最新对普通硅酸盐水泥和粉煤灰的物理性能和力学性能的研究外文翻译
水泥物理性能检测报告-GB175-2023通用硅酸盐水泥
共1页第1页
检测单位
**
报告编号
****
工程名称
**
试验编号
****
工程部位
**
环境条件
T:19.5℃.RH:70%
生产厂家
**
代表批量
486t
水泥品种
普通硅酸盐水泥
强度等级
42.5
送样日期
**
样品状态
粉状无结块无受潮
检测项目
普通硅酸盐水泥
检测日期
**
试验室地址
****
检测依据
GB/T17671-2021 GB/T8074-2008 GB175-2023 GB/T1346-2011
28d≥6.5
抗压强度(MPa)
3d≥17.0
28d≥42.5
结 论
依据GB/T17671-2021、GB/T8074-2008、GB175-2023 、 GB/T1346-2011标准,所检验项目符合标准要求。
备 注
批准: 校核: 主检: 检测单位(盖章)
签发日期:2024-**-**
检 测 内 容
检测项目
标准要求
检验结果
细度
筛余(%)
45μm方孔筛,≥5%
**
比表面积
(m2/kg)
300~400
**
标时间
初凝
不小于:45min
** min
终凝
不大于:600min
** min
安定法
(沸煮法)
合格
饼法完好
合格
雷氏法
/
抗折强度(MPa)
龄期
单块值
平均值
3d≥4.0
复掺粉煤灰和硅灰对混凝土力学性能的影响论文
复掺粉煤灰和硅灰对混凝土力学性能的影响论文复掺粉煤灰和硅灰对混凝土力学性能的影响论文摘要:混凝土的性能受多种因素的影响,掺入粉煤灰和硅灰,混凝土的性能会有明显的改善。
对单掺粉煤灰、硅灰和复掺粉煤灰、硅灰对混凝土力学性能影响的研究,并展望了复掺粉煤灰和硅灰对混凝土性能的研究前景。
关键词:混凝土;粉煤灰;硅灰;力学性能混凝土是当前用途最广、用量最大的人造土木工程材料,也是单位质量产品能耗最低的材料之一,并主要用于工程结构。
众多研究表明,在混凝土中掺入矿物掺合料既能减少水泥用量也能改善混凝土的力学性能,在实际生产中应用越来越广泛。
在混凝土中掺入优质的矿物掺合料,不但能取代水泥、节约能源以及减少环境污染,也被誉为混凝土的“第六组分”。
例如粉煤灰是一种具有火山灰活性的矿物掺合料,在混凝土中掺入粉煤灰,将有利于其后期强度的发展。
但单一的矿物掺合料对混凝土性能会产生一些不利影响,例如新拌混凝土的泌水量会变大、和易性变差、早期强度降低等,使它在工程应用中受到一些限制。
如果将两种甚至多种矿物掺合料复合使用,可能会产生复合交互效应,不失为改善混凝土综合性能的有效途径。
已有研究表明同时在混凝土中掺粉煤灰和矿粉,比单掺粉煤灰或矿粉具有更好的效果。
在我国,硅灰通常是作为掺合料用于混凝土产业中,不仅可节约水泥熟料,降低成本,还能减少环境污染,保护环境,此外硅灰具有很好的活性,能够很好的改善混凝土的性能。
由此,本文对不同龄期,不同水胶比,单掺和复掺粉煤灰、硅灰混凝土的抗压和抗拉强度进行了实验研究。
1 试验原材料与方案1.1 试验原材料1.1.1 胶凝材料水泥:试验采用杭州海狮水泥有限公司产的普通硅酸盐水泥,强度等级为42.5,其化学成分及物理力学性能如表1所示。
1.1.2 其它材料试验所用的砂为天然河砂,属于Ⅱ级中砂,孔隙率40.2%,细度模数2.6,堆积密度1630kg/m3,表观密度2.56g/cm3;石子为5mm-25mm的碎石,堆积密度为1465kg/m3;减水剂为萘系高效减水剂,减水效率20%;水为自来水。
粉煤灰的物理力学特性试验研究
轴仪 , 该仪 器具有 自动 化程度 高 、 作简单 、 果可靠 的特点 , 操 结 能 够按照不 同试验要求 自动控制 试验 过程并 通过 微机对 试验 数据 进行计算 和处理 。
均匀系数 =35 曲率 系数 C =0 6 , ., c . 1属不 良级配 。由于灰场 粉 煤灰颗粒多为粉粒且不 含粘粒 , 单一 的测定方 法较难准 确测定材
中图分类号 : 58 TU 2 文 献标 识 码 : A
5击下 , 粉煤灰 的最优含水量 w =5 . %, 6 5 相应 的最大 干 火 电厂运行 产生 的大量 粉煤 灰 , 常送 入灰 场存放 , 灰厂 要 占 准的 1 用许 多土地 , 贮灰坝 的修建 也需 大量 的 资金 , 并且 灰厂 内 的粉煤 密 度 为 pr =08 /m3 d ̄ , .8gc 。 灰 在干燥 多风 的季节 , 常产 生飞灰 污染 环境 。为 了节约 资金 , 减 14 粉 煤灰 的渗 透性 特 点 . 少灰厂 内粉煤灰 的数量 , 降低粉 煤灰 对环境 的污染 , 进行 粉煤 灰 粉煤灰 的渗透试验显 示其渗 透系数 在 1 c s 围之 内, 0 m/ 范 的综合利用是一种有 效 的措施 。在 工程 中使 用粉 煤灰作 为 建筑 其平均值为 3 1 0 c s 和细砂 的渗透 系数 一致 。因此在 .9X1 ~ m/ , 材料时 , 必须了解其 物理及 力学 特性 , 文结合 包 头第二 热 电厂 采用粉煤灰 筑灰 坝时 , 本 如果 不采 取 防渗措施 , 么灰 场水 的渗漏 那 贮灰场利用粉煤 灰建造子坝工程的需要 , 粉煤灰 的基本物 理力 将 会 非 常 严 重 。 对 学特性进行 了试验 , 出了粉煤 灰 的基本物 理力 学参 数指 标 , 得 为 粉煤灰 的工程应用 提供 了有益的参考 。
粉煤灰硅酸盐水泥的抗渗性能及其提高方法研究
粉煤灰硅酸盐水泥的抗渗性能及其提高方法研究摘要:粉煤灰硅酸盐水泥(FASSC)是一种环保型建筑材料,由于其优异的抗渗性能,被广泛应用于各种建筑工程中。
本文旨在探讨粉煤灰硅酸盐水泥的抗渗性能,并分析其中的因素及提高方法。
通过实验研究和文献综述,论文探讨了掺粉煤灰的比例、水灰比、化学掺合料、外加剂以及养护条件等因素对粉煤灰硅酸盐水泥抗渗性能的影响。
研究发现,适当增加粉煤灰掺量、降低水灰比、选择合适的化学掺合料和外加剂以及合理的养护条件可显著提高粉煤灰硅酸盐水泥的抗渗性能。
1. 引言粉煤灰硅酸盐水泥由于其独特的化学及物理性质,在建筑工程中得到了广泛的应用。
其制备工艺简单、原料来源广泛,同时具有环保、耐久、耐侵蚀等优点。
然而,一些工程实践中发现,使用粉煤灰硅酸盐水泥的结构在一定条件下会出现渗漏现象。
因此,研究粉煤灰硅酸盐水泥的抗渗性能及提高方法具有重要意义。
2. 粉煤灰硅酸盐水泥的抗渗性能影响因素2.1 粉煤灰掺量粉煤灰的加入可以改变硅酸盐水泥的物理和化学性质,从而影响其抗渗性能。
适量的粉煤灰掺量可以填充孔隙,降低水泥石中的孔隙率,从而提高材料的致密性和抗渗性能。
然而,当粉煤灰掺量过高时,过量灰分会降低水泥石的早期强度和抗渗性能,因此需要进行合理的掺量选择。
2.2 水灰比水灰比是粉煤灰硅酸盐水泥中最重要的参数之一,对其抗渗性能具有显著影响。
过高的水灰比会导致水泥石中孔隙率增加,渗透性增强,从而影响抗渗性。
因此,降低水灰比可以显著改善粉煤灰硅酸盐水泥的抗渗性能。
2.3 化学掺合料化学掺合料如硅粉、矿物粉等对粉煤灰硅酸盐水泥的抗渗性能具有积极影响。
这些掺合料可以填充水泥石中的孔隙,改善其结构致密性,从而提高抗渗性。
此外,化学掺合料也可以提供额外的胶结产物,增强水泥石的力学性能和耐久性。
2.4 外加剂外加剂的使用在提高粉煤灰硅酸盐水泥抗渗性能方面起到了重要作用。
例如,减水剂可以降低水灰比,改善水泥石的致密性;防水剂可以在水泥石表面形成一层防水膜,提高其抗渗性能。
粉煤灰材料试验报告
粉煤灰材料试验报告1. 引言粉煤灰 (Fly Ash) 是一种煤炭燃烧过程中产生的一种灰状残留物。
它主要由硅酸盐、铝酸盐和氧化物等组成。
由于其丰富的矿物质含量和良好的化学反应性,粉煤灰被广泛应用于建筑材料、混凝土制品、路基和填土等领域。
本试验将对粉煤灰材料的性能进行测试与评估。
2. 实验目的本试验旨在评估粉煤灰材料的力学性能和化学活性,为其在建筑和工程领域的应用提供依据。
3. 实验方法3.1 样品制备从煤炭燃烧厂收集到的粉煤灰被放置于干燥室中进行干燥处理。
然后,根据相关标准将粉煤灰材料进行筛分,以获得粒径在 0.1mm 至 0.6mm 之间的试验样品。
使用常规实验方法对粉煤灰样品进行以下物理性能测试:•密度测试:测量粉煤灰样品的体积和质量,计算其密度。
•吸水性测试:将预先称量的粉煤灰样品浸泡在水中,计算其吸水率。
•比表面积测试:使用比表面积分析仪,测量粉煤灰样品的比表面积。
使用碱活性试验方法测试粉煤灰的化学活性:•氢氧化钠活性试验:将粉煤灰与氢氧化钠溶液反应,观察溶液的颜色变化和反应程度。
•硫酸钠活性试验:将粉煤灰与硫酸钠溶液反应,观察溶液的颜色变化和反应程度。
•PH值测试:测量粉煤灰样品与水混合后溶液的PH值。
4. 实验结果4.1 物理性能测试结果以下是对粉煤灰样品进行物理性能测试的结果:•密度:2.1 g/cm³•吸水性:4.5%•比表面积:350 m²/kg4.2 化学活性测试结果以下是对粉煤灰样品进行化学活性测试的结果:•氢氧化钠活性试验:颜色变为黄色,反应程度中等。
•硫酸钠活性试验:颜色变为红色,反应程度高。
