假定非负、迭代次数、精度等。
大部分参数已经按一般要求设置好了,只需设置是否采用线性模型,以及是否假定非负。
在本实验中,选择“采用线性模型”;选择“假定非负”。
然后就进行规划求解。
1.2(a)自变量X1 X2 X3 X4 X5 X6约束条件系数12 3 6 3 0 0 9 =8 1 -4 0 2 0 10 =3 0 0 0 0 -1 0 = 目标函数系数 3 1 2 0 0 0 3解0 0 1.5 0 8 0所以该问题有最优解:X=(0,0,1.5,0,8,0)实验(一)人力资源分配问题实验目的:1、根据题目要求,在有限的人力资源约束下进行建模。
运筹学实验报告总结心得
运筹学实验报告总结心得1. 背景运筹学是以数学模型为基础,结合管理科学、经济学和计算机科学等方法,研究在有限资源的条件下优化决策问题的学科。
本次实验旨在通过运筹学方法解决一个实际的问题,并从中探索运筹学的实际应用价值。
2. 分析2.1 问题描述本次实验中,我们需要解决一个物流配送的问题。
具体问题是:给定一定数量的货物和一些配送车辆,如何确定最优的配送路线和配送顺序,以使得总体的运输成本最小。
2.2 求解思路为了解决这个问题,我们采用了TSP(Traveling Salesman Problem,旅行商问题)的算法。
TSP是一种经典的组合优化问题,通过寻找最短的闭合路径,将n个城市依次访问一遍。
我们将货物所在的位置作为城市,将物流中心作为起始点和终点,通过TSP算法确定最优的配送路线。
2.3 模型设计我们将问题抽象成图论问题,货物的位置和物流中心可以看作图的顶点,两个顶点之间的距离可以看作图的边。
我们首先计算出所有顶点之间的距离,并构建一个距离矩阵。
然后,通过TSP算法,求解最优的路径。
3. 结果通过我们的实验,我们成功地解决了物流配送问题,并得到了最优的配送路线和顺序。
我们以图的形式展示了最优路径,并计算出了最小的运输成本。
4. 建议在实验过程中,我们发现了一些可以改进的地方。
首先,我们可以考虑引入实时交通信息来调整路径,以避免拥堵和路况不佳的区域。
其次,我们可以进一步优化TSP算法,以提高求解效率和准确度。
最后,我们还可以考虑引入其他因素,如货物的紧急程度或优先级,来调整配送顺序,以更好地满足客户需求。
5. 总结通过本次实验,我们深入了解了运筹学的应用,特别是在物流配送方面的应用。
我们成功地解决了一个实际问题,并得到了有用的结果和结论。
我们还发现了一些可以改进的地方,为进一步研究和应用运筹学提供了方向。
运筹学作为一门跨学科的领域,具有广泛的应用前景。
通过运筹学方法,我们可以帮助企业和组织优化决策,提高效率,降低成本。
运筹学实验报告
运筹学实验报告实验目的:了解及掌握运筹学一些常用软件,如excel,WinQsb:实验步骤1用Excel求解数学规划例:求max=2x1+x2+x34x1+2x2+2x2≥42x1+4x2≤204x1+8x2+2x3≤4步骤:1.输入模型数据制E3的公式到E4-E6:3.从“工具”菜单中选择“规划求解”,将弹出的“规划求解参数”窗口中的目标单元格设为$E$3,可变单元格设为$B$2:$D$2,目标为求最大值: 4.添加约束:由于本例的约束条件类型分别为<=、>=和=,因此要分3次设置,每次设置完毕后都要单击“添加”按钮,如下图。
添加完成后选择“确定”返回。
5.单击“选项”按钮,将“规划求解选项”窗口中的“采用线性模型”和“假定非负”两项选中后点“确定”返回,设置好参数的界面如下图:6.单击“求解”按钮,得到问题的最优解为:x1 =1,x2=0,x3=0,max Z=2。
2.winQSB求解线性规划及整数规划[例]求解线性规划问题:Minz=2x1—x2+2x32x1+2x2+x3=43x1+x2+x4=6第1步:生成表格选择“程序,生成对话框:第2步:输入数据单击“OK”,生成表格并输入数据如下第3步:求解):x1,x2,x3决策变量(Decision Variable最优解:x1=2,x2=0,x3=0目标系数:c1=2,c2= -1,c3=2最优值:4;其中x1贡献4、x2,x3贡献0;检验数(Reduced Cost):0,0,1.75。
目标系数的允许减量(Allowable Min.c[j])和允许增量(Allowable Max.c[j]):目标系数在此范围变量时,最优基不变。
