矩形谐振腔
4.3 矩形谐振腔
(4-31)
第四章 微波谐振器
矩形谐振腔 §4.3 矩形谐振腔
横向场量可以用纵向场量求出来
r 1 ∂ H t = 2 (∇t H z ) K c ∂z r 1 Et = 2 ( jωµ z × ∇t H z ) ˆ Kc v v ˆ Et = − Z TE z × H t
Ex = − jωµ ∂H z 2 K c ∂y
2
λr =2ຫໍສະໝຸດ v 2π = fr K2
m n p + + a b l
λr =
2π 2 = 2 2 2 K m n p + + a b l
(4-37)
第四章 微波谐振器
矩形谐振腔 §4.3 矩形谐振腔
两个传播方向相反的行波叠加时, 两个传播方向相反的行波叠加时,场的表达式为
mπ + E z = E0 sin a mπ − y e − jβ z + E0 sin a nπ x sin b y e jβ z
若z=0处放一短路板,则有边界条件 z=0处放一短路板, 处放一短路板
E x z =l = 0
pπ ( p = 0,1,2,3L) l
βl = pπ 或 β =
则腔体内TM 则腔体内TMmnp模的纵向电场为
矩形谐振腔讲义
五、TE101模的Q值
结合上面三种情况可知
Rs λ2 2 ab bl 1 a l 0 PL = E0 2 + 2 + + 2 8η 2 l a a l
代入Q 代入Q值公式
Q0 =
Rsλ 8η
2 0 2
8 ab 1 a bl l + E 02 2 + 2 + 2 l a a l
四、矩形构
五、TE101模的Q值
W = (We ) max
2 1 1 l b a 2 2 π = ε ∫ E dv = ε ∫ ∫ ∫ E0 sin a 2 V 2 0 0 0
π x sin 2 l
l
1 2 z dxdydz = ablεE0 8
二、品质因数Q0
v2 1 W = We + Wm = ∫ µ| H | dv 2 v
(31(31-7)
而导体壁损耗
1 1 2 PL = ∫ | J s | Rs ds = Rs ∫ | Hτ |2 ds S 2 S 2
ω0µ
s
(31(31-8)
式中R 是表面电阻率, 式中Rs是表面电阻率, R = 2σ , H 为切向磁场。 为切向磁场。 因此, 所对应的谐振腔Q 因此,有限电导率σ所对应的谐振腔Q值
βl = pπ
则有
( p = 1,2,3,L )
(31(31-4)
λ0 =
2 m n p + + a b l
2 2 2
=
1 1 p + λ 2l c
2 2
(31(31-5)
二、品质因数Q0
基于时域有限差分法(FDTD)的矩形谐振腔分析
一、 设计任务采用FDTD 数值计算的方法来分析理想谐振腔中的场,谐振腔尺寸为25*12.5*60mm 填充空气,采用直角坐标系下的场分量迭代公式,激励源采用高斯脉冲源,源的参数根据谐振腔的尺寸来确定。
分析时间和空间离散度以及采样点数对分析结果的影响。
二、 方案设计(1)学习FDTD 理论,并推导直角坐标系下maxwell 方程的差分方程;(2)理论学习并推导理想矩形谐振腔中的时谐场,并分析其谐振频率分布; (3)激励源采用高斯脉冲源,导体采用PEC 边界,利用FDTD 编程求解谐振腔内的场分量;(4)对谐振腔内部分点处的采样数据进行频谱分析,提取其谐振频率分布,并与理论对比,并分析时间和空间离散度以及采样点数对分析结果的影响。
三、 设计原理3.1时域有限差分法FDTD(finite diference time domain)方法属于全波分析法, 它是Yee 在1966年所提出的数值方法“ ,其原理是将麦克斯韦方程式中两个微分形式的旋度方程式以中心差分式做离散化。
求解过程由递推完成,尤其适合计算机编程实现。
3.1.1有限差分法有限差分法是用变量离散的、含有有限个未知数的差分方程近似的代替连续变量的微分方程,即构造合理的差分格式,使其解能保持原问题的主要性质,并有相当高的精确度。
假设f(x),为x 的连续函数,在x 轴上每隔h 距离取一点,其中任意某一点用x i 表示,则叫做f(x)在x i 点的中心差分。
