人教中考数学 锐角三角函数 综合题含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.

(1)求证:直线CP是⊙O的切线.

(2)若BC=2,sin∠BCP=,求点B到AC的距离.

(3)在第(2)的条件下,求△ACP的周长.

【答案】(1)证明见解析(2)4(3)20

【解析】

试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;

(2)利用锐角三角函数,即勾股定理即可.

试题解析:(1)∵∠ABC=∠ACB,

∴AB=AC,

∵AC为⊙O的直径,

∴∠ANC=90°,

∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,

∵∠CAB=2∠BCP,

∴∠BCP=∠CAN,

∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,

∵点D在⊙O上,

∴直线CP是⊙O的切线;

(2)如图,作BF⊥AC

∵AB=AC,∠ANC=90°,

∴CN=CB=,

∵∠BCP=∠CAN,sin∠BCP=,

∴sin∠CAN=,

∴AC=5,

∴AB=AC=5,

设AF=x,则CF=5﹣x,

在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,

在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,

∴25﹣x2=2O﹣(5﹣x)2,

∴x=3,

∴BF2=25﹣32=16,

∴BF=4,

即点B到AC的距离为4.

考点:切线的判定

2.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).

【答案】32.4米.

【解析】

试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.

试题解析:如图,过点B作BE⊥CD于点E,

根据题意,∠DBE=45°,∠CBE=30°.

∵AB⊥AC,CD⊥AC,

∴四边形ABEC为矩形,

∴CE=AB=12m,

在Rt△CBE中,cot∠CBE=BE CE

∴BE=CE•cot30°=12×3=123,

在Rt△BDE中,由∠DBE=45°,

得DE=BE=123.

∴CD=CE+DE=12(3+1)≈32.4.

答:楼房CD的高度约为32.4m.

考点:解直角三角形的应用——仰角俯角问题.

3.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.

(1)求证:△MED∽△BCA;

(2)求证:△AMD≌△CMD;

(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=17

5

S1时,求cos∠ABC的

值.

【答案】(1)证明见解析;(2)证明见解析;(3)cos ∠ABC=57

. 【解析】 【分析】

(1)易证∠DME=∠CBA ,∠ACB=∠MED=90°,从而可证明△MED ∽△BCA ; (2)由∠ACB=90°,点M 是斜边AB 的中点,可知MB=MC=AM ,从而可证明∠AMD=∠CMD ,从而可利用全等三角形的判定证明△AMD ≌△CMD ; (3)易证MD=2AB ,由(1)可知:△MED ∽△BCA ,所以

2

114

ACB S MD S

AB ⎛⎫== ⎪⎝⎭,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于1EBD

S ME S EB =,从而可知

52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=7

2,最后根据锐角三角函数的定义即可求出答案. 【详解】

(1)∵MD ∥BC , ∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;

(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC ,

∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,

∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,

MD MD AMD CMD AM CM =⎧⎪

∠=∠⎨⎪=⎩

, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,

由(1)可知:△MED ∽△BCA , ∴

2

114

ACB S MD S

AB ⎛⎫== ⎪⎝⎭,

∴S△ACB=4S1,

∵CM是△ACB的中线,

∴S△MCB =1

2

S△ACB=2S1,

∴S△EBD=S 2﹣S △MCB ﹣S1=2

5

S1,

∵1

EBD

S ME

S EB

=,

∴1

1

2

5

S ME

EB

S

=

∴5

2

ME

EB

=,

设ME=5x ,EB=2x ,

∴MB=7x,

∴AB=2MB=14x,

∵1

2

MD ME

AB BC

==,

∴BC=10x,

∴cos∠ABC=105

147

BC x

AB x

==.

【点睛】

本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.

4.如图13,矩形的对角线,相交于点,关于的对称图形为.

(1)求证:四边形是菱形;

(2)连接,若,.

①求的值;

②若点为线段上一动点(不与点重合),连接,一动点从点出发,以

的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点

相关文档
最新文档