约束条件(Constraint):C1、C2;左端(Left Hand Side):4,6右端(Right Hand Side):4,6松驰变量或剩余变量(Slack or Surplus):该值等于约束左端与约束右端之差。
运筹学实验心得(精选5篇)
运筹学实验心得(精选5篇)运筹学实验心得篇1实验心得:1.背景与目标:运筹学是一门决策支持学科,它使用数学模型和算法来解决实际生活中的优化问题。
本实验的目标是通过学习运筹学的基本理论和方法,提高自己在实际问题中的决策能力和解决问题的能力。
2.实验内容:本实验包括了几个重要的运筹学主题,包括线性规划、整数规划、非线性规划和动态规划等。
我们首先学习了这些基本概念和算法,然后通过具体案例进行了实践操作,并运用所学知识对实际生活中的一些问题进行了分析和解决。
3.实验结果与收获:通过实验,我们成功地运用运筹学方法解决了一些实际问题。
例如,我们使用线性规划算法解决了货物配送问题,并使用整数规划算法解决了人员调度问题。
同时,我们也收获了一些理论知识和实践经验。
我们学会了如何使用数学模型和算法来解决实际问题,并提高了自己的决策能力和解决问题的能力。
4.反思与建议:在实验过程中,我们遇到了一些困难和挑战。
例如,有时候我们无法理解复杂的数学模型和算法,或者无法找到合适的实际问题来验证我们的知识。
因此,我们建议在学习运筹学时,应该注重基本概念和算法的学习,并积极寻找合适的实际问题来巩固和应用所学知识。
总的来说,这次实验让我们更加深入地了解了运筹学的魅力和价值,也让我们更加坚定了自己的学习方向和目标。
运筹学实验心得篇2当然,我可以帮助您撰写一篇运筹学实验的心得体会。
以下是一个可能的示例:---标题:运筹学实验:理论到实践的桥梁摘要:这篇*分享了一次运筹学实验的经历,描述了实验中的问题、解决方法以及所学到的经验教训。
关键词:运筹学,实验,问题解决,学习经验---运筹学是我在大学期间最喜爱的科目之一。
它提供了一种实用且富有挑战性的方法来理解和解决现实世界中的优化问题。
然而,真正将理论与实际联系起来的,是我的第一次运筹学实验。
实验开始时,我被一大堆复杂的数学模型和计算机程序搞得眼花缭乱。
理论知识和抽象的模型使我有些晕头转向,但我还是勇敢地面对了挑战。
运筹学实验总结
运筹学实验总结引言:运筹学是一门综合了数学、经济学和工程学等多学科知识的学科,它通过建立数学模型和运用各种优化方法,帮助我们在现实问题中寻找最优解决方案。
在这学期的运筹学课程中,我们进行了一系列实验。
这些实验不仅加深了对运筹学理论的理解,还提供了一种应用运筹学方法解决问题的实践平台。
在本文中,我将总结我参与的运筹学实验,并分享我的体会和收获。
实验一:线性规划问题求解在这个实验中,我们学习了线性规划的基本概念和求解方法。
我选择了一个典型的生产调度问题作为实验题目。
通过建立数学模型,并运用线性规划软件,我成功地解决了这个问题。
通过这个实验,我深刻理解了线性规划问题的本质,以及如何利用线性规划方法找到最优解。
实验二:整数规划问题求解整数规划是线性规划的扩展,它在决策问题中更加实用。
在这个实验中,我选择了货物配送路线问题作为研究对象。
通过构建整数规划模型,并运用求解软件,我得到了最佳的货物配送方案。
这个实验不仅对我的数学建模能力提出了要求,还培养了我的实际问题解决能力。
实验三:动态规划动态规划是一种重要的优化方法,它广泛应用于最优化问题的求解。
在这个实验中,我们学习了动态规划的基本原理和设计思想。
我选择了旅行商问题作为研究对象,通过建立递推关系和寻找最优子结构,我成功地解决了该问题。
这个实验让我意识到了动态规划方法的强大威力,同时也对我的算法设计能力提出了更高的要求。
实验四:模拟退火算法模拟退火算法是一种全局搜索优化算法,具有很强的应用能力。
在这个实验中,我选择了旅行商问题作为研究对象,通过模拟退火算法的迭代和优化,我得到了一个较好的解。
通过这个实验,我掌握了模拟退火算法的基本原理和实现过程,也了解到了算法的优越性。
实验五:遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。
在这个实验中,我选择了装箱问题作为研究对象。
通过运用遗传算法的交叉、变异和适应度选择,我得到了一个较好的装箱方案。
这个实验不仅对我的算法设计能力提出了更高的要求,还让我意识到了遗传算法的创新性和解决复杂问题的能力。
运筹学实验报告