在时域有限差分法中正是用中心差商代替微商,同时用Max-well 方程组建立差分方程。
3.1.2 Yee ’s 差分算法H E, 场分量取样节点在空间和时间上采取交替排布,利用电生磁,磁生电的原理tt ∂∂=∂∂=⨯∇ED H εt t ∂∂-=∂∂-=⨯∇HB E μ--(1)如图3-1所示,Yee 单元有以下特点:(1)E 与H 分量在空间交叉放置,相互垂直;(i ,(i ,j+1,k+1)(i+1,(i+1,j+1,k+1)E yE x(2)每一坐标平面上的E分量四周由H分量环绕,H分量的四周由E分量环绕;(3)每一场分量自身相距一个空间步长,E和H相距半个空间步长(4)电场取n时刻的值,磁场取n+0.5时刻的值;(5)电场n+1时刻的值由 n 时刻的值得到,磁场n+0.5时刻的值由n-0.5时刻的值得到;电场n+1时刻的旋度对应(n+1)+0.5时刻的磁场值,磁场n+0.5时刻的旋度对应 (n+0.5)+0.5时刻的电场值;(6)3个空间方向上的时间步长相等,以保证均匀介质中场量的空间变量与时间变量完全对称。
《矩形谐振腔》课件
矩形谐振腔的设计
1
设计参数
2
包括谐振腔尺寸、波导位置、材料选择
等。
3
一般步骤
确定频率、计算谐振腔尺寸、优化设工具等。
矩形谐振腔的应用
微波和微纳电子学
矩形谐振腔在微波电路和微纳电子学中广泛应用, 用于滤波、频率选择和放大等。
量子计算
矩形谐振腔是量子计算中的关键元件,用于存储和 操作量子比特。
参考文献
相关研究论文
1. "矩形谐振腔的设计与制作",XXX期刊,2020 年。
网络资源
2. "如何设计优秀的矩形谐振腔",微电子论坛, https://www.***.com
谐振模式的定义
谐振模式是矩形谐振腔中特定频率下的电磁场分布形态,不同模式对应不同的场分布和电磁能量分布。
不同谐振模式的特点
TE10
最简单的模式,电场仅沿一个方向震荡。
TM11
电场和磁场都存在,和波导边界垂直。
TE01
场与波导边界垂直,纵向波动不变。
TE20
正方形波导才有的模式,电场沿两个方向震荡。
实验
1
测量共振频率
通过改变谐振腔的尺寸,测量不同谐振
测量Q值
2
模式的共振频率。
通过测量共振峰的宽度,计算谐振腔的 品质因数(Q值)。
结论
1 优点与不足
2 未来发展趋势
矩形谐振腔具有结构简单、易于制作的优点, 但波导的存在会引入损耗。
随着技术的不断进步,矩形谐振腔将在量子 计算和通信领域发挥越来越重要的作用。
《矩形谐振腔》PPT课件
矩形谐振腔是微波和微纳电子学中常见的元件。本课件将详细介绍矩形谐振 腔的定义、工作原理、谐振模式以及设计和应用。
矩形谐振腔
传输线—二维 kc
传输腔—三维 k
图 31-3 二维谐振和三维谐振
一、谐振频率0
进一步,如果讨论的是传输型谐振腔,即
l p
(p 1 ,2 ,3 , ) (31-4)
则有
0
2 m2n2p2 a b l
Байду номын сангаас
k
2 x
E
0
d 2E dy 2
k
2 y
E
0
d 2E 2E 0 dz 2
k
2 x
k
2 y
k
2 c
k c2 k 2 2
y -z
x
0
d 2E dx 2
k
2 x
E
0
d 2E dy 2
k
2 y
E
0
d 2E dz 2
k
2 z
E
0
k
2
k
2 x
k
2 y
k
2 z
一、谐振频率0
(31-1)
一、谐振频率0
理想腔
C
Go
L
耦合腔
Go L
C
非理想腔 G-介 质
C G
L Go
Q
G0
图 31-2 谐振腔研究的思路框图
一、谐振频率0
但是在求解中,它与传输线不同。在传输线中z是优 势方向:即。从概念上讲:x、y方向是驻波,而z方向
假定是行波。
传输线
谐振腔
y -z
矩形谐振腔PPT课件
Hx
k2jkzkz2
Hz x
jkz z
Hy
k2jkzkz2
Hz y
jk z
z
Hx
k2
1 kz2
(Hz x z
)
Hy
k2
1 kz2
(Hz y z
)
Ex
j
k2 kz2
Hz y
Ey
j
k2 kz2
Hz x
Ez 0
2020/6/10
.
