辅导高中数学必修4经典题型
高中数学必修四平面向量知识归纳典型题型(经典)
一,向量重要结论 (1)、向量的数量积定义:||||cos a b a b θ⋅= 规定00a ⋅=, 22||a a a a ⋅== (2)、向量夹角公式:a 与b 的夹角为θ,则cos ||||a b a b θ⋅= (3)、向量共线的充要条件:b 与非零向量a 共线⇔存在惟一的R λ∈,使b a λ=。
(4)、两向量平行的充要条件:向量11(,)a x y =,22(,)b x y =平行⇔12210x y x y -=(5)、两向量垂直的充要条件:向量a b ⊥0a b ⇔⋅=⇔12120x x y y +=(6)、向量不等式:||||||a b a b +≥+,||||||a b a b ≥⋅(7)、向量的坐标运算:向量11(,)a x y =,22(,)b x y =,则a b ⋅=1212x x y y + (8)、向量的投影:︱b ︱cos θ=||a b a ⋅∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影(9)、向量:既有大小又有方向的量。
向量不能比较大小,但向量的模可以比较大小。
相等向量:长度相等且方向相同的向量。
(10)、零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)(11)、单位向量:模为1个单位长度的向量 向量0a 为单位向量⇔|0a |=1(12)、平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b (即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量注:解析几何与向量综合时可能出现的向量内容: (1) 给出直线的方向向量()k u ,1= 或()n m u ,= ,要会求出直线的斜率;(2)给出+与AB 相交,等于已知+过AB 的中点; (3)给出0 =+,等于已知P 是MN 的中点;(4)给出()+=+λ,等于已知Q P ,与AB 的中点三点共线;(5)给出以下情形之一:①//;②存在实数,AB AC λλ=使;③若存在实数,,1,OC OA OB αβαβαβ+==+且使,等于已知C B A ,,三点共线.(6) 给出λλ++=1OP ,等于已知P 是AB 的定比分点,λ为定比,即λ= (7) 给出0=⋅,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=⋅m ,等于已知AMB ∠是钝角, 给出0>=⋅m ,等于已知AMB ∠是锐角。
高中数学必修4习题和复习参考题对应答案
高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x 轴上的角的集合. 答案:S={α|α=k ·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k ·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k ·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k ·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k ·360°,k ∈Z },-245°,115°; (5){β|β=90°+k ·360°,k ∈Z },-270°,90°; (6){β|β=270°+k ·360°,k ∈Z },-90°,270°; (7){β|β=180°+k ·360°,k ∈Z },-180°,180°; (8){β|β=k ·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k ·360°<β<90°+k ·360°,k ∈Z } {|22,}2k k k πβπβπ<<+∈Z二 {β|90°+k ·360°<β<180°+k ·360°,k ∈Z }{|22,}2k k k πβπβππ+<<+∈Z三 {β|180°+k ·360°<β<270°+k ·360°,k ∈Z }3{|22,}2k k k πβππβπ+<<+∈Z 四{β|270°+k ·360°<β<360°+k ·360°,k ∈Z }3{|222,}2k k k πβπβππ+<<+∈Z 说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k ·360°<α<90°+k ·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角.6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念.7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =.用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n ≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a ≠0,求sin α,cos α,tan α的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-. 说明:根据定义求三角函数值.3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin2446663ππππππ-+-++; (4)2423sin cos tan 323πππ+-.答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题.6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号.7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号.8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值.9、求证:(1)角θ为第二或第三象限角当且仅当sin θ·tan θ<0; (2)角θ为第三或第四象限角当且仅当cos θ·tan θ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34x x==-.说明:要分别对x是第三象限角和第四象限角进行讨论.12、已知3tan 3,2απαπ=<<,求cos α-sin α的值. 答案:1(31)2- 说明:角α是特殊角.13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cos β-1)2+sin 2β=2-2cos β;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cos β+cos 2β+sin 2β=2-2cos β;(4)左边=(sin 2x +cos 2x )2-2sin 2x ·cos 2x=1-2sin 2x ·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角.答案:-2tan α说明:先变形,再根据同角三角函数的基本关系进行化简.3、已知tan α=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式.4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x ·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________;(4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π; (4)sin3π;(5)2cos9π-; (6)-cos75°34′; (7)-tan87°36′; (8)tan6π-.说明:利用诱导公式转化为锐角三角函数.2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′;(6)26sin()3π-.答案:(1)22;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)32 -说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32;使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2k π],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2k π,(2k +1)π],k ∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性.6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期.