•PH值:9.55. 结论根据实验结果和分析,得出以下结论:•粉煤灰具有适用于建筑材料和混凝土制品的合适密度。
•粉煤灰具有较低的吸水性,适用于在湿润环境下使用。
•粉煤灰具有较高的比表面积,可提供更多的活性表面积。
•粉煤灰的化学活性较高,表明其与碱性物质反应能力强。
【精品】外文翻译(中文)偏高岭土地质聚合物的制备和力学性能研究
外文翻译(中文)偏高岭土地质聚合物的制备和力学性能研究偏高岭土地质聚合物的制备和力学性能研究Hongling Wang a,b,∗, Haihong Li a, Fengyuan Yan aa State Key Laboratory of Solid Lubrication, Lanzhou Institute of ChemicalPhysics,Chinese Academy of Sciences, Lanzhou 730000, Chinab Graduate School of the Chinese Academy of Sciences, Beijing 100864, China摘要:偏高岭土基地质聚合物是通过对偏高岭土在20℃左右时使用氢氧化钠溶液(4-12mol/L)和水玻璃溶液激发制备得到的。
在制备过程中在模具中对反应产物施以4MPa压力并放在65℃恒温箱中处理10小时后对材料的抗折强度、抗压强度和表观密度进行系统测量。
通过x射线衍射(XRD)、扫描电子显微镜(SEM)和红外光谱(IR)研究了氢氧化钠溶液浓度对偏高岭土地质聚合物的机械和化学性能的影响。
结果表明:随着氢氧化钠溶液的浓度在4-12mol/L范围内增加,地质聚合物的抗压强度、抗折强度和表观密度也相应提高。
试样在空气中的贮存时间对抗折强度影响很小然,而对抗压强度和表观密度几乎没有影响。
X射线衍射和红外光谱的分析表明地质聚合物材料是由非晶相和半晶相组成,这些非晶相和半晶相主要包括来源于偏高岭土煅烧过程中空气中的水和少量惰性成份。
地质聚合物中非晶相的含量随着氢氧化钠浓度提高而增加。
扫描电子显微镜的结果表明制备的地质聚合物维持了偏高岭土微粒的层状结构,所以认为地质聚合物反应主要发生在偏高岭土颗粒的微晶表面上。
但是这种推测需要更深层次的研究论证。
这种材料的强度数据显示这种基于偏高岭土的胶体反应会使得建筑材料具备良好的性能。
混凝土中粉煤灰掺量对力学性能的影响研究
混凝土中粉煤灰掺量对力学性能的影响研究一、研究背景混凝土是建筑工程中常用的建筑材料之一,其性能对工程的质量和寿命有着重要的影响。
粉煤灰是一种常见的混凝土掺合料,其掺量对混凝土的力学性能有着重要的影响。
因此,研究混凝土中粉煤灰掺量对力学性能的影响,对于提高混凝土的性能和工程质量具有重要的意义。
二、研究方法本研究采用实验室试验方法,通过对不同粉煤灰掺量的混凝土样品进行力学性能测试,研究粉煤灰掺量对混凝土强度、硬度和耐久性等力学性能的影响。
三、实验设计1.材料选用水泥:采用普通硅酸盐水泥,28d强度为42.5MPa。
粉煤灰:采用活性粉煤灰,掺量分别为10%、20%、30%。
砂:采用中砂,粒径为0.5-1.2mm。
石子:采用中石子,粒径为5-20mm。
水:采用自来水。
2.混凝土配合比设计采用水灰比0.4,砂石比为2.5,混凝土基础配合比为:水泥:砂:石子=1:2.5:5。
3.试件制备将混凝土材料按照配合比进行拌和,拌和时间不少于5min,拌合后将其倒入模具中,进行振捣和压实,振捣时间为1min,压实次数为3次。
将制备好的试件放置于室温下养护,28d后进行力学性能测试。
四、实验结果和分析1.强度测试采用万能试验机对不同粉煤灰掺量的混凝土样品进行压缩强度测试,测试结果如下表所示:掺量(%) 28d抗压强度(MPa)0 52.310 49.720 46.530 41.8从表中可以看出,随着粉煤灰掺量的增加,混凝土的28d抗压强度逐渐降低。
当掺量为10%时,强度下降约5.3%;当掺量为20%时,强度下降约11%;当掺量为30%时,强度下降约20%。
可见,粉煤灰的掺量对混凝土的强度有着明显的影响,且随着掺量的增加,影响越来越大。
2.硬度测试采用维氏硬度计对不同粉煤灰掺量的混凝土样品进行硬度测试,测试结果如下表所示:掺量(%)维氏硬度0 6810 6520 6330 59从表中可以看出,随着粉煤灰掺量的增加,混凝土的硬度逐渐降低。
外文翻译(中文)掺有粉煤灰、硅灰的硅酸盐水泥的热分析和微观结构
掺有粉煤灰、硅灰的硅酸盐水泥的热分析和微观结构Arnon Chaipanich .Thanongsak Nochaiya摘要:热分析与扫描电镜可以一起用来研究掺有粉煤灰、硅灰的硅酸盐水泥的水化产物及它们的微观结构。
水化硅酸钙,钙矾石,钙铝黄长石(C2ASH8),氢氧化钙(Ca(OH)2)以及碳酸钙(CaCO3)相可以在混合料中检测到。
混合料中添加硅灰时,氢氧化钙(Ca(OH)2)含量与参考掺粉煤灰水泥浆体相比会随着增加硅灰量在5%和10%而降低,相应的水化硅酸钙凝胶量会增加。
关键词:热分析,微观结构,粉煤灰,硅灰,水化正文粉煤灰,火力发电厂的一种副产品,已经由于它的环境效益和工程效益而被看着一种重要的结构材料(产生少量的水化热,增强可使用性,改善对化学侵蚀如氯化物和硫酸盐的耐久性,全世界广泛地用其作水泥的替代材料。
然而,众所周知,粉煤灰是一种火山灰质材料,会与氢氧化钙反应形一种与硅酸盐水泥加水形成的相似的粘合物质。
这种与氢氧化钙反应的火山灰质反应缓慢,是由于氢氧化钙首先是硅酸盐水泥的水化产物,而且常用的粉煤灰粒径比硅酸盐水泥的粗糙。
根据ASTM C618, 与平均粒径在10到15微米的硅酸盐水泥相比,具有代表性的粉煤灰的粒径60%到100%的通过45微米的筛径或不多于34%的留在这种大小的筛上。
硅灰作为硅铁合金和金属硅工业的副产品,一方面,其平均粒径大约100纳米。
有报道指出它的高反应性对混凝土的强度有益,能显著地增加混凝土的强度,就其本分可以作为水泥的替代材料。
硅灰作为添加材料的应用在混有粉煤灰的水泥的混合料,已经引起了人们的关注,主要是因为其强度和耐久性在结构材料方面的效益。
然而,这种混合料在水化浆体系统的水化研究是有限的。
在前24小时内,掺粉煤灰、硅灰的硅酸盐水泥浆体的水化产物的氢氧化钙量减少。
然而,很少有人知道其后的影响,热重分析和差热分析也没有充分的证明。
在这项工作中,粉煤灰和硅酸盐水泥混合来生产粉煤灰水泥浆体,硅灰,作为一高活性材料,用来生产三元水泥浆料。
粉煤灰在混凝土中的应用与性能研究
粉煤灰在混凝土中的应用与性能研究粉煤灰(Fly Ash)是在燃烧煤炭时产生的一种细粉状物质,主要由无机氧化物和少量有机物组成。
由于其丰富的资源和环境友好特性,粉煤灰在混凝土材料中的应用越来越受到关注。
本文将重点探讨粉煤灰在混凝土中的应用和性能,并结合相关研究进行综述。
混凝土作为现代建筑材料的重要组成部分,其性能的优化一直是研究的热点。
在混凝土中添加适量的粉煤灰可以改善混凝土的力学性能、耐久性以及减少对环境的负面影响。
首先,粉煤灰具有优异的胶凝性能,可以与水中的钙氢离子发生反应生成较为致密的水化产物,填充混凝土中的孔隙,提高混凝土的强度和密实性。
其次,粉煤灰能够细化混凝土的孔隙分布,减小水泥浆体的粘结力,改善混凝土的流动性和自流性。
此外,粉煤灰还能够减少混凝土的温度升高,减缓龄期收缩和裂缝的产生。
粉煤灰的应用主要包括两个方面:作为水泥掺合料和填料。
作为水泥掺合料,粉煤灰可以取代部分水泥使用,降低混凝土的水泥用量,减少对天然资源的开采和能源的消耗。
研究表明,适量掺入粉煤灰可以提高混凝土的低碱性、抗硫酸盐侵蚀和抗氯离子侵蚀能力,延缓碳化速率,保护钢筋的耐久性。
此外,粉煤灰还能提高混凝土的抗冻融性能,减少冻融引起的微裂缝。
作为填料,粉煤灰可以填充混凝土中的粗骨料间隙,增加混凝土的密实性和强度,提高混凝土的耐久性。
研究发现,粉煤灰填料具有较好的填充效果和增强效应,可以有效提高混凝土的抗冲击性能和抗裂性能。
粉煤灰在混凝土中的性能研究主要包括物理性能、力学性能和耐久性能等方面。
物理性能方面,通过粉煤灰的掺入,可以改变混凝土的总体性能,如改善孔隙特征、减小孔隙度和提高毛细孔隙体积。
力学性能方面,粉煤灰的掺入对混凝土的抗压、抗拉、抗弯等力学性能有着重要的影响。
研究结果表明,适量掺入粉煤灰可以提高混凝土的强度、刚度和变形能力。
耐久性能方面,粉煤灰能够提高混凝土的抗碳化、抗渗透和抗冻融性能,减少裂缝和钢筋锈蚀的风险,延长混凝土的使用寿命。
硅酸盐水泥的物理力学性能指标
硅酸盐水泥的物理力学性能指标
硅酸盐水泥是一种新型的混凝土材料,它由铝硅酸钙和石膏组成。
硅酸盐水泥具有优异的物理力学性能,它是用于建筑工程、维修工程
和修复工程的首选材料。
硅酸盐水泥的物理力学性能包括抗弯性能、抗压性能、抗裂性能、水稳性能、抗冻性能等。
它的抗弯性能可以抗拒特定的压力,并且抗
弯强度可以大大增强,即使在情况恶劣的情况下也能保证工程建设的
结构可靠。
此外,它的抗压性能也很强,耐压性强,可以非常好地抵
抗不断变化的水压。
它的抗裂性能也很强,可以在收缩损坏下保持它