14
第九章 导行电磁波
H z ( x ,y ,z ) c o s ( m a x ) c o s ( n b y ) ( D 1 e jk z z D 2 e jk z z )
因为随着频率升高,必须减小 LC 谐振电路的电感量和电 容量,但是当 LC 很小时,分布参数的影响不可忽略。电容器 的引线电感、线圈之间以及器件之间的分布电容必须考虑。
随着频率升高,回路的电磁辐射效应显著,电容器中的 介质损耗也随之增加,这些因素导致谐振电路的品质因素 Q 值显著下降。
在米波以上的微波波段,经常使用相应波段的传输线来构 成谐振器件。
衰减常数 Pl
2P
[Np m]
P l 单位长度波导壁的功率损耗
P 单位长度波导壁的传输功率
TE10
b
Rs
[12b( fc)2]
1( fc)2
af
TM
f
11
2020/6/10
电磁场. 理论
3
第九章 导行电磁波
9-5 矩形谐振腔
研究波导谐振腔的意义
在米波以上的微波波段,集总参数的LC谐振电路无法使用。
m 、 n 和 p 取不同的值,可得不同模式的TM波,称为 TMmnp 模式。
3.1 矩形谐振腔解析
k
2
0
0
c
(3-3)
一、谐振频率0
进一步,如果讨论的是传输型谐振腔,即
l p
( p 1,2,3,)
则有
0
1 1 1 0 g
2 2
(3-4)
1 1 p 2l c
3.1 矩形谐振腔
Rectangular Resonator
如果说微波传输线充当低频的R、L、C部件, 那么微波谐振腔相当于低频振荡电路。这是振荡器、 滤波器和耦合器应用中所必须涉及的。
选 谐振腔 滤 频 波 波长计 介质抽量
灵敏测量
图 3-1 谐振腔应用
第31章
矩形谐振腔
Rectangular Resonator
(3-21)
由于复频率的引入,使我们可以采用复变函数的理 论工具研究谐振腔。
2
(31-1)
一、谐振频率0
理 想 腔 耦 合 腔 非 理 想 腔 G 介 质
C
G o
L
G o L C
C L G o
G
Q
G 0
图 3-2 谐振腔研究的思路框图
一、谐振频率0
但是在求解中,它与传输线不同。在传输线中z是优 势方向:即。从概念上讲:x、y方向是驻波,而z方向 假定是行波。
传 输 线
Q0
0
Rs |H |V源自S| H |2 dv
2
ds | H |
2
V S
| H |2 dv
2
ds
(3-9)
二、品质因数Q0
其中集肤深度
0
。作估值公式,令 2
《矩形谐振腔》课件
采用遗传算法、粒子群算法等优化算 法,对矩形谐振腔进行优化设计,以 提高其性能。
04
矩形谐振腔的制造工艺
加工工艺流程
切割与成型
使用切割机和成型机对材料进行 精确加工,得到矩形谐振腔的初 步形状。
组装与调试
将各部分组合在一起,并进行必 要的调整和测试,以确保其性能 达标。
01
材料准备
选择合适的材料,如铜、铝或不 锈钢,确保其物理和化学属性满 足谐振腔的设计要求。
03
表面处理不均匀
表面处理过程中可能出现不均 匀的情况,影响电磁性能。解 决策略包括加强工艺控制和增 加后处理工序。
04
组装误差
部件组装时可能出现误差,导 致性能下降。应对措施包括采 用精密的测量设备和严格的组 装流程管理。
05
矩形谐振腔的性能测试与分析
测试设备与方法
01
测试设备
02
高精度频谱分析仪
分析频率响应曲线,确定矩形谐振腔的工作频 带和带宽。
测试结果分析
阻抗匹配
测量矩形谐振腔的输入和输出阻抗。
分析阻抗匹配情况,判断矩形谐振腔是否具有良好的 能量传输效率。
测试结果分析
01
群时延
02
测量矩形谐振腔在不同频率下的群时延。