答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解.8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°;(3)93tan 6tan(5)1111ππ-与; (4)7tan tan 86ππ与.答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tan tan 86ππ<.说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx ≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.10、设函数f (x )(x ∈R )是以 2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题.11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(k π,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=k π,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z .说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题:(1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2)(3)(4)说明:研究了参数A、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48x y π=-,x ∈[0,+∞); (2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-. 先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g ≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式.t 0 t 0 2t 0 3t 04t 05t 0 6t 0 7t 0 8t 0 9t 010t 0 11t 0 12t 0s-20.0-17.8-10.10.110.317.720.017.710.30.1 -10.1-17.8-20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos2A=-;(3)tanA=1;(4)3 tan3A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论.P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π;(4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ; (2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ;(4){β|β=2k π,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解.3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sin φ,tan φ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sin φ的值,再求tan φ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==;当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cos α表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形.7、求证:(1)2(1-sin α)(1+cos α)=(1-sin α+cos α)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sin α+2cos α-2sin αcos α=1+sin 2α+cos 2α-2sin α+2cos α-2sin αcos α =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形.8、已知tan α=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sin αcos α;(3)(sin α+cos α)2. 答案:(1)57;(2)310;(3)85. 说明:第(2)题可由222sin tan 9cos ααα==,得21c o s 10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号.10、已知1sin()2πα+=-,计算:(1)cos(2π-α);(2)tan(α-7π).答案:(1)当α为第一象限角时,3 cos(2)2πα-=,当α为第二象限角时,3 cos(2)2πα-=-;(2)当α为第一象限角时,3 tan(7)3απ-=,当α为第二象限角时,3 tan(7)3απ-=-.说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算.11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°;(2)sin(-879°),313t a n(),c o s()810ππ--;(3)sin3,cos(sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216;(2)sin(-879°)=-0.358,3313tan()0.414,cos()0.588 810ππ-=--=-;(3)sin3=0.141,cos(sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证.12、设π<x<2π,填表:x 76π74πsinx -1cosx22-32tanx 3答案:x 76π54π43π32π74π116πsinx12-22-32--122-12-cosx32-22-12- 02232tanx3313不存在-133-说明:熟悉各特殊角的三角函数值.13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z }; 最小值为1,此时x 的集合为{x|x=2k π,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x ≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证.17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.17 0.34 0.50 0.64 0.77 0.87 0.94 0.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.。
高一数学必修四知识点加题型
高一数学必修四知识点加题型高一数学必修四是一门重要的学科,其中包括了多个知识点和题型。
下面将为大家详细介绍这些内容以及相应的解题方法。
1. 二次函数二次函数是高一数学必修四中的重点内容。
它的一般形式为f(x) = ax² + bx + c。
其中,a、b、c为常数,a ≠ 0。
我们可以通过以下几个步骤来解二次函数相关题目:- 确定抛物线的开口方向:若a > 0,则开口向上;若a < 0,则开口向下。
- 求解顶点坐标:顶点坐标为(-b/2a, f(-b/2a))。
- 求解零点:根据二次函数的解的性质,利用求根公式或配方法可以求得二次函数的零点。
2. 三角函数三角函数在高一数学必修四中也占有重要地位。
常见的三角函数包括正弦函数、余弦函数和正切函数等。
我们可以通过以下几个步骤来解三角函数相关题目:- 根据已知条件确定所需求的角所在象限。
- 利用三角函数的定义和性质,结合已知条件求解所需角的值。
- 结合三角函数的图像和周期性,求解三角函数的方程式。
3. 数列与数列的通项公式数列是高一数学必修四中的基础内容。
在解数列的相关题目时,我们可以采用以下几个方法:- 根据给定的数列前几项,观察它们之间的规律,推测数列的通项公式。
- 利用已知的数列通项公式,计算指定位置上的项的值。
- 根据数列的性质,如等差数列、等比数列等,解决相应题目。
4. 平面向量平面向量也是高一数学必修四的重点内容。
在解平面向量相关题目时,我们可以采用以下几个步骤:- 确定平面向量的坐标或起点和终点的坐标。
- 利用平面向量的定义和性质进行向量的运算,如加法、减法、数量乘法等。
- 根据已知条件和向量运算的结果,求解题目所需的向量。
5. 概率与统计概率与统计是高一数学必修四的重要内容。
在解概率与统计的相关题目时,我们可以采用以下几个步骤:- 确定事件的样本空间和可能的结果。
