乙苯脱氢制苯乙烯讲解
乙苯脱氢制苯乙烯方程式
乙苯脱氢制苯乙烯方程式一、引言乙苯脱氢制苯乙烯是一种重要的有机合成反应,可以通过乙苯经过脱氢反应生成苯乙烯。
本文将详细介绍乙苯脱氢制苯乙烯的反应方程式、反应机理以及相关应用和工业生产。
二、反应方程式乙苯脱氢制苯乙烯的反应方程式如下所示:C6H6CH3 -> C6H5CH=CH2 + H2反应的主要产物为苯乙烯(C6H5CH=CH2),同时生成氢气(H2)。
三、反应机理乙苯脱氢制苯乙烯的反应机理可以分为两步:1.脱氢反应(去氢化):乙苯分子中的一个氢原子(H)脱离,生成苯乙烯中的一个双键(C=C)。
2.氢迁移反应:生成的苯乙烯发生氢迁移反应,从而使乙苯中的另一个氢原子(H)脱离,生成苯乙烯中的另一个双键(C=C)。
整个反应过程如下所示:C6H6CH3 -> C6H5CH2• + H• (脱氢反应)C6H5CH2• -> C6H5CH=CH2 + H• (氢迁移反应)整个反应过程需要适当的温度和催化剂的存在。
常见的催化剂包括金属氧化物、金属螯合物等。
四、反应条件乙苯脱氢制苯乙烯的反应条件通常为高温和大气压力下进行,一般适用以下条件:•温度:500-600摄氏度•压力:1-10大气压•催化剂:常用的催化剂有二氧化铬、氧化钪、氧化镍等除了上述基本条件外,反应过程中还需要配合适当的反应时间和反应器设计,以及对产物的分离和纯化等工艺的控制。
五、应用和工业生产苯乙烯是一种重要的工业原料,广泛应用于合成橡胶、塑料、纺织品、涂料、颜料等行业。
因此,乙苯脱氢制苯乙烯在工业生产中具有重要的意义。
乙苯脱氢制苯乙烯的工业生产常采用流化床反应器或管式反应器。
工艺流程中需要考虑催化剂的选择和寿命,控制反应温度和压力等参数,以及对产物的分离和纯化等后续处理。
六、总结乙苯脱氢制苯乙烯是一种重要的有机合成反应,通过乙苯经过脱氢反应生成苯乙烯。
本文介绍了该反应的方程式、反应机理以及相关应用和工业生产。
随着化工工业的发展,乙苯脱氢制苯乙烯的研究和应用将继续得到重视,不断改进反应条件和工艺流程,以提高产率和纯度,降低能耗和环境影响。
(医学课件)乙苯脱氢工艺(全)解析
催化脱氢—氢选择性氧化工艺
SMART工艺的原理:在乙苯催化脱氢工艺 的基础上,向脱氢产物中加入适量的氧气或 空气,使氢气在选择性氧化催化剂的作用下 氧化为水,降低反应物中的氢分压,打破传 统催化脱氢反应中的热平衡,使反应向生成 物方向移动。
CH2CH3 cat
CH CH2 +H2
2H2+O2→2H2O
第九章 苯乙烯生产工艺
第一节 概述
1
LOGO
苯乙烯的性质和用途
1、苯乙烯的物理性质:
带辛辣味的无色至黄色油状液体, 有高折射性和特殊的芳香气味;溶
于乙醇、乙醚、甲醇、丙酮等,不 溶于水。
在空气中最大允许浓度为100ppm(百万分之 一),在空气中的爆炸极限为:上限:6.1% (体积),下限:1.1%(体积) 。
35
苯乙烯生产新工艺介绍
3、催化脱氢—氢选择性氧化工艺
发展:1985年日本三菱公司应用Uop公司 的乙苯脱氢-氢选择性氧化工艺(简称StyroPlus工艺),建设了一个5000t/a苯乙烯生产装 置,至今生产情况良好,标志着这一工艺技术 工业化成功。随后,此工艺与其他先进工艺 一起汇集为SMART工艺。
唯一 热源
过热
T出< T进
33
单段绝热式反应器
由于脱氢反应需要吸收大量热量, 故反应器的进口温度必然高于出 口温度,单段绝热反应器温差可 达65℃。这样的温度分布对速 率和选择性都不利。
反应初期,C乙苯高,平行副反 应竞争剧烈,T进高,有利于平 行副反应(E平副高),使选择性 下降;
反应器出口,T低,对平衡不利, 使反应速率减慢,限制了转化率 的提高;
加氢 裂解
CH2CH3 CCHHC22CCHHH2++C33HHH223
实验一 乙苯脱氢制苯乙烯
4.2 实验一 乙苯脱氢制苯乙烯一 实验目的(1)了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。
(2)学会稳定工艺操作条件的方法。
二 实验原理1.本实验的主副反应 主反应:副反应:在水蒸气存在的条件下,还可能发生下列反应:此外还有芳烃脱氢缩合苯乙烯聚合生成焦油和焦等。
这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。
(1)影响本反应的因素 1)温度的影响乙苯脱氢反应为吸热反应,00>∆H,从平衡常数与温度的关系式20ln RT H T K pp ∆=⎪⎪⎭⎫ ⎝⎛∂∂可知,提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。
但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。
本实验的反应温度为:540~600℃。