的稳定性。
此外,它还具有良好的水稳性能,表面有凹凸不平,可以
防止水蒸气和水分子进入混凝土,从而确保材料的坚固性和绝热性能。
最后,硅酸盐水泥的抗冻性能很好,能够有效抗冻融损坏,特别是在
低温环境中可以保持较高的耐受性。
综上所述,硅酸盐水泥具有优异的物理力学性能,可以抗拒特定
的压力、抗弯强度大大增强、抗压性强、抗裂性好、水稳性能好、抗
冻性能强等优点。
它不仅可以大大提高工程建设的稳定性和可靠性,
而且还可以在低温环境中抵抗冻融破坏。
由此可见,硅酸盐水泥是一
种具有很高性能的混凝土材料,它在建筑、维修和修复工程中具有重
要的作用。
粉煤灰在硅酸盐水泥中的应用研究进展
粉煤灰在硅酸盐水泥中的应用研究进展硅酸盐水泥作为一种重要的建筑材料,具有较高的强度和耐久性。
然而,传统硅酸盐水泥的生产过程对环境造成了不可忽视的影响。
为了减少资源浪费和环境污染,研究人员开始探索使用替代性材料来替代部分传统硅酸盐水泥原料。
其中,粉煤灰作为一种常见的工业废弃物,因其丰富的资源、环境友好和对水泥性能的改进作用而备受关注。
粉煤灰是一种在煤燃烧过程中产生的细粉状灰烬,通常包含硅酸、氧化铁、氧化钙、氧化钾等成分。
由于其成分相对稳定,粉煤灰可以用来替代部分水泥熟料中的一些成分。
研究表明,采用粉煤灰替代水泥熟料可以显著降低温室气体排放、减少燃料消耗,同时提高硅酸盐水泥的力学性能和耐久性。
首先,粉煤灰在硅酸盐水泥中的应用可以有效减少碳排放。
传统硅酸盐水泥的生产过程需要高温煅烧石灰石,因此需要大量的燃料消耗,而这些燃料的燃烧会产生大量的二氧化碳。
粉煤灰作为含碳废物可在水泥生产过程中直接回收利用,减少了对石灰石的需求,从而减少了温室气体的排放。
其次,粉煤灰的应用能够提高硅酸盐水泥的强度和耐久性。
由于粉煤灰的细颗粒和高硅含量,它能够填充水泥基体中的微缝和孔隙,从而使水泥更加致密。
这种致密性可以提高水泥的力学性能,如抗压强度和抗弯强度。
此外,粉煤灰还可以通过化学反应提供额外的胶凝材料,形成更多的水化产物,从而增强了水泥的硬化过程。
此外,粉煤灰作为一种矿物附加剂,还可以改善硅酸盐水泥的耐久性。
粉煤灰中的酸性成分可以与水泥中的氢氧根离子反应,生成稳定的化合物,减少水泥中的碱骨架溶出,提高水泥的抗碱性。
同时,粉煤灰中的细颗粒可以填充水泥基体的微裂缝和孔隙,阻止水和气体的渗透,提高水泥的防水性和耐久性。
然而,粉煤灰在硅酸盐水泥中的应用也存在一些问题和挑战。
首先,粉煤灰的质量和性能可能受到原煤燃烧条件的影响。
不同种类的煤和燃烧工艺会产生不同成分和物理性质的粉煤灰。
因此,在使用粉煤灰替代水泥熟料时,需要对其进行充分的分析和调整。
粉煤灰对砂浆力学性能的影响研究
粉煤灰对砂浆力学性能的影响研究粉煤灰(Fly Ash)是一种常见的工业副产品,它是燃煤发电过程中生成的固体废弃物。
由于其含有大量细小颗粒和玻璃质颗粒,粉煤灰广泛应用于建筑材料中,尤其是砂浆。
砂浆是建筑中常用的一种材料,主要用于填充和结合砖、石头等建筑材料。
研究表明,使用粉煤灰作为砂浆的成分之一,可以改善其力学性能。
本文将就粉煤灰对砂浆力学性能的影响进行研究。
首先,粉煤灰在砂浆中的使用能够提高其抗压强度。
研究表明,将粉煤灰掺入砂浆中可以填充砂浆中的间隙,并且玻璃质颗粒可以填充砂浆中的微孔,从而减少了砂浆中的空隙率。
实验结果显示,随着粉煤灰掺入量的增加,砂浆的抗压强度逐渐提高。
这是因为粉煤灰中的细小颗粒可以填充砂浆中的微孔,增加了砂浆的致密性,从而提高了其抗压强度。
其次,粉煤灰的使用可以改善砂浆的耐久性能。
粉煤灰中含有一定量的硅酸盐和氧化铝等无机物质,这些物质在砂浆中可以与水反应生成水化硅酸盐胶凝材料,从而增加了砂浆的硬度和耐久性。
实验结果显示,使用粉煤灰作为砂浆的成分之一可以提高砂浆的抗渗透性能和耐久性。
这是因为粉煤灰中的玻璃质颗粒可以填充砂浆中的微孔,并且与水反应生成硅酸盐胶凝材料,从而减少了砂浆中水的渗透。
此外,粉煤灰的使用还可以调整砂浆的流动性和减水剂需求量。
粉煤灰中的细小颗粒可以填充砂浆中的孔隙和空隙,从而提高了砂浆的流动性。
实验结果显示,随着粉煤灰掺入量的增加,砂浆的流动度逐渐增加。
此外,粉煤灰中的细小颗粒还可以与水形成胶体颗粒,起到分散剂的作用,从而减少了砂浆中减水剂的需求量。
因此,适量使用粉煤灰可以调整砂浆的流动性和减水剂的需求量。
总的来说,粉煤灰对砂浆的力学性能有着显著的影响。
通过填充砂浆中的孔隙和空隙,粉煤灰可以提高砂浆的抗压强度和抗渗透性能。
此外,粉煤灰还可以调整砂浆的流动性和减水剂的需求量。
因此,在实际工程中,可以适量使用粉煤灰作为砂浆的成分之一,以提高砂浆的力学性能和耐久性。
粉煤灰硅酸盐水泥
粉煤灰硅酸盐水泥简介粉煤灰硅酸盐水泥(Fly Ash Geopolymer Cement)是一种由粉煤灰(Fly Ash)和碱性溶液反应合成的特种水泥。
粉煤灰是燃烧煤炭时产生的一种灰烬,其含有丰富的无机成分。
粉煤灰硅酸盐水泥与传统硅酸盐水泥相比,具有更低的碳排放量和较高的耐久性,被广泛应用于建筑和工程领域。
原料及制备过程粉煤灰硅酸盐水泥的制备过程包括原料选择和反应合成两个主要步骤:原料选择粉煤灰是粉煤灰硅酸盐水泥的主要原料之一。
其主要成分为氧化硅(SiO2)、氧化铝(Al2O3)和氧化钙(CaO),含有大量的无机活性物质,使其具有良好的反应性。
另外,碱性溶液也是粉煤灰硅酸盐水泥制备过程中的必要原料。
碱性溶液一般是由氢氧化钠(NaOH)和水玻璃(Na2SiO3)在适当比例下混合而成。
反应合成粉煤灰硅酸盐水泥的反应合成过程分为两个阶段:活化阶段和水化阶段。
在活化阶段,将粉煤灰与碱性溶液进行混合搅拌,使其中的活性成分发生反应生成固体胶体。
活化剂的选择和使用量对反应过程起着重要的影响。
在水化阶段,活化后的粉煤灰硅酸盐胶体与水反应形成实际硅酸盐水泥晶体,从而形成坚固的水泥结构。
特性和优势碳排放量低与传统硅酸盐水泥相比,粉煤灰硅酸盐水泥在生产过程中所释放的二氧化碳排放较少。
由于粉煤灰是燃烧煤炭产生的副产品,利用粉煤灰制备硅酸盐水泥有助于减少对环境的不良影响。
耐久性高粉煤灰硅酸盐水泥具有良好的耐久性能,能够在不同环境条件下保持稳定的力学性能和化学性能。
由于其结构中含有一定量的含硅聚合体,使得其耐久性能远远优于传统硅酸盐水泥。
抗渗透性强粉煤灰硅酸盐水泥具有出色的抗渗透性能。
由于其结构中的胶体阻止了水分子的渗透,使得粉煤灰硅酸盐水泥在水环境下具有较好的稳定性。
使用范围广粉煤灰硅酸盐水泥在建筑和工程领域有广泛的应用,可用于混凝土、砖块、路面、地下工程等各种建筑材料的制造。
由于其优越的性能特点,粉煤灰硅酸盐水泥逐渐受到全球工程界的认可和推崇。
粉煤灰硅酸盐水泥砂浆的黏结性能研究
粉煤灰硅酸盐水泥砂浆的黏结性能研究摘要:粉煤灰硅酸盐水泥(FASSC)是一种常见的建筑材料,广泛应用于混凝土和砂浆的制备。
本研究旨在探究粉煤灰硅酸盐水泥砂浆的黏结性能及其影响因素。
通过实验研究粉煤灰掺量、水灰比、硅酸盐掺合料的类型等因素对黏结性能的影响,并对黏结机理进行探讨。
结果表明,合理的粉煤灰掺量和硅酸盐掺合料选择可以显著提高砂浆的黏结强度。
1. 引言砂浆是建筑材料中常见的粘结材料,其性能与建筑结构的强度及耐久性密切相关。
粉煤灰硅酸盐水泥砂浆(FASSC mortar)以其优良的性能在建筑领域得到广泛应用。
粉煤灰作为一种常见的工业废弃物,不仅能有效地减少环境污染,同时还能提升砂浆的性能。
因此,研究粉煤灰硅酸盐水泥砂浆的黏结性能具有重要的实际意义。
2. 实验方法2.1 材料准备本实验采用商业硅酸盐水泥、粉煤灰、标准砂和水作为原材料。
粉煤灰按照一定掺量添加到硅酸盐水泥中,并根据设计的水灰比配置砂浆。
同时,添加不同类型和掺量的硅酸盐掺合料。
2.2 实验方案通过测定掺灰量、水灰比和硅酸盐掺合料类型等因素对砂浆黏结性能的影响,采用标准实验方法进行测试。
包括抗压强度、抗拉强度和黏结强度等指标。
3. 实验结果与分析3.1 粉煤灰掺量对黏结性能的影响实验结果表明,适量添加粉煤灰可明显提高砂浆的黏结强度。
当粉煤灰掺量为20%时,砂浆的抗压强度和抗拉强度分别提高了20%和15%。
然而,当粉煤灰掺量达到40%时,由于粉煤灰的较高活性,硅酸盐水泥饱和,砂浆的强度出现下降趋势。
3.2 水灰比对黏结性能的影响适当的水灰比是保证砂浆黏结性能良好的关键之一。
实验结果显示,水灰比在0.4-0.5范围内,砂浆的黏结强度最高。
水灰比过高会导致砂浆过于稀薄,降低其流动性和黏结力。
而水灰比过低则会使砂浆水化不完全,抑制黏结强度的发展。
3.3 硅酸盐掺合料类型对黏结性能的影响实验采用不同类型的硅酸盐掺合料对水泥砂浆进行掺合,结果表明,金刚石掺合料和矿渣掺合料对黏结性能的提升效果最明显。
粉煤灰硅酸盐水泥混凝土的孔隙结构与力学性能研究
粉煤灰硅酸盐水泥混凝土的孔隙结构与力学性能研究摘要:粉煤灰硅酸盐水泥混凝土是一种具有广泛应用前景的环保建筑材料。
本文旨在研究该材料的孔隙结构与力学性能之间的关系。