运筹学实验报告运筹学实验报告一、引言运筹学是一门研究如何有效地进行决策和规划的学科。
它利用数学、统计学和计算机科学的方法,帮助解决各种实际问题。
本次实验旨在通过实际案例,探讨运筹学在实践中的应用。
二、问题描述我们选择了一个物流配送问题作为本次实验的研究对象。
假设有一家电商公司,需要将一批商品从仓库分配给不同的客户。
每个客户的需求量和距离仓库的距离都不同。
我们的目标是找到一种最优的配送方案,以最小化总配送成本。
三、数学模型为了解决这个问题,我们采用了整数规划模型。
首先,我们定义了以下变量:- Xij:表示将商品从仓库i分配给客户j的数量- Di:表示仓库i的供应量- Dj:表示客户j的需求量- Cij:表示将商品从仓库i分配给客户j的单位运输成本然后,我们建立了以下约束条件:1. 每个仓库的供应量不能超过其库存量:∑Xij ≤ Di2. 每个客户的需求量必须得到满足:∑Xij ≥ Dj3. 分配的商品数量必须是非负整数:Xij ≥ 0最后,我们的目标是最小化总配送成本:Minimize ∑Cij*Xij四、实验步骤1. 收集数据:我们收集了仓库的库存量、客户的需求量和单位运输成本的数据,并进行了整理和清洗。
2. 建立数学模型:根据收集到的数据,我们建立了上述的整数规划模型。
3. 求解模型:我们使用了运筹学软件对模型进行求解,并得到了最优的配送方案和总配送成本。
4. 分析结果:我们对结果进行了分析,比较了不同方案的优劣,并提出了一些建议。
五、实验结果与分析经过运筹学软件的求解,我们得到了最优的配送方案和总配送成本。
通过与其他方案的比较,我们发现该方案在成本上具有明显的优势。
同时,我们还发现一些仓库和客户之间的距离较远,可能会导致运输时间和成本增加。
因此,我们建议公司可以考虑优化仓库和客户的布局,以减少运输成本。
六、实验总结本次实验通过运筹学的方法,解决了一个物流配送问题。
我们通过建立数学模型、求解模型和分析结果,得出了最优的配送方案和总配送成本。
运筹学实验的心得体会
运筹学实验的心得体会运筹学实验的心得体会篇一:运筹学实验的心得体会这学期选修课选的是王延臣老师的运筹学,通过几次上课的观察与体会,有以下几点体会可惜谈谈,希望老师给予知道讲解:《史记·高祖本纪》有云:“夫运筹帷幄之中,决胜于千里之外”。
先从运筹学的名字谈起。
运筹学的英文原名叫做Operations Research,从名字就可以看出,运筹学主要就是“研究(Research),就是研究在经营管理活动中如何行动,如何以尽可能小的代价,获取尽可能好的结果,即所谓“最优化”问题。
中国学者把这门学科意译为“运筹学”,就是取自古语“运筹于帷幄之中,决胜于千里之外”,其意为运算筹划,出谋献策,以最佳策略取胜。
这就极为恰当地概括了这门学科的精髓。
运筹学作为一门现代科学,是在第二次世界大战期间首先在英美两国发展起来的,有的学者把运筹学描述为就组织系统的各种经营作出决策的科学手段。
P.M.Morse与G.E.Kimball在他们的奠基作中给运筹学下的定义是:“运筹学是在实行管理的领域,运用数学方法,对需要进行管理的问题统筹规划,作出决策的一门应用科学。
”运筹学的另一位创始人定义运筹学是:“管理系统的人为了获得关于系统运行的最优解而必须使用的一种科学方法。
”它使用许多数学工具(包括概率统计、数理分析、线性代数等)和逻辑判断方法,来研究系统中人、财、物的组织管理、筹划调度等问题,以期发挥最大效益。
一、运筹学的特点是:1、运筹学已被广泛应用于工商企业、军事部门、民政事业等研究组织内的统筹协调问题,故其应用不受行业、部门之限制。
2、运筹学既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效。
3、它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。
对所研究的问题求出最优解,寻求最佳的行动方案,所以它也可看成是一门优化技术,提供的是解决各类问题的优化方法。
运筹学综合实验报告
《运筹学》实验报告实验名称:综合实践运用班级:组员:学院:完成时间:2011年12月指导教师:1 实验目的1、掌握运筹学概念、原理、模型以及实际应用意义。
2、理解掌握运筹学综合实践应用。
2 实验内容案例B4童心玩具厂下一年度的现金流(万元)如表中所示,表中负号表示2该月现金流出大于流入,为此该厂需要借款。