2)压力的影响乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式n p K K =γ∆⎪⎪⎭⎫⎝⎛∑i nP 总可知,当γ∆>时,降低总压总P 可使n K 增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。
本实验加水蒸气的目的是降低乙苯的分压,以提高平衡转化率。
较适宜的水蒸气用量为:水∶乙苯=1.5∶1(体积比)或8∶1(摩尔比)。
3)空速的影响乙苯脱氢反应系统中有平衡副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。
(2)催化剂本实验采用氧化铁系催化剂其组成为:Fe2O3—CuO—K2O3—CeO2。
三预习与思考(1)乙苯脱氢生成苯乙烯反应是吸热还是放热反应?如何判断?如果是吸热反应,则反应温度为多少?实验室是如何来实现的?工业上又是如何实现的?(2)对本反应而言是体积增大还是减小?加压有利还是减压有利?工业上是如何来实现加减压操作的?本实验采用什么方法?为什么加入水蒸气可以降低烃分压?(3)在本实验中你认为有哪几种液体产物生成?哪几种气体产物生成?如何分析?四实验装置及流程见图4.2-1。
苯乙烯生产—乙苯催化脱氢生产苯乙烯的工艺参数
本讲学习了苯烷基化和乙苯催化脱氢两个反应过程中的工艺参数及确 定,理解工艺参数对反应过程产生的影响,对学习乙苯脱氢生成苯乙烯 的工艺流程有重要帮助。 思考题: 请根据生产原理确定乙苯催化脱氢过程的工艺参数。
2、脱氢反应工艺参数
(3)水蒸气用量 目的:降低原料乙苯的分压,有利于主反应的进行。 选用水蒸气做稀释剂的好处: ①降低乙苯分压,改善化学平衡,提高平衡转化率; ②热容大,利于反应温度稳定; ③脱除催化剂表面的积炭,恢复催化剂活性,延长催化剂再生周期; ④置换吸附在催化剂表面的产物,有利于产物脱离催化剂表面,加快产品生成速度; ⑤容易与反应物分离。
1、苯烷基化反应工艺参数
(2)反应压力
压力对气液相反应平衡影响不大。 热力学计算:乙烯在接近常压5~6MPa下操作。 使用AlCl3催化剂:乙烯与苯通常在常压下进行反应。
(3)原料配比
1、苯烷基化反应工艺参数
乙烯对苯摩尔比增加,乙苯的生成 量增加,多乙苯的生成量也增加。
原料配比超过0.6,乙苯生成量增 加不显著,多乙苯生成量显著加大。
1、苯烷基化反应工艺参数
苯中的硫化物:总质量含量<0.1%。 甲苯:在AlCl3作用下生成甲乙苯,造成乙苯分离困难,且增加原料乙烯 的消耗。 过量水:将AlCl3水解,HCl腐蚀设备,Al(OH)3堵塞管道和设备。苯中 含水量一定要精确计算,一般含水量应小于500~700mg/kg。
2、脱氢反应工艺参数
2、脱氢反应工艺参数
转化率 反应温度/K
853 873 893 913
0 0.35 0.41 0.48 0.55
n(水蒸气):n(乙苯) 16
0.76 0.82 0.86 0.90
18 0.77 0.83 0.87 0.90
乙苯催化脱氢制苯乙烯的反应
乙苯催化脱氢制苯乙烯的反应
乙苯催化脱氢制苯乙烯是一种重要的化学反应,常用于工业生产中。
这种反应通过催化剂的作用,将乙苯分子中的氢原子去除,形成苯乙烯分子。
苯乙烯是一种重要的有机化合物,广泛应用于橡胶、塑料、合成纤维等领域。
乙苯脱氢制苯乙烯的反应机理是一个复杂的过程,需要催化剂的参与。
常用的催化剂包括氧化锌、氧化铬、氧化铝等。
这些催化剂能够提高反应速率,降低反应温度,减少能量消耗,提高产物纯度。
在乙苯脱氢制苯乙烯的反应过程中,催化剂起着至关重要的作用。
首先,催化剂能够吸附乙苯分子,并使其发生脱氢反应,生成苯乙烯和氢气。
其次,催化剂能够促进反应物分子之间的相互作用,降低反应活化能,提高反应速率。
最后,催化剂还能够防止副反应的发生,提高产物的选择性和纯度。
乙苯脱氢制苯乙烯的反应条件包括温度、压力、催化剂种类和用量等因素。
通常情况下,反应温度在400-600摄氏度之间,压力在1-3大气压之间。
选择合适的催化剂种类和用量,可以有效提高反应效率和产物纯度。
总的来说,乙苯脱氢制苯乙烯是一种重要的工业化学反应,具有广泛的应用前景。
通过优化反应条件和催化剂的选择,可以提高产物的质量和产率,降低生产成本,推动相关行业的发展。
最新乙苯脱氢制苯乙烯知识讲解
乙苯脱氢制苯乙烯化工11-1 朱伦伦工艺原理以乙苯为原料,按1:3~1:8水比加入过热水蒸汽,在轴径向反应器内,于高温、负压条件下,通过催化剂床层进行乙苯脱氢反应,生成苯乙烯主产品;副反应生成苯、甲苯、甲烷、乙烷、丙烷、H2、CO和CO2。
主反应:Array这是一个强吸热可逆增分子反应。
副反应是热裂解、氢化裂解和蒸汽裂解反应:C6H5CH2CH3→C6H6+C2H4C6H5CH2CH3+H2→C6H5CH3+CH4C6H5CH2CH3+H2→C6H6+C2H6C+2H2O→2H2+CO2CH4+H2O→3H2+COC2H4+2H2O→2CO+4H2水蒸汽变换反应:CO+H2O→H2+CO2在水蒸汽浓度很高时,生成苯、甲苯的反应式可能被下列反应所代替:C6H5CH2CH3+2H2O→C6H5CH3+CO2+3H2C6H5CH2CH3+2H2O→C6H6+CH4+CO2+2H2在乙苯脱氢反应中,原料乙苯中的化学杂质也发生反应,生成物还会进一步发生反应,为此,最终生成物中还含有另一些副产物,如二甲苯、异丙苯、α-甲基苯乙烯、焦油等。