- 利用概率的定义和性质,计算事件发生的概率。
- 对样本数据进行统计分析,如计算平均值、方差、标准差等。
高中数学必修4三角函数常考题型正切函数的性质与图像案
正切函数的性质与图像【知识梳理】.正切函数的性质.()正切函数的图像:()正切函数的图像叫做正切曲线.()正切函数的图像特征:正切曲线是被相互平行的直线=+π,∈所隔开的无穷多支曲线组成的.【常考题型】题型一、正切函数的定义域、值域问题【例】求下列函数的定义域和值域:()=;()=.[解]()由+≠π+(∈)得,≠π+,∈,所以函数=的定义域为≠π+,∈,其值域为(-∞,+∞).()由-≥得,≤.结合=的图像可知,在上,满足≤的角应满足-<≤,所以函数=的定义域为错误!,其值域为[,+∞).【类题通法】求正切函数定义域的方法及求值域的注意点求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还要保证正切函数=有意义,即≠+π,∈.而对于构建的三角不等式,常利用三角函数的图像求解.解形如>的不等式的步骤:【对点训练】求函数=的定义域.解:要使函数有意义,则有+≠,∴≠-,∴≠π-且≠π+,∈.因此,函数=的定义域为错误!.题型二、正切函数的单调性及应用【例】()求函数=的单调区间;()比较与的大小.[解]()由π-<-<π+(∈)得,π-<<π+,∈,所以函数=的单调递增区间是(∈).()由于===-,=-=-,又<<<,而=在上单调递增,所以<,->-,即>.【类题通法】.求函数=(ω+φ)(,ω,φ都是常数)的单调区间的方法()若ω>,由于=在每一个单调区间上都是增函数,故可用“整体代换”的思想,令π-<ω+φ<π+,求得的范围即可.()若ω<,可利用诱导公式先把=(ω+φ)转化为=[-(-ω-φ)]=-(-ω-φ),即把的系数化为正值,再利用“整体代换”的思想,求得的范围即可..运用正切函数单调性比较大小的方法()运用函数的周期性或诱导公式将角化到同一单调区间内.。
高中数学必修4三角函数常考题型:正弦函数、余弦函数的性质(一)
正弦函数、余弦函数的性质(一)【知识梳理】1.函数的周期性(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.2.正弦、余弦函数的周期性正弦函数y =sin x (x ∈R )和余弦函数y =cos x (x ∈R )都是周期函数,2k π(k ∈Z ,且k ≠0)都是它们的周期.最小正周期为2π.3.正弦、余弦函数的奇偶性 正弦函数是奇函数,余弦函数是偶函数.【常考题型】题型一、函数的周期【例1】 求下列三角函数的周期:(1)y =3sin x ,x ∈R ;(2)y =cos 2x ,x ∈R ;(3)y =sin ⎝⎛⎭⎫13x -π4,x ∈R ;(4)y =|cos x |,x ∈R .[解] (1)因为3sin(x +2π)=3sin x ,由周期函数的定义知,y =3sin x 的周期为2π.(2)因为cos 2(x +π)=cos(2x +2π)=cos 2x ,由周期函数的定义知,y =cos 2x 的周期为π.(3)因为sin ⎣⎡⎦⎤13(x +6π)-π4=sin ⎝⎛⎭⎫13x +2π-π4 =sin ⎝⎛⎭⎫13x -π4,由周期函数的定义知,y =sin ⎝⎛⎭⎫13x -π4的周期为6π.(4)y =|cos x |的图像如图(实线部分)所示,由图像可知,y =|cos x |的周期为π.【类题通法】求函数最小正周期的常用方法求三角函数的周期,一般有两种方法:(1)公式法,即将函数化为y =A sin(ωx +φ)+B 或y=A cos(ωx +φ)+B 的形式,再利用T =2π|ω|求得;(2)图像法,利用变换的方法或作出函数的图像,通过观察得到最小正周期.【对点训练】求下列函数的最小正周期:(1)y =3sin ⎝⎛⎭⎫πx 2+3;(2)y =cos|x |.解:(1)由T =2ππ2=4,可得函数的最小正周期为4. (2)由于函数y =cos x 为偶函数,所以y =cos|x |=cos x ,从而函数y =cos|x |与y =cos x 的图像一样,因此最小正周期相同,为2π.题型二、三角函数的奇偶性【例2】 (1)函数f (x )=2sin 2x 的奇偶性为( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数(2)判断函数f (x )=sin ⎝⎛⎭⎫34x +3π2的奇偶性.(1)[解析] ∵f (x )的定义域是R .且f (-x )=2sin 2(-x )=-2sin 2x =-f (x ),∴函数为奇函数.[答案] A(2)[解] ∵f (x )=sin ⎝⎛⎭⎫34x +3π2=-cos 34x , ∴f (-x )=-cos ⎝⎛⎭⎫-34x =-cos 34x , ∴函数f (x )=sin ⎝⎛⎭⎫34x +3π2为偶函数.【类题通法】与三角函数奇偶性有关的结论(1)要使y =A sin(ωx +φ)(Aω≠0)为奇函数,则φ=k π(k ∈Z );(2)要使y =A sin(ωx +φ)(Aω≠0)为偶函数,则φ=k π+π2(k ∈Z ); (3)要使y =A cos(ωx +φ)(Aω≠0)为奇函数,则φ=k π+π2(k ∈Z ); (4)要使y =A cos(ωx +φ)(Aω≠0)为偶函数,则φ=k π(k ∈Z ).【对点训练】若函数y =sin(x +φ)(0≤φ≤π)是R 上的偶函数,则φ等于( )A .0B.π4C.π2 D .π解析:选C 法一:由于y =sin ⎝⎛⎭⎫x +π2=cos x ,而y =cos x 是R 上的偶函数,所以φ=π2. 法二:因为y =sin x 的图像的对称轴为x =π2+k π,k ∈Z ,所以函数y =sin(x +φ)的图像的对称轴应满足x +φ=π2+k π.又y =sin(x +φ)是偶函数,所以x =0是函数图像的一条对称轴,所以φ=π2+k π,k ∈Z ,当k =0时,φ=π2. 题型三、三角函数的奇偶性与周期性的应用【例3】 若函数f (x )是以π2为周期的偶函数,且f ⎝⎛⎭⎫π3=1,求f ⎝⎛⎭⎫-17π6的值. [解] ∵f (x )的周期为π2,且为偶函数, ∴f ⎝⎛⎭⎫-17π6=f ⎝⎛⎭⎫-3π+π6=f ⎝⎛⎭⎫-6×π2+π6 =f ⎝⎛⎭⎫π6.而f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π2-π3=f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=1,∴f ⎝⎛⎭⎫-17π6=1. 【类题通法】解决三角函数的奇偶性与周期性综合问题的方法利用函数的周期性,可以把x +nT (n ∈Z )的函数值转化为x 的函数值.利用奇偶性,可以找到-x 与x 的函数值的关系,从而可解决求值问题.【对点训练】若f (x )是奇函数,且f (x +1)=-f (x ),当x ∈(-1,0)时,f (x )=2x +1,求f ⎝⎛⎭⎫92的值.解:∵f (x +1)=-f (x ),∴f (x +2)=-f (x +1).∴f (x +2)=f (x ),即T =2.∴f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫92-4=f ⎝⎛⎭⎫12.又∵f (x )为奇函数,且x ∈(-1,0)时,f (x )=2x +1,∴f ⎝⎛⎭⎫12=-f ⎝⎛⎭⎫-12 =-⎣⎡⎦⎤2×⎝⎛⎭⎫-12+1=0,故f ⎝⎛⎭⎫92=0. 【练习反馈】1.函数f (x )=sin(-x )的奇偶性是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数解析:选A 由于x ∈R ,且f (-x )=sin x =-sin(-x )=-f (x ),所以f (x )为奇函数.2.函数f (x )=2sin ⎝⎛⎭⎫π2-x 是( )A .最小正周期为2π的奇函数B .最小正周期为2π的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数解析:选B 由于f (x )=2sin ⎝⎛⎭⎫π2-x =2cos x ,其最小正周期为2π,且为偶函数.3.f (x )=sin x cos x 是________(填“奇”或“偶”)函数.解析:x ∈R 时,f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),即f (x )是奇函数. 答案:奇4.函数y =cos (1-x )π2的最小正周期是________. 解析:∵y =cos ⎝⎛⎭⎫-π2x +π2,∴T =2ππ2=2π×2π=4. 答案:45.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,求f ⎝⎛⎭⎫-5π3的值. 解:∵当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,且最小正周期为π, ∴f ⎝⎛⎭⎫-5π3=f ⎝⎛⎭⎫π3-2π=f ⎝⎛⎭⎫π3=-f ⎝⎛⎭⎫-π3= -sin ⎝⎛⎭⎫-π3=sin π3=32.。