通过分析粉煤灰硅酸盐水泥混凝土的孔隙率、孔径分布、孔隙连通性等孔隙结构特征,并通过力学性能试验评价其抗压强度、弹性模量和抗裂性能等力学性能指标,以探讨孔隙结构对材料力学性能的影响。
研究结果表明,粉煤灰硅酸盐水泥混凝土的孔隙结构与力学性能存在密切关系,并可通过合理控制孔隙结构来改善其力学性能。
1. 引言粉煤灰硅酸盐水泥混凝土是一种常用的建筑材料,其优点包括环境友好、抗渗性好和强度高等。
然而,现有研究主要集中在其配比、龄期和耐久性等方面,对其孔隙结构与力学性能的研究还较为有限。
本研究旨在通过分析粉煤灰硅酸盐水泥混凝土的孔隙结构特征,以及与力学性能之间的关系,为该材料的应用和改性提供科学依据。
2. 实验方法2.1 材料制备以粉煤灰硅酸盐水泥作为胶凝材料,掺入粗、细骨料以及适量的水,进行拌合。
按照标准试件尺寸,制备混凝土试件。
2.2 孔隙结构分析采用压汞法或氮吸附法测定粉煤灰硅酸盐水泥混凝土的孔隙率。
通过扫描电子显微镜(SEM)观察和分析孔隙的形貌和分布情况。
2.3 力学性能测试通过压杆试验测定粉煤灰硅酸盐水泥混凝土的抗压强度和弹性模量,通过三点弯曲试验评价其抗裂性能。
3. 结果与讨论3.1 孔隙结构特征分析通过压汞法或氮吸附法测定的孔隙率显示,粉煤灰硅酸盐水泥混凝土的孔隙率较低。
SEM观察显示,粉煤灰硅酸盐水泥混凝土的孔隙主要分布在胶凝材料与骨料之间,孔隙形状多为不规则的凹陷。
孔隙连通性较好,有利于混凝土内部的水分和气体交换。
3.2 力学性能评价抗压强度测试结果显示,粉煤灰硅酸盐水泥混凝土的抗压强度较高,具有良好的承载能力。
弹性模量测试结果显示,粉煤灰硅酸盐水泥混凝土的弹性模量较高,具有较好的刚度。
抗裂性能测试结果显示,粉煤灰硅酸盐水泥混凝土具有较好的抗裂性能,能有效防止裂缝的扩展。
粉煤灰硅酸盐水泥的矿化剂对其性能的影响研究
粉煤灰硅酸盐水泥的矿化剂对其性能的影响研究1. 引言粉煤灰硅酸盐水泥(简称FA-SSC)作为一种重要的水泥胶凝材料,具有环保、可替代性强等优势,在工程建设领域得到了广泛的应用。
然而,由于其水化反应缓慢和低强度,限制了其在一些特殊工程中的应用。
因此,研究如何提高FA-SSC的性能,是当前水泥研究领域的重要课题之一。
2. FA-SSC的性能FA-SSC作为一种水泥胶凝材料,其性能直接影响到混凝土的力学性能和耐久性。
传统的FA-SSC水泥中添加矿化剂可以改善其水化反应速度、提高其强度和耐久性,从而使之具备更广泛的应用范围。
因此,研究不同矿化剂对FA-SSC性能的影响,对于优化FA-SSC配制工艺和提升混凝土品质具有重要意义。
3. 矿化剂对FA-SSC性能的影响(1)提高水泥早期强度:矿化剂的添加可以促进FA-SSC的水化反应,缩短硅酸盐水泥初期强度的发展时间。
研究发现,适量添加硫酸盐类矿化剂可以有效提高FA-SSC的早期强度,缩短养护期,提高工程效率。
(2)改善抗压强度:矿化剂的添加对FA-SSC的抗压强度具有显著的影响。
不同类型的矿化剂对FA-SSC的抗压强度有不同的增强效果。
例如,Na2SO4和CaCl2的添加可以显著提高FA-SSC的抗压强度,并改善其力学性能。
(3)提高抗久化性:矿化剂的添加可以改善FA-SSC的抗久化性能。
研究表明,适量添加纳米硅酸盐、硫酸盐、磷酸盐等矿化剂可以有效提高FA-SSC的抗氯离子侵蚀性能、抗碱-骨料反应性能,增强混凝土的耐久性。
(4)影响水泥水化产物:矿化剂的添加对FA-SSC的水化产物组成和形态有一定的影响。
研究发现,适量添加矿化剂可以促进FA-SSC中水化产物的形成,并产生更稳定的水化产物结构,从而提高FA-SSC的强度和稳定性。
4. 影响机理矿化剂对FA-SSC性能的影响机理主要包括以下几个方面:(1)促进水化反应:矿化剂中的活性成分可以与FA-SSC中的硅酸盐反应,加速水化反应的进行,从而提高FA-SSC的强度和早期强度。
外文翻译外文文献英文文献新型粉煤灰烘干机技术性能介绍英文
Technical performance of the new dryer introduction of fly ash Drying technology is the production of fly ash, slag powder and other key technologies must be matched, I wet fly water for large proportion of small, fine grain size, and other notable features, the development of new and efficient drying of fly ash machine, the device compared with other drying equipment, production capacity, continuous operation; structure is simple, easy to operate; less failure, low maintenance costs; for a wide range of fluid resistance is small, you can use it dry granule-like material, for adhesion of the material that is also very beneficial to large; operating flexibility, allowing the production of greater fluctuations in the flow of product range, will not affect the quality of the product; cleaning easy. The equipment is now in Henan, Anhui and other enterprises put into use, and create considerable economic benefits. New Fly Ash dryer - energy efficient, environmentally friendly.China's cement industry in recent years, a major breakthrough in comprehensive utilization of resources, waste cement industry consumptive use of solid waste in the country total more than 80%. By using less clinker cement industry, more powder, the cement produced in low-capital technologies that can maximize the consumption of electric power, metallurgy, coal industry produced fly ash, slag, coal gangue and other industrial waste. Our process uses traditional cement clinker produced, mixed material mixing mill, mill production is low, high energy consumption, waste slag and other materials used only as a hybrid, mixing amount of not more than 30%. Use of clinker, slag grinding process, respectively, the use of slag fine powder in the high state of good activity can be used as the main component of cement characteristics, the preparation of "blending" of cement, admixture of 50% -60%, can substantially reduce the cement produced in the capital. Waste produced by the cement industry, based on a variety of waste powder admixture fair match to progress in concrete density, the formation of low density, high density, low defect structure, much progress in concrete life.China's annual industrial waste slag produced 1.5 billion -16 billion tons of fly ash and gangue -6 reached 400 million tons, flooded areas in the department. Take advantage of cheap local coal ash, slag and other waste of resources produced in low-capital high performance green cement, cement manufacturing is the transformation of the region an important way.Energy saving is a saving society, an important prerequisite for a harmonious society, but also cement the most effective way to profit growth. Energy efficiency is progress, but decided to advance the hub grinding efficiency is to reduce the moisture content of raw materials. Because fly ash, slag, etc. into the plant when thewater is too large, is not conducive to ground, resulting in low yield milling system, full grinding and grinding, such as grinding paste deterioration in working conditions, must first dried before grinding into dehydration. Therefore, the fly ash produced dryer comprehensive utilization of fly ash with good development prospects. New Fly Ash dryer is produced in high energy-saving technology of fly ash, slag powder and other equipment necessary for supporting the hub, in the promotion of energy efficiency of cement, representing centrifugal dewatering equipment, the old vertical dryer, in the design, energy efficiency and practical applications have great breakthrough.Old vertical dryer. Equipment from external burner, vertical dryer composed of host and environmental protection equipment, vertical assemble a brick inside the dryer, how abdominal group and the sliding hopper feed bowl set. Its working principle is: material handling equipment into the upper vertical dryer, set by its own gravity through the hopper, slide pots expected drop in sink. Burner to create heat, heat exchange through the vertical dryer, after discharge of environmental protection equipment. Course materials collection hopper and slip angle of the basin slowed down the speed of the material to extend the time for heat exchange materials, but materials, materials in the collection hopper and slip sliding is the central basin discharge, the formation of the wind tunnel is in use a lot of heat Air filter materials, coupled with the continued cooling tube burner, thermal efficiency is only about 50%. The device's strengths are: small size, less investment; disadvantage is that: ① the high consumption of coal, about 50% utilization of geothermal energy;② high power consumption, power consumption 4kWh tons of dry material around;③adaptability, and tend to occur the material, sealing; ④more stringent requirements on coal-fired heating; ⑤ drying quality can not control.Previous centrifugal dewatering machinery, equipment expensive, low capacity, dehydration rate of small, usually only one precipitation 10% --- 20% of the remaining 15 water. The new full set of fly ash from the dryer three sectors: heating system, heat exchange system and to take the air dust removal system. Heating systems using hot stove technology sector, adequate heat, heat effect, structural simplicity; heat exchange system is the drying cylinder, the cylinder body lifting plate arranged in spiral staggered repeatedly Young Caesar materials, high efficiency heat exchange ; ventilate the system will be equipped with dust filter, because the fly ash particle size, density, light, dry conditions in the negative pressure, easily flow away, leading to changes in fluid medium, and large dust gas water to prevent Cited air system into the atmosphere sucked out of resources and environmental pollution extravagance, unified by the dust collecting.Fly ash drying machine will first be wet peeling machine conveyor were broken into horizontal, to prevent bulk material into the drying cylinder of the drying effect, has broken into the material and then drying drum, the cylinder body have much to copy board, arranged in spiral, driven by the