影响化学反应的因素主要有:反应温度、反应压力和水蒸汽/乙苯比(简称水比)。
此外,该反应还受到反应物通过催化剂床层的液体体积时空速度(LHSV)、催化剂性能、原料乙苯中含杂质情况等影响。
反应温度:乙苯脱氢生成苯乙烯的反应为吸热反应,故乙苯转化率随着反应温度的升高而增加。
当温度升高后,不但生成苯乙烯的正反应增加,而且消耗苯乙烯的逆反应以更高的速度增加。
另外,当反应温度提高后,虽然乙苯转化率提高,但副反应(指吸热的副反应)也将加剧,故生成苯乙烯的选择性将降低,因而反应温度不宜过高。
从降低能耗和延长催化剂寿命出发,希望在保证苯乙烯单程收率的前提下,尽量采用较低的反应温度。
反应压力:对于给定的反应温度和水比,乙苯的转化率随着反应压力的降低而显著增加。
在相同的乙苯液体空速和水比下,随着反应压力降低,可相应降低反应温度,而苯乙烯的单程收率维持不变,苯乙烯选择性提高。
简述乙苯脱氢生产苯乙烯的工艺流程
简述乙苯脱氢生产苯乙烯的工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!乙苯脱氢生产苯乙烯工艺流程解析引言乙苯脱氢是一种重要的化工工艺,用于生产苯乙烯,这是一种广泛应用于塑料、橡胶、合成纤维等领域的重要原料。
乙苯脱氢制苯乙烯
620℃
W% 1.83 1.60 45.63 50.95 质量/g 0.15 0.13 3.79 4.23
产品 苯 甲苯 乙苯 苯乙烯
乙苯脱氢制苯乙烯各结果表
反应温度/℃ 乙苯转化率 苯乙烯选择性 苯乙烯收率
560.7
61.7%
12.7%
7.8%
591.9
70%
21.8%
15.26%
621.3
78.1%
高温、低压有助于脱氢反应的进行
减压:高温下进行负压操作不安全,加入惰性气体(稀释剂,一般用 水蒸气)实现降低原料气分压的目的。
副反应
C2H5
+ C2H4
CH3
C2H5
+ 2H2
+ CH4
乙苯脱氢反应产 物称为脱氢液, 也称炉油,其组 成为:苯、甲苯、 乙苯、苯乙烯。
C2H5
+ 2H2
+ C2H6
C2H5
8C + 5H2
C2H5
+ 16H2O
8CO2 + 21H2
在700 ℃下,加氢裂解的 平衡常数Kp仍很大,故裂 解和加氢裂解反应比脱氢 反应有利,需高活性、高 选择性催化剂。
t/℃
乙苯脱氢主副反应平衡常数比较
4.实验方案
乙苯脱氢工艺条件
温度的影响 主反应:吸热反应 ,T↑ , KP ↑ 副反应:裂解、 结焦,T ↑ ,有利于副反应,反应选择性变差
31.2%
24.37%
乙苯转化率、苯乙烯选择性、苯乙烯收率关系图
实验结论
通过实验,在压力一定的条件下随着温度的升高,乙 苯的转化率增大,苯乙烯的选择性不断提高
谢谢各位老师的指导和建议!
乙苯脱氢生产苯乙烯工艺知识讲解
(3)惰性气体 用水蒸气作脱氢反应的稀释剂具有下列优
点: ①降低了乙苯的分压,利于提高乙苯脱氢的平 衡转化率; ②可以抑制催化剂表面的结焦,具有消炭作用; ③提供反应所需的热量,且易与产物的分离。 ④阻止催化剂被还原成低价氧化态。
应选择适宜的水蒸气与乙苯的比例,通常 水蒸气:乙苯=(6-9):1。
(4)乙苯液空速
应采用高空速,以提高选择性,常选0.6 h-1。
3. 乙苯脱氢工艺流程和反应器
(1)反应器型式与结构
根据供
绝热式反应器:过热蒸汽
(2)乙苯脱氢工艺流程
1)列管式等温反应器脱氢部分工艺流程
等温反应器工艺流程特点: a.乙苯转化率高、苯乙烯选择性高; b.水蒸气用量较少。 c.反应器制造费用高。
乙苯脱氢生产苯乙烯工艺
一、概述 苯乙烯 (styrene),C8H8 , 1.用途
是高分子材料合成的重要单体。
共聚:聚苯乙烯、丙烯腈-丁二烯-苯乙烯树脂 (ABS树脂); 与丁二烯反应:乳胶、合成橡胶。
CH CH2
二、乙苯脱氢法
1.乙苯催化脱氢的主副反应 主反应:
副反应:
2.乙苯脱氢工艺条件选择
(1)温度 平衡常数随温度的升高而增大,为避免副反应,
温度不应太高。 常选823-873K。
反应的平衡常数和平衡转化率随反应温度变 化曲线。
(2)压力
乙苯脱氢生成苯乙烯的反应是分子数增大的反应, 降低压力对生成苯乙烯有利。苯乙烯的工业生产 采用负压脱氢工艺,操作压力40-60 kPa。
2)绝热反应器反应工艺流程
绝热反应器工艺流程特点: a.反应器结构简单,制造费用低,生产能 力大,检修方便。 b.乙苯转化率低、苯乙烯选择性低; c.水蒸气用量多,工业废水多。
乙苯脱氢制苯乙烯