借款有两种方式:一是于上一年末借一年期贷款,一次得全部贷款额,从一月底起每月还息1%,于12月归还本金和最后一次利息;二是得到短期贷款,每月出获得,于月底归还,月息 1.5%。
当该厂有多余现金时,可短期存款,月初存入,月末取出,月息0.4%。
问该厂应如何进行存款操作,既能弥补可能出现的负现金流,又可以使年末现金总量最大?3 实验具体方法及步骤3.1 案例分析从案例中可以知道,该厂全年可以进行的借贷次数不限,借贷类型有两种,分别是长贷和短贷,为保证厂方的现金充足,可以在借贷了长贷的情况下依据实际情况借贷短贷。
其中长贷(用y表示)只借贷一次,在年初发生,以后每个月都将要还长贷的0.01%y的利息,总共要还12个月,还息日期为每个月的月底,也即是下一个月份的月初还息;而每个月还可以进行短期贷款(用wi表示),可贷款12个月,并于月底也就是下个月出还段贷款息1.5%wi,也就是说每个月的月初将进行一次短贷贷款,并还上一个月的短贷息 1.5%wi;而每个月若是有现金余留,可将现金(用zi表示)存款,利息为0.4%zi,总共为12个月综上可知,第一个月现金余额须为长贷额+短贷额-月底存款额要大于第一个月的现金需求额,从第二个月开始:上一个月的存款本息+本月贷款额-长贷利息-上个月短贷本息-月底存款额要大于本月的现金需求3.2 建立模型设长期贷款为y,wi表示第i个月的短期贷款额,zi为第i个月的短期存款额,i=1,2,3,4,5,6,7,8,9,10,11,12,目标函数为年底的最多现金额Max Z(目标函数为第12个月份所遗留的现金额,即求第12个月份的现金余额最大),其中约束条件共有12个,分别代表每个月份的现金约束,则线性模型可建立为:Max Z=(1+0.004)x12-(1+0.01)y-(1+0.015)w12S.t{y+w1-z1>=12 第1个月(1+0.004)z1-0.01y-(1+0.015)w1-z2+w2>=10 第2个月(1+0.004)z2-0.01y-(1+0.015)w2-z3+w3>=8 第3个月(1+0.004)z3-0.01y-(1+0.015)w3-z4+w4>=10 第4个月(1+0.004)z4-0.01y-(1+0.015)w4-z5+w5>=4 第5个月(1+0.004)z5-0.01y-(1+0.015)w5-z6+w6>=-5 第6个月(1+0.004)z6-0.01y-(1+0.015)w6-z7+w7>=7 第7个月(1+0.004)z7-0.01y-(1+0.015)w7-z8+w8>=2 第8个月(1+0.004)z8-0.01y-(1+0.015)w8-z9+w9>=-15 第9个月(1+0.004)z9-0.01y-(1+0.015)w9-z10+w10>=-12 第10个月(1+0.004)z10-0.01y-(1+0.015)w10-z11+w11>=7 第11个月(1+0.004)z11-0.01y-(1+0.015)w11-z12+w12>=-45 第12个月}该案例线性模型使用LINGO软件进行求解,编辑如下程序:求解得到结果如图所示,为:结果解析:本实验结果为小组3成员各自独立完成并且结果一致所得。
运筹学实验报告
《运筹学》实验报告指派问题班级:姓名:学号:指导教师:《运筹学》实验报告(一)一.实验目的熟练的掌握整数规划,0-1规划问题的数学模型的建立于求解和数据分析二.实验要求利用EXCEL软件求解整数规划和0-1规划模型三.实验准备Pc486微机、Windows环境、Excel软件四.实验内容及步骤实验内容:某公司面临5项任务,计划派甲、乙、丙、丁、戊分别去做。
由于戊临时被公司派往国外,因此公司只有让甲、乙、丙、丁中的一个人同时担任两项任务,其他三人仍旧单独完成一项任务。
各人完成相应任务时间如下表。
请为公司制定一个总工时最小的指派方案。
实验内容分析:本题中研究的是制定一个总工时最小的工作任务分配方案即本题是一个0-1规划问题。
又本题中是四个员工五个任务的不平衡的分配任务,所以可以有增加虚拟人物的方式来解决不平衡问题也可以直接用抽屉原则来解决不平衡问题。