rotating cylinder, keep the material copied toss board, Young Caesar, and the cylinder wall material again hitting crushing equipment, materials and the arguments raised air system full access to the incoming hot air, heat exchange, evaporation of water to complete the drying, fromthe discharge port, the dust emitted by the dust removal equipment uniform collecting moisture.Sawdust dryer is how and product advantages of working classSawdust dryer is how to work. Main works: wood chips into sawdust dryer drum rotary cylinder by the injection pipe and the joint action of boiling flow in the barrel of hot air full contact with the material to complete the drying, air-sawdust dryer, air drying is the so-called refers to the body like wet sawdust powder by screw conveyor to continuously add drying tube, the delivery of high-speed hot air and dispersed the.Galileo Heavy sawdust dryer is designed for sawdust, wood chips, small pieces of wood, veneer, wood drying wet materials and professional design and manufacturing, with a drying speed, yield, remarkable energy saving, low maintenance features . Wet sawdust dryer to evaporate the moisture in the material, powder or granular dry products by the process, mainly by the air heater, feeder, air drying tube, cyclone, fan and other components.Characteristics of chicken manure dryer, we will introduce you to here. Galileo mechanical scientific research, production, marketing as a whole, market-oriented enterprises, rely on technological innovation and management innovation to promote the development, production sand dryer mainly based manufacturers. How to choose the right drum dryerThe so-called rotary drum dryer, also known as rotary drum dryer. Its wide range of applications, mainly used in building materials, metallurgy, chemical and cement industries, drying of the material mainly of limestone slag, coal ash, slag, clay and so on. It consists of rotary body, lifting plate, gear, support equipment and seals and other components. And has a reasonable structure, well-made, high output, low energy consumption and easy operation. Meanwhile, the rotary drum dryer can also be used in fertilizer production, grain drying and fertilizer certain humidity, the aircraft also has a high thermal efficiency, uniform drying, cleaning materials, the number of small, suitable and convenient maintenance. So the selection of drum drying machine? Choose the right drum dryer which method? Here's a brief look at how to choose the right drum dryer.We want to know, usually drum dryer direct heat transfer medium is dry flue gas, where we will be divided into a downstream or upstream drying drying for two: first, the first to know what is along countercurrent flow drying and drying. The so-called downstream drying is its combustion chamber and wet feed materials in the same side, the heat flow direction and the direction of movement of materials is the same, the wet material from the feed end to discharge end of the transfer talk, hot air is from feed-side induced draft fan in the blower and the discharge side to go down the role of outflows in the process flow of wet material with hot air heating and drying; the so-called counter-flow is drying wet material from the feed end intothe dryer, combustion chamber in the discharge end, in the process, the material and the hot air is doing the reverse movement, the wet material in motion the process of being dried by heat. Second, in the purchase, the specific way we choose to be dry and the dry material from the final request. But we should know that the initial drying driving force downstream drying larger, later with the material temperature, the drying medium temperature will be decreased, this comparison applies to the final water content (ie dried) less demanding materials. Countercurrent drying in the drying process, due to more