实验7 乙苯脱氢制苯乙烯苯乙烯,C 6H 5CH=CH 2,C 8H 8,是不饱和芳烃最简单,最重要的成员,广泛用作生产塑料和合成橡胶的原料,如结晶型苯乙烯,橡胶改性抗冲聚苯乙烯,丙烯腈—丁二烯—苯乙烯共聚物(ABS ),苯乙烯—丙烯腈共聚物(SAN),苯乙烯—顺丁烯二酸酐共聚物(SMA)和丁苯橡胶(SBR)等。
苯乙烯的生产方法很多,主要有乙苯脱氢法和共氧化法(联产环氧丙烷),乙苯脱氢法占世界苯乙烯总产量的90%。
本实验是以乙苯为原料,用气—固相催化脱氢法制苯乙烯。
一.实验目的1.掌握乙苯气相催化脱氢的基本原理和实验方法,掌握乙苯脱氢操作条件对产物收率的影响;2. 熟悉反应器、汽化器等结构特点;3. 了解反应温度控制和测量方法以及加料的控制与计量方法; 4. 了解反应产物的分析测试方法。
二.实验原理乙苯脱氢为可逆吸热反应:主反应: C 8H 10 C 8H 8 + H 2 △H 873K = 125 kJ/mol (1)除脱氢反应外,还发生一系列副反应,生成苯、甲苯、甲烷、乙烷、烯烃、焦油等,如:C 8H 10 C 6H 6+ C 2H 4 △H 873K = 102 kJ/mol (2)C 8H 10 + H 2 C 7H 8 + CH 4 △H 873K = - 64.4 kJ/mol (3) C 8H 10 + H 2 C 6H 6 + C 2H 6 △H 873K = - 41.8 kJ/mol (4) C 8H 10 8C + 5H 2 △H 873K = - 1.72kJ/mol (5) 乙苯脱氢反应是一个吸热、摩尔数增多并需要催化剂的复杂过程。
由于反应是吸热反应,随着温度的升高,脱氢反应加快,苯乙烯收率也迅速增加。
反应温度过高,脱氢反应加快,但苯乙烯收率增加变慢,即副反应大大加快,所以反应温度一般控制在550-620℃范围内。
反应(2)、(3)是两个主要的平行副反应,这两个副反应的平衡常数大于乙苯脱氢生成苯乙烯的平衡常数,因此,如果从热力学分析看,乙苯脱氢生产苯乙烯的可能性确实不大,所以要采用高选择性的催化剂,增加主反应的反应速率,反应是可以实现的。
乙苯脱氢制苯乙烯方程式
乙苯脱氢制苯乙烯方程式乙苯脱氢制苯乙烯方程式一、什么是乙苯脱氢制苯乙烯?乙苯脱氢制苯乙烯是一种通过将乙苯加热至高温并在催化剂作用下去除其中的氢原子来得到苯乙烯的化学反应。
这种方法是工业上生产苯乙烯的主要方法之一。
二、反应方程式该反应的化学方程式为:C8H10 → C6H5CH=CH2 + H2即:3C8H10 → 4C6H5CH=CH2 + 2CH4三、反应机理在该反应中,催化剂通常采用铬系或铑系催化剂,它们能够促进氧化还原反应。
具体来说,催化剂会使得乙苯中的一个氢原子离开分子,并与另一个分子中的一个碳原子结合形成甲基基团。
这个甲基基团随后与另外一个分子中的一个碳原子结合形成丁二烯基团。
最终,丁二烯基团会与另外一个分子中的一个碳原子结合形成苯环,并释放出一份氢气。
四、反应条件乙苯脱氢制苯乙烯的反应条件包括温度、压力和催化剂等。
一般来说,该反应需要在高温下进行,通常在500-600℃左右。
此外,该反应需要在高压下进行,通常在1-2 MPa左右。
催化剂方面,目前最常用的是铬系或铑系催化剂。
五、反应优缺点乙苯脱氢制苯乙烯是一种高效的工业生产方法,具有以下优点:1. 反应产物纯度高:该方法可以得到较高纯度的苯乙烯产物,并且可以通过后续处理进一步提高其纯度。
2. 生产成本低:该方法使用的原料成本较低,同时也不需要使用过多能源和催化剂等。
3. 适用范围广:该方法适用于生产大量的苯乙烯,并且可以根据需要进行规模化生产。
但是,该方法也存在以下缺点:1. 需要高温高压环境:由于该方法需要在高温、高压环境下进行反应,因此需要消耗大量能源,并且设备成本也较高。
2. 催化剂使用寿命短:使用铬系或铑系催化剂进行反应时,催化剂的使用寿命较短,需要经常更换。
3. 环境污染:该方法会产生大量废气和废水等,对环境造成一定影响。
六、应用领域苯乙烯是一种重要的有机化学品,广泛应用于塑料、橡胶、纺织、涂料等行业。
因此,乙苯脱氢制苯乙烯是一个非常重要的工业生产方法,在上述领域中得到了广泛应用。
乙苯脱氢制苯乙烯
乙苯脱氢制苯乙烯引言。
苯乙烯是一种重要的有机化工产品,广泛应用于合成树脂、塑料、橡胶等工业中。
乙苯脱氢制苯乙烯是目前主要的生产工艺之一,其具有高效、低成本等优点,因此备受关注。
本文将对乙苯脱氢制苯乙烯的工艺流程、反应机理、影响因素以及发展趋势进行探讨。
一、乙苯脱氢制苯乙烯的工艺流程。
乙苯脱氢制苯乙烯的工艺流程主要包括催化剂的选择、反应条件的控制以及产品的分离纯化等步骤。
一般而言,该工艺流程可以分为以下几个步骤,乙苯的预热、蒸汽和空气的混合、催化剂的加入、反应器的加热、产物的冷却和分离等。
其中,催化剂的选择对反应的效率和产物的纯度具有重要影响,目前常用的催化剂有铬酸钠、钼酸钠、氧化铝等。
二、乙苯脱氢制苯乙烯的反应机理。
乙苯脱氢制苯乙烯的反应机理主要涉及乙苯分子的脱氢反应。
在催化剂的作用下,乙苯分子中的氢原子被去除,形成苯乙烯分子和水蒸气。