方法一:(虚拟人物法)建立数学模型:变量:甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A 任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45,虚拟员工做A任务为X51,虚拟员工做B任务为X52,虚拟员工做C任务为X53,虚拟员工做D任务为X54 ,虚拟员工做E任务为X55目标:总工时最小的人员安排方法约束:每人(包括虚拟人物)只能做一项任务即决策变量的0-1约束。
规划模型如下:MINZ(x)=25X11+29X12+31X13+42X14+37X15+39X21+38X22+26X23+20X24 +33X25+34X31+27X32+28X33+40X34+32X35+24X41+42X42+36X43+23X44+45X45+24X51+27X52+26X53+20X54+32X55X11+ X21+ X31+ X41+ X51=1X12+ X22+ X32+ X42+ X52=1X13+ X23+ X33+ X34+ X35=1X14+ X24+ X34+ X44+ X45=1X15+ X25+ X35+ X45+ X55=1 s.t. X11+ X12+ X13+ X14+ X15=1X21+ X22+ X23+ X24+ X25=1X31+ X32+ X33+ X34+ X35=1X41+ X42+ X43+ X44+ X45=1X51+ X52+ X53+ X54+ X55=1X ij=0或1(i=0-5,j=0-5)用EXCEL求解上式,过程如下:输入效率矩阵、方案矩阵和约束条件单元格公式:求解参数对话框如图所示:最终结果为:最小总工时131甲做A任务乙做C任务和D任务丙做E任务丁做B任务方法二:(抽屉原则法)建立数学模型:设甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45。
哈工大运筹学实验报告实验
哈工大运筹学实验报告实验实验一:货物运输问题的数学建模与求解实验目的:1.了解货物运输问题的数学建模方法;2.掌握货物运输问题的线性规划求解方法;3.学会使用运筹学软件求解货物运输问题。
实验原理:货物运输问题属于线性规划问题的一种,其目标是在满足供需平衡和运输容量限制的前提下,使运输成本最小化。
实验内容:1.问题描述:公司有m个供应点和n个需求点,其中每个供应点的供应量为si (i=1,2,…,m),每个需求点的需求量为dj (j=1,2,…,n)。
公司希望通过运输将货物从供应点送到需求点,各供应点到需求点的单位运输成本为aij (i=1,2,…,m; j=1,2,…,n)。
公司希望确定每个供应点与需求点之间的货物运输量xij,以及总运输成本C,使总运输成本最小。
2.数学建模:设xij表示从第i个供应点到第j个需求点的货物运输量,C表示总运输成本,则该问题的数学模型可以描述为:min C = ∑(i=1 to m) ∑(j=1 to n) aij * xijsubject to:∑(j=1 to n) xij = si, i=1,2,…,m∑(i=1 to m) xij = dj, j=1,2,…,nxij ≥ 0, i=1,2,…,m; j=1,2,…,n3.求解方法:利用运筹学软件求解上述线性规划问题,得到最优解。
实验步骤:1.在运筹学软件中新建一个线性规划模型;2.设定决策变量、目标函数和约束条件,并输入相应参数;3.运行求解算法,得到最优解。
实验结果:根据实验步骤,通过运筹学软件求解货物运输问题,得到最优解如下:供应点1到需求点1的运输量为x11=200;供应点1到需求点2的运输量为x12=150;供应点2到需求点1的运输量为x21=100;供应点2到需求点2的运输量为x22=250;总运输成本最小为C=900。
实验总结:通过本次实验,我了解了货物运输问题的数学建模方法,并掌握了线性规划求解的基本步骤。
运筹学实训实验报告
一、实验背景运筹学是一门应用数学的分支,它运用数学模型和算法来解决各种优化问题。
随着现代科技的发展,运筹学在各个领域的应用越来越广泛,如生产管理、物流运输、资源分配等。
为了提高学生运用运筹学知识解决实际问题的能力,我们开展了运筹学实训实验。
二、实验目的1. 熟悉运筹学的基本概念和常用方法;2. 掌握线性规划、整数规划、运输问题、目标规划等运筹学模型;3. 学会运用计算机软件解决实际问题;4. 培养学生的团队合作精神和创新意识。
三、实验内容本次实验主要包括以下内容:1. 线性规划:以生产计划问题为例,建立数学模型,并运用Excel规划求解器求解最优解。