03 分析群时延曲线,评估矩形谐振腔对信号的畸变 程度。
结果与讨论
雷达制导
在雷达制导系统中,矩形谐振腔可用于信号处理和目标识别,提高制导精度和抗干扰能力。
其他领域的应用
微波测量
矩形谐振腔可用于微波测量领域,如微波频谱分析、微波传感器等。
电子对抗
在电子对抗中,矩形谐振腔可用于信号干扰和欺骗,提高电子设备的抗干扰能力。
矩形谐振腔
b a
g /2
x
把长度为d的空心金属波导两端用金属壁封闭,即可构成谐 振腔。封闭金属谐振腔也存在多种结构,例如,矩形谐振腔、 圆柱谐振腔、同轴谐振腔等,本节主要讨论矩形谐振腔。
2018/11/19
电磁场理论
5
第九章 导行电磁波
矩形谐振腔
由于矩形波导中能够存在 TM 模和 TE 模,因此,在矩形谐振 腔中也会存在 TM 模和 TE 模。 不同于矩形波导,矩形谐振腔中波的传播方向可在 x、y 和 z 三个方向中选择,因此,矩形谐振腔中 TM 模和 TE 模的指定不是 惟一的。也就是说,谐振腔中不存在“纵向方向”。 为了讨论问题方便,通常把 z 方向选为参考传播方向。
13
第九章 导行电磁波
矩形谐振腔中的TE波 对于TE模式,Ez = 0 ,新增加的边界条件为
Ex ( x, y,0) Ey ( x, y,0) 0
Ex ( x, y, d ) Ey ( x, y, d ) 0
m n H z ( x, y, z ) cos( x ) cos( y )( D1e jk z z D2e jk z z ) a b
2 2 E0 E x 1 x x jkz z 2 0 TE10波 S ez sin ( ) ex j ( ) sin( ) cos( )e 2ZTE a a 2 a a 2 E0 2 x 能流密度 S sin ( ) 2 Re( S ) ez 2ZTE a 2 E0 2 x ez ds sin ( )ds 传输功率 P s S s 0 0 2Z a TE 2 E0 ab P 矩形波导主模TE10传输功率 2ZTE 2
上电场强度的边界条件可得 D2 D1
第5章1、2矩形谐振腔
2016/4/15
第五章 微波谐振腔
5.1 简介
两块相对放置的导体板也可构成微波谐 振腔,如果导体板的尺度远大于微波波长。 r r
这种腔体被称为开放式微波谐振腔。
这两种谐振腔在毫米波、远 红外和光波频段有广泛用途 。 利用介质材料参数的周期性 或非周期性变化,可以构成所谓 分布反馈谐振腔。
2016/4/15
m m n m m n ) sin( x)cos ( y) sin(t z ) D' ( ) sin( x)cos ( y) sin(t z ) a a b a a b
E y ( x, y, z, t ) (
2016/4/15
m m n ) sin ( x)cos( y) D' sin (t z ) D' sin (t z ) a a b
b2
a1
2016/4/15 4
第五章 微波谐振腔
5.1 简介
2a
圆波导
两块相对放置的导体板也可构成微波谐 振腔,如果导体板的尺度远大于微波波长。 这种腔体被称为开放式微波谐振腔。
r
r
当电磁波波长较短时,很容易实现这种 谐振腔。在光学系统中,这种谐振腔称为 FP 腔。 优点是品质因数高(选频特性好)。
(5-2)
(1) 由边界条件 Ex(x,y,z = 0, t) 0 可得:D' = D' = D'
(2) 由边界条件 Ex(x,y,z = l, t) 0 ,和 D' = D' = D' 可得: = p / l
(
(p = 1,2,3, … 是否可取零待定)
m 2 n 2 m 2 n 2 p 2 ) ( ) 2 ( ) ( ) ( ) 2 a b a b l