具体而言,乙苯分子首先吸附在催化剂表面,然后发生脱氢反应,生成苯乙烯和水蒸气。
反应机理的研究有助于优化工艺条件,提高反应效率和产物纯度。
三、乙苯脱氢制苯乙烯的影响因素。
乙苯脱氢制苯乙烯的反应受到多种因素的影响,包括温度、压力、催化剂种类和用量、乙苯浓度等。
其中,温度是影响反应速率和产物选择性的重要因素,一般而言,较高的温度有利于提高反应速率,但过高的温度可能导致副反应的发生。
此外,催化剂的种类和用量也对反应的效果有显著影响,不同的催化剂具有不同的活性和选择性,因此需要进行合理选择和控制。
四、乙苯脱氢制苯乙烯的发展趋势。
乙苯脱氢制苯乙烯作为一种重要的有机合成工艺,其发展趋势主要包括提高反应效率、降低生产成本、减少环境污染等方面。
为了提高反应效率,可以通过优化催化剂的性能、改进反应条件、提高乙苯转化率等途径。
同时,降低生产成本也是当前研究的重点之一,可以通过提高催化剂的稳定性和循环利用率、优化产品分离纯化工艺等手段来实现。
此外,减少环境污染也是乙苯脱氢制苯乙烯发展的重要方向,可以通过减少废水排放、提高产物纯度等途径来实现。
实验 乙苯脱氢制苯乙烯
实验乙苯脱氢制苯乙烯乙苯脱氢制苯乙烯是一种重要的化学反应,可用于生产苯乙烯。
苯乙烯是一种重要的化学原料,广泛用于塑料、橡胶、纺织和涂料等行业。
本实验旨在使用催化剂将乙苯脱氢制为苯乙烯,同时研究不同反应条件对反应产物的影响。
实验步骤:1. 实验仪器:采用多项仪器进行实验操作,主要包括反应釜、加热器、冷却器、气体净化器、漏斗等。
2. 实验材料:本实验中使用的材料有苯乙烯、乙苯,催化剂、溶剂,以及各种实验用的试剂。
3. 反应条件:反应釜温度在350至450℃之间,催化剂量为反应物的5%,氢气流量控制在0.5至1L/min,同时保持反应时间在2到6小时。
4. 实验流程:将乙苯和催化剂加到反应釜中,逐步加热至设定的反应温度。
当达到一定的温度时,开始向反应釜中通入氢气,同时控制氢气流量和反应时间,完成反应后,用氮气吹干反应釜,并用氢气清洗。
5. 实验分析:收集反应产物,通过色谱分析、质谱分析等手段,分析反应物和产物的组成,探究不同反应条件对产物生成的影响。
实验原理:乙苯脱氢制苯乙烯是将乙苯中的甲基基团和芳香基团分离,生成苯乙烯的反应。
催化剂是反应中的关键,可以选择镍、铂、钒等金属作为催化剂。
氢气在反应中也起着重要作用,通过提供氢离子,防止反应中的芳香基团被进一步氧化。
实验结果:实验结果表明,催化剂种类、温度、氢气流量和反应时间等因素都会影响反应产物的生成。
在相同温度下,镍催化剂的反应活性高于钒催化剂。
同时,反应温度越高,产物的产量越高,但也会导致副反应的增加。
氢气流量和反应时间的控制也在一定程度上影响着反应产物的生成。
结论:本实验的结果表明,乙苯脱氢制苯乙烯是一种复杂的化学反应,受多种因素的影响。
通过对实验过程和产物的分析,可以对反应条件进行优化,使得反应产物的产量和纯度得到提高。
同时,本实验也为进一步的苯乙烯生产工艺研究提供了基础数据。
乙苯脱氢制备苯乙烯实验讲义
乙苯脱氢制备苯乙烯实验讲义苯乙烯是重要的高分子聚合物单体,是能够进行自由基、阴离子、阳离子、配位等多种机理聚合的少有单体,主要用于生产聚苯乙烯。
此外,还可与其他单体共聚得到共聚树脂,如与丙烯腈、1,3-丁二烯共聚可制备ABS 工程塑料,与1,3-丁二烯共聚可制备丁苯橡胶,与丙烯腈共聚得到AS 树脂等。
目前其工业制备方法主要是乙苯催化脱氢,此方法最早由美国陶氏(Dow )公司开发,其产量约占总产量的90%。
此外,在制药、农药合成、选矿、燃料等领域也有应用。
了解其制备过程和实验室操作方法,对改进生产工艺有重要的作用。
一、实验目的:1. 了解以乙苯为原料,固定床反应器中铁系催化剂催化下制备苯乙烯的过程,理解实验装置的组成,熟悉相关各部分的操作及仪表数据的读取;2. 理解乙苯脱氢的反应机理及操作条件对产物收率的影响,掌握获得稳定操作工艺条件的步骤和方法;3. 了解气相色谱的原理和结构,掌握气相色谱的常规操作和谱图分析方法。
二、实验原理:乙苯脱氢生成苯乙烯和氢气是一个可逆的强烈吸热反应,为提高反应正向进行的程度,反应需在高温条件下催化剂催化下进行,其主反应如式(1):C 6H 5C 2H 5 → C 6H 5C 2H 3 + H 2 (1) 副反应主要包括:C 6H 5C 2H 5 → C 6H 6 + C 2H 4 (2) C 2H 4 + H 2 → C 2H 6 (3) C 6H 5C 2H 5 + H 2 → C 6H 6 + C 2H 6 (4) C 6H 5C 2H 5 → C 6H 5CH 3 + CH 4 (5)水蒸汽存在下还可能发生如下副反应:CH 4 + H 2O → CO + 3H 2 (6)C 6H 5C 2H 5 + 2H 2O → C 6H 5CH 3 + CO 2 + 3H 2 (7)C 2H 4 + 2H 2O → 2CO + 4H 2 (8)此外,反应中还发生了少部分芳烃脱氢缩合产生焦油或焦炭,以及苯乙烯聚合生成少量聚合物、发生深度裂解产生碳和氢气等。