uniform drying driving force, it is appropriate to be dry and dry material is strictly demanded.Dryer operating processes and precautions when usingDryer understanding of people know that, proficiency in the operation of the dryer process and use precautions is important, because it is about whether the normal use of the dryer and the process can be used to avoid a lot of unnecessary trouble . Here's a brief look at the dryer operating procedures and precautions in use. First, the operation of the dryer process, we mainly of five ways. The first is in operation, before opening the door of the dryer feed, the dehydration of the fabric tube into the turn, and then feed the door closed and locked; second is at the right time, the regular rotation button to the desired location; the third is in front of the preparatory work to do, start button, dryer drying, drum and exhaust fan to begin the work of the normal drying; fourth in the drying process, should always pay attention to the fabric to be dried so that accidents can take immediate measures; fifth is in the baking process, machine failure, should be immediately stopped, in time to find out the reasons for failure, and in a timely manner excluded.Second, when the note on the use of mainly explained from three aspects: first, before starting to pay attention to the dryer, make sure to feed the door closed and locked, take the fabric to ensure that the machine stops running, to avoid accidents ; The second is to regularly clean the filter on the suction fan, keep it clean; the third is to use the device in accordance with relevant provisions, not to violate the relevant national standards.Vacuum drying how to improve profit margins?Although the resin dryer is usually referred to as "auxiliary" equipment, but the decision of its type selection there may be a plastics processing, play a leading role in business strategy. This is in Belgium (the whole family), it is such, is a global cross-industry manufacturers, business focus involving electronic and electrical (E & E) equipment, components for injection molding. By abandoning the traditional hot air dryers in favor of the principle based on a new type of vacuum drying equipment (Figure 1), completed its Hasselt in Belgium (Hasselt) plant simplifies the injection molding process to obtain a substantial savings and improve product quality.As with other electronic and electrical (E & E) equipment supplier, as the three strategic challenges facing:1) intense price competition caused by the supplier relentless pressure to cut costs, improve production efficiency;2) customers on product quality and balance the demanding requirements;3) the long-term energy costs will be high expectations.Vacuum Drying of the most obvious benefits related to the third challenge: with similar specifications, hot air dryer (Figure 2) compared to completely dry resin in the vacuum dryer can save 80% of the energy. However, due to the completion of the original, while only one-sixth of the time, the use of vacuum dryer will have the opportunity to significantly improve production efficiency. The short term, this can be started on Monday morning ahead of manufacturers in the production of "cold start" time; in the long run, it can provide a more streamlined operational convenience to concentrate. Finally, Vacuum Dryer provide shorter residence time and higher efficiency to reduce drying defects and lower reject rate.Used in the factory in Hasselt 40 molding machines, 26 table is used for injection molding polyamide 6.6 material to be made into models of AA and AAA batteries small security cover. The use of 12 hot air dryer to dry 26 resin molding machine. By using the three US-Kui? LPTM vacuum dryer replaced (fourth sets new LPD vacuum dryer for emergency standby), according to the Technical Manager, Mr. Rudi Vermeulen stated that achieved the following results:Energy cost savings. 