高中数学必修4三角函数常考题型:正弦函数、余弦函数的性质(二)
【知识梳理】正弦函数、余弦函数的性质 函数y =sin x y =cos x 定义域 R 值域[-1,1] 图像单调性 在⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z 上递增; 在⎣⎡⎦⎤π2+2k π,3π2+2k π,k ∈Z 上递减 在[-π+2k π,2k π],k ∈Z 上递增; 在[2k π,π+2k π],k ∈Z 上递减 最值 当x =-π2+2k π,k ∈Z 时,y min =-1; 当x =π2+2k π,k ∈Z 时,y max =1 当x =(2k +1)π,k ∈Z 时,y min=-1; 当x =2k π,k ∈Z 时,y max =1 对称轴 x =π2+k π,k ∈Z x =k π,k ∈Z 对称中心(k π,0),k ∈Z ⎝⎛⎭⎫π2+k π,0,k ∈Z 题型一、正、余弦函数的单调性【例1】 求函数y =2sin ⎝⎛⎭⎫x -π3的单调区间. [解]令z =x -π3,则y =2sin z . ∵z =x -π3是增函数, ∴y =2sin z 单调递增(减)时,函数y =2sin ⎝⎛⎭⎫x -π3也单调递增(减). 由z ∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 得x -π3∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 即x ∈⎣⎡⎦⎤2k π-π6,2k π+5π6(k ∈Z ), 故函数y =2sin ⎝⎛⎭⎫x -π3的单调递增区间为 ⎣⎡⎦⎤2k π-π6,2k π+5π6(k ∈Z ).同理可求函数y =2sin ⎝⎛⎭⎫x -π3的单调递减区间为 ⎣⎡⎦⎤2k π+5π6,2k π+116π(k ∈Z ). 【类题通法】与正弦、余弦函数有关的单调区间的求解技巧(1)结合正弦、余弦函数的图像,熟记它们的单调区间.(2)确定函数y =A sin(ωx +φ)(A >0,ω>0)单调区间的方法:采用“换元”法整体代换,将ωx +φ看作一个整体,可令“z =ωx +φ”,即通过求y =A sin z 的单调区间而求出函数的单调区间.若ω<0,则可利用诱导公式将x 的系数转变为正数.【对点训练】求函数y =3sin ⎝⎛⎭⎫π3-2x 的单调递减区间.解:∵y =3sin ⎝⎛⎭⎫π3-2x =-3sin ⎝⎛⎭⎫2x -π3, ∴y =3sin ⎝⎛⎭⎫2x -π3是增函数时, y =3sin ⎝⎛⎭⎫π3-2x 是减函数. ∵函数y =sin x 在⎣⎡⎦⎤-π2+2k π,π2+2k π(k ∈Z )上是增函数, ∴-π2+2k π≤2x -π3≤π2+2k π, 即-π12+k π≤x ≤5π12+k π(k ∈Z ). ∴函数y =3sin ⎝⎛⎭⎫π3-2x 的单调递减区间为⎣⎡⎦⎤-π12+k π,5π12+k π(k ∈Z ). 题型二、三角函数值的大小比较【例2】 比较下列各组数的大小:(1)sin 250°与sin 260°;(2)cos 15π8与cos 14π9. [解](1)∵函数y =sin x 在[90°,270°]上单调递减,且90°<250°<260°<270°,∴sin 250°>sin 260°.(2)cos 15π8=cos ⎝⎛⎭⎫2π-π8=cos π8, cos 14π9=cos ⎝⎛⎭⎫2π-4π9=cos 4π9. ∵函数y =cos x 在[0,π]上单调递减,且0<π8<4π9<π, ∴cos π8>cos 4π9,∴cos 15π8>cos 14π9. 【类题通法】比较三角函数值大小的方法(1)比较两个同名三角函数值的大小,先利用诱导公式把两个角化为同一单调区间内的角,再利用函数的单调性比较.(2)比较两个不同名的三角函数值的大小,一般应先化为同名的三角函数,后面步骤同上.【对点训练】比较下列各组数的大小.(1)cos ⎝⎛⎭⎫-π8与cos 13π7; (2)sin 194°与cos 160°.解:(1)cos ⎝⎛⎭⎫-π8=cos π8, cos 13π7=cos ⎝⎛⎭⎫π+6π7=-cos 6π7=cos π7. ∵0<π8<π7<π,且y =cos x 在(0,π)上单调递减, ∴cos π8>cos π7,即cos ⎝⎛⎭⎫-π8>cos 13π7. (2)sin 194°=sin (180°+14°)=-sin 14°,cos 160°=cos(180°-20°)=-cos 20°=-sin 70°.∵0°<14°<70°<90°且y =sin x 在⎝⎛⎭⎫0,π2上单调递增, ∴sin 70°>sin 14°,即-sin 14°>-sin 70°.故sin 194°>cos 160°.题型三、正、余弦函数的最值问题【例3】 求下列函数的值域:(1)y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2; (2)y =cos 2x -4cos x +5.[解](1)由y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2可得 x +π6∈⎣⎡⎦⎤π6,2π3,函数y =cos x 在区间⎣⎡⎦⎤π6,2π3上单调递减,所以函数的值域为⎣⎡⎦⎤-12,32. (2)令t =cos x ,则-1≤t ≤1.∴y =t 2-4t +5=(t -2)2+1,∴t =-1时,y 取得最大值10,t =1时,y 取得最小值2.所以y =cos 2x -4cos x +5的值域为[2,10].【类题通法】求三角函数值域的常用方法(1)求解形如y =a sin x +b (或y =a cos x +b )的函数的最值或值域问题时,利用正、余弦函数的有界性(-1≤sin x ,cos x ≤1)求解.求三角函数取最值时相应自变量x 的集合时,要注意考虑三角函数的周期性.(2)求解形如y =a sin 2x +b sin x +c (或y =a cos 2x +b cos x +c ),x ∈D 的函数的值域或最值时,通过换元,令t =sin x (或cos x ),将原函数转化为关于t 的二次函数,利用配方法求值域或最值即可.求解过程中要注意t =sin x (或cos x )的有界性.【对点训练】求函数f (x )=2sin 2x +2sin x -12,x ∈⎣⎡⎦⎤π6,5π6的值域. 解:令t =sin x ,y =f (x ),∵x ∈⎣⎡⎦⎤π6,5π6,∴12≤sin x ≤1,即12≤t ≤1. ∴y =2t 2+2t -12=2⎝⎛⎭⎫t +122-1,∴1≤y ≤72, ∴函数f (x )的值域为⎣⎡⎦⎤1,72. 【练习反馈】1.函数y =2-sin x 的最大值及取最大值时x 的值为( ) A .y max =3,x =π2B .y max =1,x =π2+2k π(k ∈Z ) C .y max =3,x =-π2+2k π(k ∈Z ) D .y max =3,x =π2+2k π(k ∈Z )解析:选C ∵y =2-sin x ,∴当sin x =-1时,y max =3,此时x =-π2+2k π(k ∈Z ). 2.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin ⎝⎛⎭⎫2x +π2B .y =cos ⎝⎛⎭⎫2x +π2 C .y =sin ⎝⎛⎭⎫x +π2D .y =cos ⎝⎛⎭⎫x +π2 解析:选A 因为函数的周期为π,所以排除C 、D.又因为y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 在⎣⎡⎦⎤π4,π2上为增函数,故B 不符.只有函数y =sin ⎝⎛⎭⎫2x +π2的周期为π,且在⎣⎡⎦⎤π4,π2上为减函数. 3.sin 3π5,sin 4π5,sin 9π10,从大到小的顺序为________. 解析:∵π2<3π5<4π5<9π10<π, 又函数y =sin x 在⎣⎡⎦⎤π2,π上单调递减,∴sin 3π5>sin 4π5>sin 9π10. 答案:sin 3π5>sin 4π5>sin 9π104.若y =a sin x +b 的最大值为3,最小值为1,则ab =________.解析:当a >0时,⎩⎪⎨⎪⎧ a +b =3,-a +b =1,得⎩⎪⎨⎪⎧ a =1,b =2.当a <0时,⎩⎪⎨⎪⎧ a +b =1,-a +b =3,得⎩⎪⎨⎪⎧a =-1,b =2.答案:±25.求函数y =13sin ⎝⎛⎭⎫π6-x ,x ∈[0,π]的单调递增区间. 解:由y =-13sin ⎝⎛⎭⎫x -π6的单调性, 得π2+2k π≤x -π6≤3π2+2k π,k ∈Z , 即2π3+2k π≤x ≤5π3+2k π,k ∈Z . 又x ∈[0,π],故2π3≤x ≤π. 即单调递增区间为⎣⎡⎦⎤2π3,π.。
高中数学必修4全册精品教案(例题+练习)