乙苯脱氢制苯乙烯关键技术轴径向反应器和新型催化剂的研发及应用
乙苯脱氢制苯乙烯关键技术轴径向反应器和新型催化剂的研发及应用乙苯脱氢制苯乙烯是一种重要的工业反应过程,用于生产苯乙烯(常称为“乙烯基苯”)。
在这个过程中,通过催化剂的作用,将乙苯中的甲基基团去除,生成苯乙烯。
近年来,轴径向反应器和新型催化剂的研发和应用在乙苯脱氢制苯乙烯领域引起了广泛关注。
本文将介绍轴径向反应器和新型催化剂在乙苯脱氢制苯乙烯中的关键技术及其研发与应用。
一、轴径向反应器的原理和优势1.原理:轴径向反应器是一种特殊设计的反应器,具有内部离心力场。
乙苯和催化剂从轴向进入反应器,在高速旋转下,受到离心力作用,形成薄膜层,并在薄膜层中进行反应。
离心力可以提高反应速率和产物分离效率。
2.优势:-提高反应速率:轴径向反应器中的离心力可增加反应物的有效接触面积,加速反应速率。
-优化产物分离:由于薄膜层的形成,产物可以迅速从反应区域分离,减少副反应和产物混合,提高纯度。
-提高传热效率:离心力可增强热量传递,使得反应温度更均匀,提高产物质量。
二、新型催化剂的研发与应用1.催化剂设计:新型催化剂的设计致力于提高乙苯脱氢反应的选择性和活性。
一些关键技术包括:-载体选择:选择适合的载体材料,如γ-铝石英或硅铝酸盐等,以提高催化剂的稳定性和活性。
-活性金属:常用的活性金属有铬、钼等,其合理的掺杂和改性能够提高催化剂的活性和选择性。
-排序结构:通过优化催化剂的晶体结构、孔道结构和孔径分布等参数,提高乙苯脱氢反应的选择性。
2.催化剂应用:新型催化剂在乙苯脱氢制苯乙烯中的应用主要体现在以下几个方面:-提高反应选择性:新型催化剂能够提高乙苯脱氢反应中苯乙烯的选择性,降低副产物的生成。
-延长催化剂寿命:通过改善催化剂的稳定性和抗积碳性能,延长催化剂的使用寿命。
-降低生产成本:新型催化剂的设计和应用可以优化乙苯脱氢反应的条件,降低能耗和催化剂的使用量,从而降低生产成本。
三、研发与应用展望1.研发趋势:随着科学技术的不断进步,轴径向反应器和新型催化剂的研发将朝着以下方向发展:-进一步提高反应速率和选择性;-开发更加环保和高效的催化剂;-优化轴径向反应器的结构和工艺参数。
乙苯催化脱氢合成苯乙烯的工艺流程
(二)绝热型反应器脱氢部分的工艺流程 1.工艺流程组织
图4-11(P183)是单段绝热反应器脱氢的工艺流程。 循环乙苯和新鲜的乙苯与部分水蒸气混合以后(这部分水 蒸气约占总加入水蒸气量的10%左右),与高温脱氢产物进行 热交换,温度升到520~550℃,再与过热水蒸气混合(这部分 水蒸气的量占总加入水蒸气量的90%左右),然后进入脱氢反 应器,脱氢产物离开反应器时的温度为585℃左右,经过热交 换,降低温度后,再进一步冷凝冷却,凝液分出水后,进入粗 苯乙烯贮槽,尾气含氢气90%左右,可以作为燃料用,也可以 用来制氢气。 绝热反应器脱氢,反应所需要的热量是由过热水蒸气带入 的,所以水蒸气的用量,要比等温式反应器大1倍左右。 绝热反应器脱氢的工艺条件为:反应: 强吸热反应; 反应需要在高温下进行; 反应需要在高温条件下向反应系统供给大量的热量。 由于供热方式不同,采用的反应器型式也不同。 工业上采用的反应器型式有两种: 一种是多管等温型反应器,是以烟道气为热载体,反应器 放在加热炉内,由高温烟道气,将反应所需要的热量通过管壁 传递给催化剂床层。 另一种是绝热型反应器,所需要的热源是由过热水蒸气直 接带入反应系统。
图4-15 各温度下的苯乙烯聚合速度
苯 粗 苯 乙 烯 1 2 3
苯 乙 烯
4
乙苯
甲苯
焦油
图 4-16 粗 苯 乙 烯 的 分 离 和 精 制 流 程
3-苯 、 甲 苯 分 离 塔 ; 4-苯 乙 烯 精 馏 塔 1-乙 苯 蒸 出 塔 ; 2-苯 、 甲 苯 回 收 塔 ;
粗苯乙烯的分离和精制流程见图4-16(P186)所示。粗苯 乙烯先进入乙苯蒸出塔,将没有反应的乙苯、副产物苯和甲苯 与苯乙烯进行分离。塔顶蒸出的乙苯、苯和甲苯经过冷凝后, 一部分回流,其余送入苯、甲苯回收塔,将乙苯与苯、甲苯分 离,塔底分出的乙苯可循环作脱氢原料用。塔顶分出的苯和甲 苯,送入苯、甲苯分馏塔,将苯和甲苯进行分离。乙苯蒸出塔 塔底液体主要是苯乙烯,还含有少量焦油,送入苯乙烯精馏 塔,塔顶蒸出聚合级成品苯乙烯,纯度为99.6%(质量)。塔 底液体为焦油,焦油里面含有苯乙烯,可进一步进行回收。上 述流程中,乙苯蒸出塔和苯乙烯精馏塔均应当在减压下操作, 为了防止苯乙烯的聚合,塔底需要加入阻聚剂,例如二硝基苯 酚、叔丁基邻苯二酚等。
乙苯脱氢制苯乙烯讲解
毒性很轻微它的黏度 比矿物油小
无机熔盐 比热容小 加热
1.温度在380~530℃ 2.装置气密性很高,用 惰性气体保护
3.避免和有机物质接触
烟道气加 易获取,能产生高温 热
温度在500~1000℃之间
常用冷却 特点 剂
适用情况及温度范围
水 1.获取方便