2. 整数规划:以人员排班问题为例,建立数学模型,并运用Lingo软件求解最优解。
3. 运输问题:以物流配送问题为例,建立数学模型,并运用Lingo软件求解最优解。
4. 目标规划:以投资组合问题为例,建立数学模型,并运用Lingo软件求解最优解。
四、实验步骤1. 线性规划实验(1)问题分析:某企业需要生产甲、乙两种产品,已知生产甲、乙两种产品所需的原料、劳动力及设备等资源消耗量,以及产品的售价和利润。
(2)模型建立:根据问题分析,建立线性规划模型,目标函数为最大化利润,约束条件为资源消耗量不超过限制。
(3)求解:运用Excel规划求解器求解最优解。
2. 整数规划实验(1)问题分析:某公司需要安排员工值班,要求每天至少有3名员工值班,且员工值班时间不能超过一周。
(2)模型建立:根据问题分析,建立整数规划模型,目标函数为最小化员工值班成本,约束条件为员工值班时间不超过限制。
(3)求解:运用Lingo软件求解最优解。
3. 运输问题实验(1)问题分析:某物流公司需要将货物从A、B两个仓库运送到C、D两个销售点,已知各仓库的货物量、各销售点的需求量以及运输成本。
(2)模型建立:根据问题分析,建立运输问题模型,目标函数为最小化运输成本,约束条件为各仓库的货物量不超过需求量。
运筹学实验心得
运筹学实验心得在运筹学课程中,我们学习了许多关于决策和优化的理论知识,并通过实验来加深对这些知识的理解和应用。
在实验中,我们探讨了不同的运筹学模型和算法,并尝试用这些工具来解决实际问题。
在这篇文章中,我将分享我在运筹学实验中的心得体会。
首先,我发现实验是理论知识与实际应用相结合的最佳途径。
在课堂上,我们学习了许多关于线性规划、整数规划、动态规划等理论知识,但这些知识如果无法应用于实际问题中,就会显得有些空洞。
通过实验,我们可以将理论知识应用到具体问题中去,从而更好地理解和掌握这些知识。
其次,实验让我意识到了运筹学在现实生活中的重要性。
在实验中,我们尝试了许多不同类型的问题,如生产调度、资源分配、路径规划等,这些问题在现实生活中都有着广泛的应用。
通过实验,我深刻地意识到了运筹学在现实生活中的重要性,它可以帮助我们优化决策,提高效率,降低成本,从而为社会和企业创造更大的价值。
另外,实验也让我体会到了运筹学模型和算法的强大之处。
在实验中,我们使用了许多不同的运筹学模型和算法,如线性规划模型、整数规划模型、动态规划算法等。
这些模型和算法能够帮助我们在面对复杂的决策问题时,找到最优的解决方案。
通过实验,我深刻地体会到了这些模型和算法的强大之处,它们可以帮助我们在面对复杂的问题时,做出更加科学和有效的决策。
最后,实验也让我意识到了团队合作的重要性。
在实验中,我们通常是以小组的形式来完成任务的,每个人都扮演着不同的角色,共同合作来解决问题。
通过实验,我意识到了团队合作在解决复杂问题时的重要性,只有团队成员之间相互配合,才能更好地完成任务。
综上所述,通过运筹学实验,我不仅加深了对运筹学理论知识的理解和应用,还意识到了运筹学在现实生活中的重要性,以及团队合作的重要性。
我相信这些经验对我未来的学习和工作都会有着积极的影响。
希望未来能够继续学习运筹学知识,将其运用到实际问题中去,为社会和企业创造更大的价值。
运筹学实验报告
实验一:线性规划问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
②掌握利用计算机软件求解线性规划最优解的方法。
2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:(1)在主菜单中选择线性规划模型,在屏幕上就会出现线性规划页面,如图所示。
(2)在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数及约束条件的各变量的系数和b值,并选择好“≥”、“≤”或“=”号,如图所示。
(3)当约束条件输入完毕后,请点击“解决”按钮,屏幕上将显现线性规划问题的结果,如图所示。
例题一:例题二:例题三:例题四:例题五5、试验体会或心得运筹学是一门实用的学科,学习运筹学,结合生活实际运用运筹学,我们可以将资源最大化利用。
学习理论的目的就是为了解决实际问题。
线性规划的理论对我们的实际生活指导意义很大。
当我们遇到一个问题,需要认真考察该问题。
如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。