43矩形谐振腔
(4-32)
第四章 微波谐振器
§4.3 矩形谐振腔
下面的关系式成立
K 2K c 22, Kc2ma2nb2
K2m a2nb 2pl2
不同的m,n,p对应不同的TEmnp模,m,n不能同时为零。 工作于TEmnp模的矩形腔具有多谐性。
Hm 2a l2 21a4bH l4m 2a2l2al b
第四章 微波谐振器
§4.3 矩形谐振腔
在腔体前后壁(z=0,z=ι)的内表面上
H 1 2H x12H m 2a l2 2si2 n ax
在腔体左右壁(x=0,x=a)的内表面上
H 2 2H z12H m 2si2n lx
第四章 微波谐振器
§4.3 矩形谐振腔
在与z=0相距ι处再放一短路板,形成腔体.
则有边界条件
Exzl 0
所以 lp 或 p (p0 ,1 ,2 ,3 )
l
则腔体内TMmnp模的纵向电场为
E z E m s im a nx s in b ny c o p ls z
第四章 微波谐振器
§4.3 矩形谐振腔
腔体内TMmnp模的其它场分量为
E x K E m c 2p lm ac o m ax s s in b n y s ip ln z E y K E m c 2p ln b s im a n x c o n by s s ip ln z H x jm E K c 2 n bs im a n x c o n by s c o p lz s
H xH ma lsi a nx co lsz
矩形谐振腔讲义课件
电导率
电导率影响电磁波在介质中的传播损耗,进而影响腔体的Q值。
介电常数
介电常数决定了电磁波在介质中的传播速度,从而影响谐振频率。
损耗角正切值
损耗角正切值反映了介质的能量损耗特性,对腔体的Q值有重要影 响。
矩形谐振腔的表面涂层
涂层材料
涂层材料的电导率、介电常数 和磁导率都会影响腔体的性能
。
涂层厚度
涂层厚度需精确控制,以确保 其对电磁波的反射特性的影响
矩形谐振腔讲义课件
contents
目录
• 矩形谐振腔概述 • 矩形谐振腔的基本原理 • 矩形谐振腔的设计与优化 • 矩形谐振腔的制造工艺 • 矩形谐振腔的性能测试与评估 • 矩形谐振腔的应用实例
01
矩形谐振腔概述
定义与特性
定义
矩形谐振腔是一种具有特定边界条件 的空腔,通常由金属壁围成,可以在 其中产生电磁波的共振。
矩形谐振腔可用于微波加热,快速均匀 地加热物质,广泛应用于食品加工和材 料处理。
VS
医疗领域
在医疗领域,矩形谐振腔可用于微波治疗 和诊断,例如肿瘤热疗和微波成像。
THANKS
感谢观看
制造流程
材料准备
根据设计图纸准备相应的材料 ,并进行必要的处理如清洗、 矫直等。
组装调试
将加工好的各个部件进行组装 ,并进行必要的调试和测试, 确保性能符合要求。
设计图纸
根据需求和规格,设计矩形谐 振腔的图纸,包括腔体尺寸、 形状、接口等。
加工成型
按照设计图纸对材料进行加工 ,形成矩形谐振腔的各个部件 。
质量检测
对制造完成的矩形谐振腔进行 质量检测,包括尺寸、外观、 电气性能等方面的检测。
05
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、品质因数Q0
2 1 W We Wm | H | dv 2 v
(31-7)
而导体壁损耗
1 1 2 PL | J s | Rs ds Rs | H |2 ds S 2 S 2
Rs
(31-8)
式中Rs是表面电阻率, 为切向磁场。 因此,有限电导率所对应的谐振腔Q值
四、矩形腔TE101模的场和λ0
归纳起来TE101模的场