1.只适用冷却温度在15~30℃以上
适用情况:两种流体在进行换热时不能有混 合的场合
典型设备:列管式换热器、套管式换热器
• 传热基本方式 • 常用加热剂 • 常用冷却剂
传热基本方式
传热原理
热传导
是借助物质的分子·原子或自由电子 的运动,将热能以动能的形式传递给 相邻温度较低的分子的过程
对流传热 辐射传热
由于流体质点之间产生宏观相对位移 而位移而引起的热量传递
缺点:单位传热面积的金属消耗较大,管 子接头多,易泄漏,占地面积大,检修清 洗不方便。
套管式换热器
板式换热器
• 优点:结构紧凑,版面很薄,传热面积
达,传热效率高,拆装方便。
• 缺点:处理量小,受垫片材料性能限制,
操作压力和温度不能过高
• 板式换热器
浮头式换热器
优点:当壳程与管束因温度不同而引起 热膨胀时,管束连同浮头可在壳体内 沿轴向自由伸缩,不会产生温差应力; 且管束可以从壳内抽出,便于管内和 管间的清洗。
适用情况:适用于两流体允许直接混合的场 合
典型设备:凉水塔、喷洒式冷却塔、喷射式 冷凝器
蓄热式换热
原理:在此类换热器中,热、冷流体交替进 入蓄热室,热流体将热量储存在蓄热体中, 然后通入冷流体吸取热量,从而达到换热 目的
适用情况:常用于高温气体热量的回收或冷 却
实验讲义-乙苯脱氢制备苯乙烯
实验十三乙苯脱氢制备苯乙烯一、实验目的1.了解以乙苯为原料,使用氧化铁系催化剂,在固定床单管反应器中制备苯乙烯的过程。
2.学会稳定工艺操作条件的方法。
3.掌握乙苯脱氢制苯乙烯的转化率、选择性、收率与反应温度之间的关系;找出最适宜的反应温度区域。
4.学会使用温度控制和流量控制的一般仪表、仪器。
5.了解气相色谱分析及使用方法。
二、实验内容了解并熟悉实验装置及流程,搞清物料走向及加料、出料方法。
学会使用温度控制和流量控制的一般仪表、仪器。
测定不同温度下乙苯脱氢反应的转化率、苯乙烯的选择性和收率,考察温度对乙苯脱氢反应转化率、苯乙烯选择性和收率的影响。
三、基本原理1.本实验的主副反应主反应:副反应:在水蒸气存在的条件下,还可能发生下列反应:此外还有芳烃脱氢缩合及苯乙烯聚合生成焦油等。
这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦导致活性下降。
2.影响本反应的因素(1)温度的影响乙苯脱氢反应为吸热反应,∆H o>0,从平衡常数与温度的关系式20ln RT H T K pp ∆=⎪⎪⎭⎫ ⎝⎛∂∂可知,提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。
但是温度过高使得副反应增加,导致苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。
本实验的反应温度范围为:540~600℃。
(2)压力的影响乙苯脱氢为体积增加的反应,降低总压P 总可增加反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。
本实验加水蒸气的目的是降低乙苯的分压,以提高乙苯的平衡转化率。
较适宜的水蒸气用量为:水﹕乙苯=1.5﹕1(体积比)或8﹕1(摩尔比)。
(3)空速的影响乙苯脱氢反应系统中有平行副反应和连串副反应,随着接触时间的增加,副反应也随之增加,苯乙烯的选择性下降,故需采用较高的空速,以提高选择性。
适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h -1为宜。
3.催化剂本实验采用以Fe 、K 为主要活性组分,添加少量的I A 、ⅡA 、I B 族氧化物为助剂的GS-08催化剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的几种换热器
? 沉浸式蛇管换热器 ? 喷淋式蛇管换热器 ? 套管式换热器 ? 板式换热器 ? 浮头式换热器 ? U形管式换热器 ? 夹套换热器 ? 填料函式换热器 ? 石墨换热器 ? 搪玻璃换热器
沉浸式蛇管换热器
优点:结构简单,造价低廉,便于 防腐,能承受高压。
缺点:管外对流传热系数小,厂常 需加搅拌装置提高传热系数。
缺点:结构复杂,用材量大,造价高。
? 浮头式换热器
U 形管式换热器
优点:结构简单,运行可靠,造价低,重 量轻,管间清洗方便。
缺点:管内清洗较困难,可排管子数目少 管束最内层管间距大,壳程易短路,且 因管子需一定的弯曲半径,故管板利用 率较差。
夹套换热器
优点:结构简单,容易制造;可与反应器 构成一个整体,主要应用于反应过程的 加热或冷却。
2.比热容和膜系 的场合
数比较大
空气
1.获取方便 2.替代水作 冷 却剂减少污水 处理
1.只适用冷却温度30℃以上的场合 2.适用庞大的换热设备
冷冻盐水 1.可以使水的凝 1.适用5~10℃或更低的温度 冷却 固点大为降低
干冰
1.无毒,无残留,呀防止液态气体由于压力的突然 是固体二氧化 变化而发生爆炸,最低温度达塔,吸热好。 78.5℃