高中数学必修4全册教案(例题+练习)1.1.1任意角1.1.2弧度制1.2.1任意角的三角函数第一课时1.2.2任意角的三角函数第二课时1.3三角函数的诱导公式第一课时1.3三角函数的诱导公式第二课时1.4.1正弦函数、余弦函数的图像1.4.2正弦函数、余弦函数的性质第一课时1.4.2正弦函数、余弦函数的性质第二课时1.4.3正切函数的性质与图像1.5函数)y+=的图像第一课时Asin(awx1.5函数)=的图像第二课时y+sin(aAwx2.1平面向量的实际背景及基本概念2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其几何意义2.2.3向量数乘运算及其几何意义2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示2.4.1平面向量数量积的物理背景及其含义2.4.2平面向量数量积的坐标表示、模、夹角3.1.1两角差的余弦公式3.1.2两角和与差的正弦、余弦、正切公式3.1.3二倍角的正弦、余弦、正切公式3.2简单的三角恒等变换第一课时3.3简单的三角恒等变换第二课时1.1.1任意角一、教学目标1、推广角的概念,理解并掌握正角、负角、零角的定义2、理解任意角以及象限角的概念3、掌握所有与角α终边相同的角(包括α)的表示方法二、教学重难点重点:理解任意角中正角、负角和零角和象限角的定义 难点:终边相同的角的表示方法三、教学内容复习回顾:问题1:什么是角?范围是多大?【解析】定义:有公共端点的两射线组成的几何图形叫角。
角的范围:00360~0一:任意角的概念问题2:一般地,一条射线绕其端点旋转,既可以按逆时针方向旋转,也可以按顺时针方向旋转,你认为将一条射线绕其端点按逆时针方向旋转60度所形成的角,与按顺时针方向旋转60度所形成的角是否相符?【解析】我们以前学过的角都是00360~0范围内,那么方向如何确定?如何解决这一问题?有必要将角的概念及范围推广。
(2021年整理)高中数学必修4知识点经典题型
高中数学必修4知识点经典题型编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修4知识点经典题型)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修4知识点经典题型的全部内容。
第三章三角恒等变换★1、角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭. ★2、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.★3、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+ ⑹()tan tan tan 1tan tan αβαβαβ++=-★4、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- ⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. 22tan tan 21tan ααα=-★5。
高一数学必修4知识点归纳加题型
高一数学必修4知识点归纳加题型高一数学必修4是一门重要的学科,涵盖了许多重要的数学知识点。
在本文中,将对高一数学必修4中的知识点进行归纳整理,并附加一些相关的题型,以帮助同学们更好地掌握这些知识。
1. 函数与方程1.1 一次函数一次函数的数学表示形式为y = kx + b,其中k为斜率,b为截距。
常见的题型包括求解线性方程组,求解一次函数的图像等。
示例题:已知一次函数的图像为直线y = 2x - 3,求函数的解析式。
1.2 二次函数二次函数的数学表示形式为y = ax^2 + bx + c,其中a为二次项的系数,b为一次项的系数,c为常数。
常见的题型包括求顶点坐标,求零点,绘制二次函数的图像等。
示例题:已知二次函数的顶点坐标为(-2, 5),且过点(1, 2),求函数的解析式。
2. 三角函数2.1 正弦函数正弦函数的数学表示形式为y = A*sin(Bx + C) + D,其中A为振幅,B为周期,C为初相位,D为垂直位移。
常见的题型包括求解三角方程,求解三角函数的图像等。
示例题:在区间[0, 2π]上,求解方程sin(2x) = 1的解。
2.2 余弦函数余弦函数的数学表示形式为y = A*cos(Bx + C) + D,其中A为振幅,B为周期,C为初相位,D为垂直位移。
常见的题型包括求解三角方程,求解三角函数的图像等。
示例题:在区间[0, 2π]上,求解方程cos(2x) = -1/2的解。
3. 平面向量平面向量的数学表示形式为A = (x, y),其中x和y分别表示向量在x轴和y轴上的分量。
常见的题型包括向量的加法、减法,向量的数量积,向量的模等。
示例题:已知向量A = (2, -1),向量B = (-3, 4),求向量A与向量B的数量积。
4. 解析几何4.1 直线和圆的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。
圆的标准方程为(x - h)^2 + (y - k)^2 = r^2,其中(h, k)为圆心坐标,r为半径长度。
高中数学必修4三角函数常考题型:同角三角函数的基本关系
同角三角函数的根本关系【知识梳理】同角三角函数的根本关系(1)平方关系:同一个角α的正弦、余弦的平方和等于1.即sin 2α+cos 2α=1.(2)商数关系:同一个角α的正弦、余弦的商等于这个角的正切,即sin αcos α=tan_α⎝⎛⎭⎫其中α≠k π+π2(k ∈Z ). 【常考题型】题型一、一个三角函数值求另两个三角函数值【例1】 (1)sin α=1213,并且α是第二象限角,求cos α和tan α. (2)cos α=-45,求sin α和tan α. [解] (1)cos 2α=1-sin 2α=1-⎝⎛⎭⎫12132=⎝⎛⎭⎫5132,又α是第二象限角,所以cos α<0,cos α=-513,tan α=sin αcos α=-125. (2)sin 2α=1-cos 2α=1-⎝⎛⎭⎫-452=⎝⎛⎭⎫352, 因为cos α=-45<0,所以α是第二或第三象限角, 当α是第二象限角时,sin α=35,tan α=sin αcos α=-34;当α是第三象限角时,sin α=-35,tan α=sin αcos α=34. 【类题通法】三角函数值求其他三角函数值的方法(1)假设sin α=m ,可以先应用公式cos α=±1-sin 2α,求得cos α的值,再由公式tan α=sin αcos α求得tan α的值. (2)假设cos α=m ,可以先应用公式sin α=±1-cos 2α,求得sin α的值,再由公式tan α=sin αcos α求得tan α的值. (3)假设tan α=m ,可以应用公式tan α=sin αcos α=m ⇒sin α=m cos α及sin 2α+cos 2α=1,求得cos α=±11+m 2,sin α=±m 1+m 2的值. 【对点训练】tan α=43,且α是第三象限角,求sin α,cos α的值. 解:由tan α=sin αcos α=43,得sin α=43cos α,① 又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,故cos α=-35,sin α=43cos α=-45. 题型二、化切求值【例2】 tan α=3,求以下各式的值.(1)4sin α-cos α3sin α+5cos α; (2)sin 2α-2sin α·cos α-cos 2α4cos 2α-3sin 2α; (3)34sin 2α+12cos 2α. [解] (1)原式=4tan α-13tan α+5=4×3-13×3+5=1114; (2)原式=tan 2α-2tan α-14-3tan 2α=9-2×3-14-3×32=-223; (3)原式=34sin 2α+12cos 2αsin 2α+cos 2α=34tan 2α+12tan 2α+1=34×9+129+1=2940. 【类题通法】化切求值的方法技巧(1)tan α=m ,可以求a sin α+b cos αc sin α+d cos α或a sin 2α+b sin αcos α+c cos 2αd sin 2α+e sin αcos α+f cos 2α的值,将分子分母同除以cos α或cos 2α,化成关于tan α的式子,从而到达求值的目的.(2)对于a sin 2α+b sin αcos α+c cos 2α的求值,可看成分母是1,利用1=sin 2α+cos 2α进行代替后分子分母同时除以cos 2α,得到关于tan α的式子,从而可以求值.【对点训练】tan α=2,求以下各式的值:(1)2sin α-3cos α4sin α-9cos α; (2)4sin 2α-3sin αcos α-5cos 2 α.解:(1)2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1. (2)4sin 2α-3sin αcos α-5cos 2α=4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α, 这时分子和分母均为关于sin α,cos α的二次齐次式.