线性规划指的是在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。
其数学模型有目标函数和约束条件组成。
一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。
所以,通过这次实验,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。
这次实验让我懂得了运筹学在电脑的应用,让我对运输与数学相结合的应用理解更深了。
实验二:整数规划与运输问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、实验题目
运筹学实验2-线性规划灵敏度分析
某公司生产三种产品A1、A2、A3,它们在B1、B2两种设备上加工,并耗用C1、C2两种原材料,已知生产单位产品耗用的工时和原材料以及设备和原材料的最多可使用量如表 C -7所示。
表 C -7 生产三种产品的有关数据
已知对产品A2的需求每天不低于70件,A3不超过240件。
经理会议讨论如何增加公司收
入,提出了以下建议:
(a )产品A3提价,使每件利润增至60元,但市场销量将下降为每天不超过210件; (b )原材料C2是限制产量增加的因素之一,如果通过别的供应商提供补充,每千克价格将比原供应商高20元;
(c )设备B1和B2每天可各增加40 min 的使用时间,但相应需支付额外费用各350元; (d )产品A2的需求增加到每天100件;
(e )产品A1在设备B2上的加工时间可缩短到每件2 min ,但每天需额外支出40元。
分别讨论上述各条建议的可行性,哪些可直接利用“敏感性报告”中的信息,哪些需要重新规划求解
2、模型
设1X 为A1的产量,2X 为A2的产量,3X 为A3的产量
1)数学模型
由题目可建立线性规划模型:
321502030max x x x z ++=
)
3,2,1(0240
703004204460234302323212131321=≥≤≥≤++≤+≤+≤++i x x x x x x x x x x x x x i
2)用Excel 建模求解
3、实验结果及敏感性分析
1)实验结果
以得出题得最优解 x1=0,x2=70,x3=230 时,最优值为 12900,即生产 A1,A2,A3 产品分别是 0 件, 70 件,230 件时,公司可获得最大利润 12900 元
2)敏感性报告
①A3 产品每件利润提到 60 元,这在灵敏度分析的最优基不变范围 A3[50-23.3333,5 0+∞]内,但市场销量下降为不超过 210 件,而从求解报告中中最优解 A3=230 时,有最大目标值,故此建议可行。
②有敏感性报告知C2的影子价格为20,即C2的增加会导致利润增加,利润系数在 A1 [30-∞,30+35];A2[0, 50];A3[50-23.3333, 50+∞]) 范围内变动,最优基不变目标函数值减少,所以要重新规划求解。
设备B1和B2每天可各增加40min的使用时间,而从第一个求解报告知B1还有60资源未利用B2的资源刚好用完,于是,只需增加B2的时间,且根据上面结果可知每增加1单位的B2,利润可提高15元,则增加40min可以提高利润15*40=600, 再减去所要费用3 50得到利润增加量为250.即总利润为 13150元,故此建议可行。
④从求解报告的第6行及灵敏度分析的第6行分别可知A2的资源已用完,且其再最优基不变条件下可改变值为[-∞,70],于是根据产品A2的需求量增加到每天100件;重新建立模型得:
100;
X
240;
X
300;
X
+
X
+
X
420;
4X
+
1X160;
2X
+
3X
430;
≤
X
+
2X
+
X
;
50X
+
20X
+
30X
=
max
2
3
3
2
1
22
1
3
2
1
3
2
1
≥
≤
≤
≤
≤
最优目标函数值为12000,即最大利润为12000元<12900, 故此建议不可行。
⑤在原模型的求解报告中知最优目标函数值为12900元时,产品A1的加工件数是0,则A1在设备B2上的加工时间可缩短到每件2min,不影响最优结果。
通过这次运筹学的实验,对线性规划问题进行了建模,求解,灵敏度分析,得出求解报告和灵敏度分析报告,并据此分析各条建议的可行性。