缺点:传热面积小;器内流体出于自然对 流状态,传热效率低;夹套内部清洗困 难。
填料函式换热器
优点:结构较浮头式换热器简单,管束可 以从壳内抽出,管壳均可以清洗。
缺点:填料函耐压不高,一般小于40Mp, 壳质可能通过填料函向外泄露。
石墨换热器
优点:体积小,结构简凑,传热系数 大。耐一定压力,耐温性较强,适应 性强。
矿物油加热
1.它的饱和蒸汽这个气压比水 温度在180℃到 低·来源较容易·加热均匀·不需 250℃ 加压
2.油的使用时间越长,黏度越 大,热稳定型差,存在安全隐 患
常用加热 剂
导热油 加热
特点
适用情况及温度范围
沸点高(258℃), 液态导热油用于 蒸汽压低( 200℃和 250℃以内,气态导 350℃分别是 25.5kpa 热油加热温度可高 和53.7kpa )化学稳 达380℃
? 沉浸式蛇管换热器
喷淋式蛇管换热器
优点:该装置常置于室外通风处冷却水 在空气中汽化,可以带走部分热量, 以提高冷却效果。
缺点:体积庞大,占地面积大,冷却水 耗用量大。
喷淋式蛇管换热器
套管式换热器
优点:构造简单,能耐高压;传热面积可 根据需要儿增减,适当的选择管内、外径, 可使流体的流速较大,且双方的流体作严 格的逆流,传热效果较好。
乙苯预热方案汇报
任务:乙苯脱氢制苯乙烯的生产过程中, 乙苯需从25 ℃加热到100℃
1选用合适的换热方法
2选用合适的载热体
3选用合适的换热器
工业上常用的换热方法
? 直接接触式换热 ? 蓄热式换热 ? 中间载热体式换热 ? 间壁式换热
直接接触式换热
原理:在此类换热器中参与换热的冷、热流 体直接接触,相互混合而换热
适用情况:两种流体在进行换热时不能有混 合的场合
典型设备:列管式换热器、套管式换热器
? 传热基本方式 ? 常用加热剂 ? 常用冷却剂
传热基本方式
传热原理
热传导
是借助物质的分子 ·原子或自由电子
的运动,将热能以动能的形式传递给 相邻温度较低的分子的过程
对流传热 辐射传热
由于流体质点之间产生宏观相对位移 而位移而引起的热量传递
原理:将两个间壁式换热器由在其中循环的 载热体连接起来,载热体在高温流体换热 器中从热流体吸收热量后,带至低温流体 换热器传给冷流体
适用情况:用于核能工业、冷冻技术及余热 利用中
典型设备:热管式换热器
间壁式换热
原理:冷热两种流体之间用以金属壁隔开, 以便使两种流体在不相混合的情况下进行 热量传递,热量由热流体通过壁面传给冷 流体
适用情况:适用于两流体允许直接混合的场 合
典型设备:凉水塔、喷洒式冷却塔、喷射式 冷凝器
蓄热式换热
原理:在此类换热器中,热、冷流体交替进 入蓄热室,热流体将热量储存在蓄热体中, 然后通入冷流体吸取热量,从而达到换热 目的
适用情况:常用于高温气体热量的回收或冷 却
典型设备:煤制气过程的气化炉
中间载热体式换热
缺点:石墨的抗拉和抗弯强度低,易 碎裂。
搪玻璃换热器
优点:结构紧凑,重量轻,热交换效 率高,污垢系数小,耐压高,装修简 便,防腐蚀性能优良密封可靠等优点。
最终选用
? 套管式换热器,加热剂为饱和水蒸汽及
热水。
? 用饱和水蒸汽预热乙苯,加热剂进口
温度130℃出口温度为105℃。
? 则Qh=WhCPH(T1-T2) ? Qc=WcCpc(t1-t2)
缺点:单位传热面积的金属消耗较大,管 子接头多,易泄漏,占地面积大,检修清 洗不方便。
套管式换热器
板式换热器
? 优点:结构紧凑,版面很薄,传热面积
达,传热效率高,拆装方便。
? 缺点:处理量小,受垫片材料性能限制,
操作压力和温度不能过高
? 板式换热器
浮头式换热器
优点:当壳程与管束因温度不同而引起 热膨胀时,管束连同浮头可在壳体内 沿轴向自由伸缩,不会产生温差应力; 且管束可以从壳内抽出,便于管内和 管间的清洗。
定性好,可燃不爆炸, 毒性很轻微它的黏度 比矿物油小
无机熔盐 比热容小 加热
1.温度在380~530℃ 2.装置气密性很高,用 惰性气体保护 3.避免和有机物质接触
烟道气加 易获取,能产生高温 热
温度在500~1000℃之 1.获取方便
1.只适用冷却温度在15~30℃以上
是不同物体间互辐射和吸收能量的结 果
常用加热剂
特点
适用情况及温度 范围
饱和水蒸气及热 水加热
1.可以准确的调节温度
2.换热器的传热面积可以小一 些
3.加热均匀,传热量一定是, 所需蒸汽量小
1.温度不超过 180℃
2.要求设备耐压 高
3.设备容易清理 废气
电加热
1. 清洁,方便,利用率高, 适用1000℃以上 加热温度可以精确调节
? 从附录查得乙苯和水的比热容分别为
2.1KJ/(kg.k)和4.187KJ、( kg.k )
? Qc=35/36×2.1×1000×(100-25)
=153.125(kw)
? 热损失忽略时Q=Qh=Qc ? ∴Qh=WnCph(T1-T2) ? 153.125=Wh×4.187×(130-105) ? Wh=1.463Kg/s=5267kg/h ? 加热剂用量估计5267kg/h