因为cos 2α≠0,所以分子和分母同除以cos 2α,那么4sin 2α-3sin αcos α-5cos 2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=1. 题型三、化简三角函数式【例3】 化简tan α1sin 2α-1,其中α是第二象限角. [解] 因为α是第二象限角,所以sin α>0,cos α<0.故tan α1sin 2α-1=tan α1-sin 2αsin 2α =tan αcos 2αsin 2α=sin αcos α·⎪⎪⎪⎪cos αsin α =sin αcos α·-cos αsin α=-1.【类题通法】三角函数式化简技巧(1)化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,到达化繁为简的目的.(2)对于含有根号的,常把根号里面的局部化成完全平方式,然后去根号到达化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,到达化简的目的.【对点训练】化简:(1)sin θ-cos θtan θ-1; (2) sin 2θ-sin 4θ,θ是第二象限角.解:(1)sin θ-cos θtan θ-1=sin θ-cos θsin θcos θ-1=sin θ-cos θsin θ-cos θcos θ=cos θ. (2)由于θ为第二象限角,所以sin θ>0,cos θ<0, 故sin 2θ-sin 4θ=sin 2θ(1-sin 2θ)=sin 2θcos 2θ=|sin θcos θ|=-sin θcos θ.题型四、证明简单的三角恒等式【例4】 求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α. [证明] 法一:∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α=tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边, ∴原等式成立.法二:∵左边=tan αsin αtan α-tan αcos α=sin α1-cos α, 右边=tan α+tan αcos αtan αsin α=1+cos αsin α=1-cos 2αsin α(1-cos α)=sin 2αsin α(1-cos α)=sin α1-cos α, ∴左边=右边,原等式成立.【类题通法】简单的三角恒等式的证明思路(1)从一边开始,证明它等于另一边;(2)证明左、右两边等于同一个式子;(3)逐步寻找等式成立的条件,到达由繁到简.【对点训练】证明:1+2sin θcos θcos 2θ-sin 2θ=1+tan θ1-tan θ证明:∵左边=sin 2θ+cos 2θ+2sin θcos θ(cos θ+sin θ)(cos θ-sin θ)=(sin θ+cos θ)2(cos θ+sin θ)(cos θ-sin θ)=cos θ+sin θcos θ-sin θ=cos θ+sin θcos θcos θ-sin θcos θ=1+tan θ1-tan θ=右边,∴原等式成立.【练习反应】1.α∈⎝⎛⎭⎫π2,π,sin α=35,那么cos α等于( ) A.45B .-45C .-17 D.35解析:选B ∵α∈⎝⎛⎭⎫π2,π且sin α=35, ∴cos α=-1-sin 2α=-1-⎝⎛⎭⎫352=-45. 2.假设α为第三象限角,那么cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3C .1D .-1 解析:选B ∵α为第三象限角,∴原式=cos α-cos α+2sin α-sin α=-3. 3.cos α-sin α=-12,那么sin αcos α的值为________. 解析:由得(cos α-sin α)2=sin 2α+cos 2α-2sin αcos α=1-2sin αcos α=14,解得sin αcos α=38. 答案:384.假设tan α=2,那么2sin α-cos αsin α+2cos α的值为________. 解析:原式=2sin α-cos αcos αsin α+2cos αcos α=2tan α-1tan α+2=2×2-12+2=34.答案:345.化简:1-2sin 130°cos 130°sin 130°+1-sin 2130°. 解:原式=sin 2130°-2sin 130°cos 130°+cos 2130°sin 130°+cos 2130°=|sin 130°-cos 130°|sin 130°+|cos 130°|=sin 130°-cos 130°sin 130°-cos 130°=1.。
高中数学必修1、必修4第一章经典题型总结
高一上学期期末考经典题型(必修1与必修4第一章) 1.集合基本运算,数轴应用已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =UA .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<2.集合基本运算,二次函数应用已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A I ( )A .]1,2[--B . )2,1[- C..]1,1[- D .)2,1[ 3.集合基本运算,绝对值运算,指数运算设集合{}{}]2,0[,2|,2|1||∈==<-=x y y B x x A x,则=B A I ( )A.]2,0[B. )3,1(C. )3,1[D. )4,1( 4.集合基本性质,分类讨论法已知集合A= {}22,25,12a a a -+,且-3 ∈A ,求a 的值5.集合基本性质,数组,子集数量公式n 2.集合A={(x,y)|2x+y=5,x ∈N,y ∈N },则A 的非空真子集的个数为( ) A 4 B 5 C 6 D 7 6.集合基本性质,空集意识已知集合A={x|2a-1≤x≤a+2},集合B={x|1≤x≤5},若A∩B=A,求实数a 的取值范围.7.函数解析式,定义域,换元法,复合函数,单调性,根式和二次函数应用,数形结合法 已知x x x f 2)1(+=+,定义域为:x>0 (1)求f(x)的解析式,定义域及单调递增区间 (2)求(-1)f x 解析式,定义域及最小值8.函数基本性质,整体思想,解方程组 设1()满足2()()2,f x f x f x x-=求)(x f9.函数基本性质,一次函数,多层函数,对应系数法 若f [ f (x )]=2x +3,求一次函数f (x )的解析式10.不等式计算,穿针引线法(1-x)(21)(1)x x x +≥- 求x 取值范围11.函数值域,反表示法,判别式法,二次函数应用,换元法,不等式法 求函数2241x y x +=-的值域 求函数2122x y x x +=++的值域求函数x x y 41332-+-=的值域 93(0)4y x x x =+>12.函数值域,分类讨论,分段函数,数形结合,数轴应用 若函数a x x x f +++=21)(的最小值为3,则实数a 的值为(A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 13.函数单调性,对数函数性质,复合函数单调性(同增异减) 函数212()log (4)f x x =-的单调递增区间为A.(0,)+∞B.(-∞,0)C.(2,)+∞D.(-∞,2)- 下列函数中,在区间(0,)+∞上为增函数的是( ).A y 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+14.函数单调性,数形结合,二次函数应用如果函数2)1(2)(2+-+=x a x x f 在区间]4,(-∞上是减函数,则a 的取值范围是______ 15.函数奇偶性,整体思想设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数16.函数奇偶性,单调性,特殊函数法,数形结合 已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.已知偶函数)(x f 在()0,∞-上为减函数,比较)5(-f ,)1(f ,)3(f 的大小。
高中数学必修4第一章复习总结及典型例题
高中数学必修4第一章复习总结及典型例题
第一、任意角的三角函数
一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角
终边相同的角的集合|2,,
弧度制,弧度与角度的换算,
2弧长r、扇形面积rr,
1212二:任意角的三角函数定义:任意角的终边上任意取一点,该圆心角是1弧度,则扇形的面积=cm2
4、设
a
14、下列函数中,周期为的偶函数是()
A.2
解答题解答题应写出文字说明、演算步骤或证明过程2
coin2第一类型:1、已知角终边上一点P(-4,3),求的值119coin22
2已知是第二象限角,fintan.