x sin z E y E0 sin a l E0 0 x z sin cos Hx j 2a a l E0 0 x z cos sin Hz j 2a a l
0
i
y
Ey
j
z
0
k
E x E0 0 x 1 E y z z Hx j j 0 sin cos = j sin cos 0 z 0 l a l 2l a l E0 E0 0 1 E y x z x z Hz j j cos cos sin j sin x a a l 2a a l
0 0 l a
b
dydz 2
2
0 0
2 2 E0 2 0 2 x 0 E0 bl dydz sin 2 2l a 4 2 a 2 l a 2 2
0 0
H
l a
x
Hz
2
E x z dxdz 2 0 0 sin 2 cos 2 dxdz 0 0 2l a l
Q0
0 , H 2
0
Rs
|H |
V S
| H |2 dv
2
ds
|H |
2
V S
| H |2 dv
2
ds
(31-9)
二、品质因数Q0
其中集肤深度
0
2
1 2 | H | ~ | H |2 。作估值公式,令 2
1V Q0 S
(31-10)
讨论谐振腔的主要指标是谐振频率0、品质因数 Q 和电导 G。谐振腔的讨论思路是 : 理想腔 — 耦合腔 — 非理想腔,如图(31-2)所示。 在研究谐振频率 f0时,采用不计及腔损耗,即腔 壁由理想导体构成。但是,当研究 Q 时 , 则必须考虑 损耗的因素。 耦合腔和实际腔反映了谐振腔的具体应用。
2 1 W E dV 2 V PL 1 0 E 2 dV 2 V
(31-13)
二、品质因数Q0
于是
Qd
0W
PL
1 tg
(31-14)
可见,均匀分布的介质Q值(31-14)是一个普适的 公式,它与波型无关。现在,我们进一步引进复频 ~ 率 ,令
~ 0 1 j
(31-15)
(31-16)
于是内部场可写成
j j t t ~t E Eme Eme e
0 0 0
二、品质因数Q0
~ 相当于场衰减。于是能量可写成 复频率
损耗功率 PL dW dt,于是
W Wme2 t
0
(31-17)
令E0=2jEm而且在 z l 处放一块金属板(全反射), 即 sin l 0 。这时有 2 p p 1, 2, (31-26) g
四、矩形腔TE101模的场和λ0
l 1 1 p g,其中 min l g 2 2
,这时对应 p 1
2
。则
2 1 1 l b a 2 2 2 1 E dv E0 sin x sin z dxdydz ablE02 a l 2 V 2 0 0 0 8
计算导体Q值时有六个面需要考虑
PL (1) ( 2) (3) 2 2 2
2 2
(31-5)
二、品质因数Q0
品质因数又称Q值,它反映谐振腔储能与损耗之 间的关系。 W 0W Q0 2 (31-6) Wr PL
W 表示谐振腔的平均储能, WT 表示一个周期 T 内 谐振腔的能量损耗。 WT=TPL,PL 表示一个周期内平 均损耗功率。式(31-6)对于低频和高频均适用的。 平均储能在谐振时有一特点,即腔内所储的电能 等于所储的磁能。
二维谐振和三维谐振
一、谐振频率0
从这个意义上看谐振频率 是问题的本征值, 0 而对应的场分布则是本征矢 E 。 2 2 2 2 l E kc E 0 E k E 0 (31-2) L l E l E L E E 所以我们可以进一步深入地用本征值问题加以讨论。
g l
所以,TE101模Ey最终写成
E y E0 sin x sin a l z
(31-27)
现在采用Maxwell方程组解出
四、矩形腔TE101模的场和λ0
E j 0 H 1 H j
0 x