inco2tan(1)化简f;(2)若in
3,求下列各式的值:(1)
31,求f的值.234inco1;(2).23in5co2incoco
第二类型:B的一部分图象
如右图所示,如果A0,0,||
(1)求此函数的周期及最大值和最小值(2)求这个函数函数解析式
第三类型:1.已知函数2,
15in2264(1)求函数的单调递增区间;
(2)求出函数的对称中心和对称轴方程.3写出=in图象如何变换到
15in2的图象2。
高中数学必修4习题和复习参考题及对应答案
高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x 轴上的角的集合. 答案:S={α|α=k·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k·360°,k ∈Z },-245°,115°; (5){β|β=90°+k·360°,k ∈Z },-270°,90°; (6){β|β=270°+k·360°,k ∈Z },-90°,270°; (7){β|β=180°+k·360°,k ∈Z },-180°,180°; (8){β|β=k·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k·360°<β<90°+k·360°,k ∈Z } {|22,}2k k k πβπβπ<<+∈Z二 {β|90°+k·360°<β<180°+k·360°,k ∈Z }{|22,}2k k k πβπβππ+<<+∈Z三 {β|180°+k·360°<β<270°+k·360°,k ∈Z }3{|22,}2k k k πβππβπ+<<+∈Z 四{β|270°+k·360°<β<360°+k·360°,k ∈Z }3{|222,}2k k k πβπβππ+<<+∈Z 说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k·360°<α<90°+k·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角.6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念.7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值;(2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =. 用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20 习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a≠0,求sinα,cosα,tanα的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-.说明:根据定义求三角函数值.3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin 2446663ππππππ-+-++;(4)2423sincos tan 323πππ+-. 答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题.6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号.7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号.8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值.9、求证:(1)角θ为第二或第三象限角当且仅当sinθ·tanθ<0; (2)角θ为第三或第四象限角当且仅当cosθ·tanθ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34 x x==-.说明:要分别对x是第三象限角和第四象限角进行讨论.12、已知3tan 3,2απαπ=<<,求cosα-sinα的值. 答案:1(31)2- 说明:角α是特殊角.13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α; (3)(cosβ-1)2+sin 2β=2-2cosβ; (4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cosβ+cos 2β+sin 2β=2-2cosβ;(4)左边=(sin 2x +cos 2x )2-2sin 2x·cos 2x=1-2sin 2x·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角. 答案:-2tanα说明:先变形,再根据同角三角函数的基本关系进行化简.3、已知tanα=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式.4、从本节的例7可以看出,cos 1sin 1sin cos x xx x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29 习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)si n263°42′=__________; (3)cos()6π-=__________; (4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π;(4)sin3π; (5)2cos 9π-;(6)-cos75°34′; (7)-tan87°36′; (8)tan6π-. 说明:利用诱导公式转化为锐角三角函数.2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′;(6)26sin()3π-.答案:(1)22;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)32 -说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-. 答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46 习题1.4A 组1、画出下列函数的简图: (1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32; 使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2kπ],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2kπ,(2k +1)π],k ∈Z 时,y=-cosx 是增函数.说明:利用正弦、余弦函数的单调性研究所给函数的单调性.6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期.答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解.8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°; (3)93tan 6tan(5)1111ππ-与; (4)7tantan 86ππ与. 答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tantan 86ππ<. 说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.10、设函数f (x )(x ∈R )是以 2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题.11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(kπ,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=kπ,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z . 说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题:(1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57 习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度 D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变 D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ). A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2)(3)(4)说明:研究了参数A、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48xy π=-,x ∈[0,+∞);(2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-.先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式. t 0t 02t 03t 0 4t 05t 06t 07t 08t 09t 0 10t 011t 012t 0s-20.0 -17.8 -10.10.110.3 17.7 20.0 17.7 10.30.1-10.1 -17.8 -20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos2A=-;(3)tanA=1;(4)3 tan3A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论.P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π; (4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ;(2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ; (4){β|β=2kπ,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解.3、确定下列三角函数值的符号: (1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sinφ,tanφ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sinφ的值,再求tanφ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==;当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cosα表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形.7、求证:(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2; (2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sinα+2cosα-2sinαcosα=1+sin 2α+cos 2α-2sinα+2cosα-2sinαcosα =右边.(2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形.8、已知tanα=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sinαcosα; (3)(sinα+cosα)2. 答案:(1)57;(2)310;(3)85. 说明:第(2)题可由222sin tan 9cos ααα==,得21c o s10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号.10、已知1sin()2πα+=-,计算:(1)cos(2π-α);(2)tan(α-7π).答案:(1)当α为第一象限角时,3 cos(2)2πα-=,当α为第二象限角时,3 cos(2)2πα-=-;(2)当α为第一象限角时,3 tan(7)3απ-=,当α为第二象限角时,3 tan(7)3απ-=-.说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算.11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°;(2)sin(-879°),313t a n(),c o s()810ππ--;(3)sin3,cos(sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216;(2)sin(-879°)=-0.358,3313tan()0.414,cos()0.588 810ππ-=--=-;(3)sin3=0.141,cos(sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证.12、设π<x<2π,填表:x 76π74πsinx -1cosx22-32tanx 3答案:x 76π54π43π32π74π116πsinx12-22-32--122-12-cosx32-22-12-2232tanx3313不存在-133-说明:熟悉各特殊角的三角函数值.13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z }; 最小值为1,此时x 的集合为{x|x=2kπ,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证.17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.170.340.500.640.770.870.940.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.。
(完整word版)高中数学必修四常考题型总结
(完整word 版)高中数学必修四常考题型总结必修四常考题型总结三角函数篇三角函数的基础知识与基本运算: 1. sin585。
的值为(A) 22-(B )22 (C )32- (D) 322。
(列关系式中正确的是( )A .000sin11cos10sin168<<B .000sin168sin11cos10<<C .000sin11sin168cos10<<D .000sin168cos10sin11<< 3.(2009北京理)“2()6k k Z παπ=+∈”是“1cos 22α="的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.(2008浙江理)cos 2sin 5,tan ( )ααα+=-=若则(A )12(B )2 (C )12- (D)2-图像与性质:1.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( )3.已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =(A)23- (B)23 (C )- 12 (D ) 12w 。
w.w 。
k 。
s 。
5。
u.c 。
o 。
m(完整word 版)高中数学必修四常考题型总结4.)函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= 。
4。
已知函数y=sin (ωx+ϕ)(ω〉0, —π≤ϕ〈π)的图像如图所示,则 ϕ=________________5。
已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫= ⎪⎝⎭。
w 。
w 。
w 。
k.s.5。
u 。
c 。
o 。
m7.已知函数()sin()(0)f x x ωϕω=+>的图象如图所示, 则ω =已知函数()3sin cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是(A )5[,],1212k k k Z ππππ-+∈ (B )511[,],1212k k k Z ππππ++∈ (C )[,],36k k k Z ππππ-+∈ (D)2[,],63k k k Z ππππ++∈ 2.如果函数3sin(2)y x ϕ=+的图像关于点4(,0)3π中心对称,那么||ϕ 的最小值为(C ) (A )6π (B)4π (C )3π (D ) 2π3.已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是 A . 函数)(x f 的最小正周期为2πB . 函数)(x f 在区间[0,]2π上是增函数C .函数)(x f 的图象关于直线x =0对称D . 函数)(x f 是奇函数4.(本小题共12分)已知函数()2sin()cos f x x x π=-. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.5.已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的周期为π,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式;(Ⅱ)当[0,]12x π∈,求()f x 的最值.2。
高中数学必修4三角函数常考题型:三角函数的诱导公式(一)
三角函数的诱导公式(一)【学问梳理】1.诱导公式二(1)角π+α与角α的终边关于原点对称. 如图所示. (2)公式:sin(π+α)=-sin_α.cos(π+α)=-cos_α.tan(π+α)=tan_α.2.诱导公式三(1)角-α与角α的终边关于x 轴对称.如图所示.(2)公式:sin(-α)=-sin_α.cos(-α)=cos_α.tan(-α)=-tan_α.3.诱导公式四(1)角π-α与角α的终边关于y 轴对称.如图所示.(2)公式:sin(π-α)=sin_α.cos(π-α)=-cos_α.tan(π-α)=-tan_α.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:(1)sin(-1 200°);(2)tan 945°;(3)cos 119π6. [解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32; (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1;(3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32.【类题通法】利用诱导公式解决给角求值问题的步骤【对点训练】求sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°的值.解:sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°=sin(360°+225°)cos(3×360°+210)+cos 30°sin 210°+tan(180°-45°)=sin 225°cos 210°+cos 30°sin 210°-tan 45°=sin(180°+45°)cos(180°+30°)+cos 30°·sin(180°+30°)-tan 45°=sin 45°cos 30°-cos 30°sin 30°-tan 45°=22×32-32×12-1=6-3-44. 题型二、化简求值问题【例2】 (1)化简:cos (-α)tan (7π+α)sin (π-α)=________; (2)化简sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°). (1)[解析]cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1. [答案] 1(2)[解] 原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1. 【类题通法】利用诱导公式一~四化简应留意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有变更,但肯定要留意函数的符号有没有变更;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采纳切化弦,有时也将弦化切.【对点训练】化简:tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ). 解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ. 题型三、给角(或式)求值问题【例3】 (1)已知sin β=13,cos(α+β)=-1,则sin(α+2β)的值为( ) A .1 B .-1C.13 D .-13 (2)已知cos(α-55°)=-13,且α为第四象限角,求sin(α+125°)的值. (1)[解析] ∵cos(α+β)=-1,∴α+β=π+2k π,k ∈Z ,∴sin(α+2β)=sin[(α+β)+β]=sin(π+β)=-sin β=-13. [答案] D(2)[解] ∵cos(α-55°)=-13<0,且α是第四象限角. ∴α-55°是第三象限角.sin(α-55°)=-1-cos 2(α-55°)=-223. ∵α+125°=180°+(α-55°),∴sin(α+125°)=sin[180°+(α-55°)]=-sin(α-55°)=223. 【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要细致视察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】已知sin(π+α)=-13,求cos(5π+α)的值. 解:由诱导公式得,sin(π+α)=-sin α,所以sin α=13,所以α是第一象限或其次象限角. 当α是第一象限角时,cos α= 1-sin 2α=223, 此时,cos(5π+α)=cos(π+α)=-cos α=-223. 当α是其次象限角时,cos α=-1-sin 2α=-223, 此时,cos(5π+α)=cos(π+α)=-cos α=223. 【练习反馈】1.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255B .-55C.55D.255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 2.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是( ) A .-35B.35 C .±35 D.45解析:选B sin α=-45,又α是第四象限角, ∴cos(α-2π)=cos α=1-sin 2α=35. 3.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=________. 解析:∵tan(5π+α)=tan α=m ,∴原式=-sin α-cos α-sin α+cos α=-tan α-1-tan α+1=-m -1-m +1=m +1m -1. 答案:m +1m -14.cos (-585°)sin 495°+sin (-570°)的值是________. 解析:原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 答案:2-25.已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫α+5π6的值. 解:cos ⎝⎛⎭⎫π+5π6=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫α+5π6= -cos ⎝⎛⎭⎫π6-α=-33.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4三角与向量专题
同名三角函数之间的关系:
例1.已知12sin 13
α=,并且α是第二象限角,求cos ,tan ,cot ααα. 例2.已知α=αcos 2sin ,
求(1)α
αααcos 2sin 5cos 4sin +- (2)αααα22cos cos sin 2sin 2-+. 练习:40cos40
思考:
1.已知)0(5
1cos sin π<θ<=
α+α,求的值。
及θ-θθ33cos sin tan 2、已知是第四象限角,α+-=α+-=α,5
3cos ,524sin m m m m 求的值。
αtan 诱导公式: 例1.化简:.)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(αππααπαπαπαπαπαπ+-----++- 练习. 已知1sin()2πα+=-,计算:
(1)sin(5)πα-; (2)sin(
)2πα+; (3)3cos()2πα-; (4)tan()2πα-. 例2. .)
3cos(4)3tan(3)sin(2,0cos sin ,54)sin(的值求且已知πααππαααπα--+-<=
+ 化简: );2cos()2sin(25sin 2cos )1(αππααππα-⋅-⋅⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛- .)sin()360tan()(cos )2(o 2ααα-+-- 例3.已知方程0)13(22=++-m x x 的两根分别是θsin ,θcos , 求θθθ
θtan 1cos tan 11sin -+-的值 三角函数:
例1. 对于函数y =3sin(2x +3
π)-3,x ∈R (1)求出对称轴与对称中心,
(2)求出单调区间,
(3)用“五点法”画出简图,并说明此函数图象怎样由sin y x =变换而来. 练习
1. 要得到函数y=cos(
42π-x )的图象,只需将y=sin 2
x 的图象 ( ) A .向左平移2π个单位 B.同右平移2π个单位
C .向左平移4π个单位 D.向右平移4
π个单位 2.若函数y =f (x )的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个 图象沿x 轴向左平移
2π个单位,沿y 轴向下平移1个单位,得到函数y =21sin x 的图象则 y =f(x )是 ( )
A .y =1)22sin(21++πx B.y =1)2
2sin(21+-πx C.y =1)42sin(21++πx D. y =1)4
2sin(21+-πx 3.如下图为函数)0,0,0()sin(>>>++=ϕωϕωA c x A y 图像的一部分 (1)求此函数的周期及最大值和最小值
(2)求与这个函数图像关于直线2=x 对称的函数解析式
三角恒等变换: 例1. 已知3cos(
)45πα-=,512sin()413πβ+=-,3(,)44ππα∈,(0,)4πβ∈,求sin()αβ+的值.
例2. (1)已知1cos()5αβ+=,3cos()5
αβ-=,求tan tan αβ的值; (2)已知1cos cos 2αβ+=,1sin sin 3
αβ+=,求cos()αβ-的值. 例3. 已知函数()sin()sin()cos 66
f x x x x a ππ=++-++的最大值为1. (1)求常数a 的值; (2)求使()0f x ≥成立的x 的取值集合.
练习
1.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=
的图像 ( ) A 、向右平移6
π个单位 B 、向右平移12π个单位 C 、向左平移
6π个单位 D 、向左平移12π个单位 2. 函数sin
322x x y =+的图像的一条对称轴方程是 ( ) A 、x =113
π B 、x =53π C 、53x π=- D 、3x π=-
3. 已知函数.,2cos 32sin R x x x y ∈+= (1)求y 取最大值时相应的x 的集合; (2)该函数的图象可以由)(sin R x x y ∈=图象经过怎样的平移和伸缩变换得到的 平面向量:
例1.向量),1,(),2,1(x b a ==
(1)当b a 2+与b a -2平行时,求x ;(2)当b a 2+与b a -2垂直时,求x . 例2.已知向量,,32,32212121e e e e b e e a 与其中+=-=不共线向量,9221e e c -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线.
例3.已知
4,||3,(23)(2)61a b a b a b ==+=||-, (1)求a b 的值; (2)求a b 与的夹角θ; (3)求a b +||的值.
例4.已知向量(sin ,1),(1,cos ),22a b π
π
θθθ==-<<.
(1) 若,a b θ⊥求 ; (2)求a b +的最大值 .
例5.如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交
直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为 .
练习
1.若)7,4(),3,2(-==b a ,求a 在b 方向上的正射影的数量。
2.已知△ABC 中,a =5,b =8,C =60°,求BC ·CA .
3.已知(2,1)a =-,(1,3)b =,求当向量b a λ+与a b λ+的夹角为锐
角时,λ的取值范围.
B A
O N M。