第31章
矩形谐振腔
Rectangular Resonator
如果说微波传输线充当低频的R、L、C部件,那 么微波谐振腔相当于低频振荡电路。这是振荡器、 滤波器和耦合器应用中所必须涉及的。
选 谐振腔 滤 频 波 波长计 介质抽量
灵敏测量
图 31-1
谐振腔应用
第31章
矩形谐振腔
Rectangular Resonator
可以知道, 小、 V/S大,是 Q0大的先决条件。理 想腔的品质因数也称为固有品质因数Q0(或无载Q值)。
Q无量纲,只与媒质、腔体几何形状和波型有关。 事实上可以有很多损耗源,例如
PL PLi
i1 n
(31-11)
二、品质因数Q0
于是也可以定义各种损耗因素所对应的Q n n PLi 1 1 (31-12) Q i1 0W i1 Qi 其中, Qi=0W/PLi对应第 i 个损耗源的 Q值。除了导 ~ ' j " 对应的 电壁的Q值以外,最普遍的是介质 Qd。这时储能和损耗功率分别是
(31-23)
则有
G0 RS
H
b
2
d
2
(31-24)
E dl a
由于在微波谐振腔中,电压Um定义的不唯一性, 所以现代微波理论中对于G0这个参量已经比较淡化 (只有在TEM波,例如同轴腔才使用),而强调ω0和 Q这两个参量。
四、矩形腔TE101模的场和λ0
矩形腔TE101模是最基本而重要的模式,它是由传 输线TE10模在z方向加两块短路板而构成的金属封闭 盒。
2
2 E0 0 2 l 2 x 2 z 0 E0 a + 2 cos sin dxdz 0 0 2a a l 8 2 l a
(31-21)
由于复频率的引入,使我们可以采用复变函数的理 论工具研究谐振腔。
三、等效电导G0
等效电导 G0 用来统一表征谐振系统的损耗
1 2 PL G0U m 2
或者写出
G0 2PL
2 Um
(31-22)
,若选定
图 31-4
谐振腔等效电导G0
三、等效电导G0
U m Em dl
a b
(31-29) a2 l 2 其场结构如图31-6所示。值得提出:如果是TE10p模, l l l 只要作代换 即可,这时有 p
0
2al
0
2al
pa
2
(31-30)
l2
四、矩形腔TE101模的场和λ0
图 31-6
TE101模的场结构
五、TE101模的Q值
W We max
一、谐振频率0
谐振腔中谐振频率 0 ( 或 f0)和谐振波长0是最基 本参数,但是要注意 0是不变量,而 0则与媒质r0 有关。
在一个封闭系统中,电能与磁能相等称之为谐 振。谐振腔的规律同样服从Maxwell方程组,可导出 Helmholtz方程。
2 Ek E0
2
(31-1)
有行波传输的实功率;而TE101模中相位
差90°,因此Sz只有虚功率。如果研究Ey和Hz也有类
似情况。
四、矩形腔TE101模的场和λ0
由于
2 2 2 2 2 k kx k y kz a l 0
2 2 2
可知
d 2E k x2 E 0 2 dx d 2E 2 ky E0 2 dy d 2E k x2 E 0 2 dz 2 2 k k x2 k y k z2
一、谐振频率0
可见,谐振腔在三个方向都是纯驻波,而传输线kc 是二维谐振。
传输线—二维 kc 传输腔—三维 k
图 31-3
在填充空气的条件下
k
2
0
0cຫໍສະໝຸດ (31-3)一、谐振频率0
进一步,如果讨论的是传输型谐振腔,即
l p
则有
0
1 1 1 0 g
2 2
( p 1,2,3,)
(31-4)
1 1 p 2l c
dt
dW PL dt
0W
Q
另外,根据式(31-17),导出
(31-18) (31-19)
dW 2 0Wdt