92% reduction of energy consumption, saving 15,700 euros. The corresponding cost savings estimate does not include the power sector, Mr. Vermeulen the additional peak imposed a fine of 5,000 euros, not including the estimated Mr Vermeulen "great" to exclude from the factory for the production of heat hot air drying machine electricity consumed by air-conditioning energy savings.Production longer. Cold start by reducing the time Monday morning, received an additional 192 hours per year at full capacity production time. According to Mr. Vermeulen rough estimate, assuming that sales levels will be sufficient to maintain the plant at full capacity, this new production capacity can bring an extra 57,600 euros per year could be the amount of sales of products.Streamlining and automation. While hot air drying machine 12 in any one able to meet not more than 2 sets of injection molding machines for production capacity requirements, vacuum dryer drying cycle, shorter and this makes it possible to cover the 26 battery production lines converted to a PLC control central delivery system. Hot air dryers from 12 to 3 units (actual use) vacuum dryer conversion brought 2,970 euros, or 92% of the preventive maintenance savings. Bulk container bags package from the package to 11,800 euros per year cost savings.Defect rate / scrap rate. According to Mr. Vermeulen stated, as to avoid excessive drying, and the output of the resin contained in the residual moisture than hot air dryers are less resin processing, vacuum dryer significantly reduces the rejection rate.Mr. Vermeulen said, from waste reduction, air-conditioning costs and production efficiency savings arising from the specific data yet to be statistics, this is due to the recently installed a vacuum dryer and the central feeding system. Calculated over the current annual statistical data and other cost savings reached 35,470 euros. These savings, combined with the increase in annual output of 57,600 euros, for a total of 93,070 euros.Because the central feeding system, and 4 sets of vacuum dryer total investment cost of 100,000 euros, the overall total cost savings sufficient to manufacturers in the number of little more than a year to recover the investment cost. If you wait until the other end and then save the data to collate statistics, including the actual cost recovery will take less than one year.New injection molding machines to speed up drying operation startsThe vacuum dryer energy consumption and only a very short time a number of resins can be ready to prepare for processing, which is due to their design and operation of the standard hot air / desiccant dryer is different in two ways: Vacuum dryer using a vacuum to reduce the boiling point of water so quickly into wet vapor, the water vapor really is removed from the resin particles, and not covered with dry air and then slowly remove the resin particles in which the moisture.Vacuum Dryer mark in three separate locations simultaneously heating and vacuum drying, to small batch production, which will actually batch process into a continuous process, so that the output and processing machines to keep pace .Vacuum Drying small quantities of batch output and a short drying cycle allows only 40 minutes to prepare adequately for the drying of the resin molding machine feeding, rather than the traditional use of the dryer they needed 4 hours. This is why the start time on Monday to reduce their reasons.Hasselt casting plant in order to secure the battery cover, the use of 20 5 50 tons and 10 tons of plastic injection molding machine. These machines 236 days a year three shifts a day job, which requires two operators each shift care. It started Monday morning both need to start each machine. 50 tons of the molding machine starts 30 minutes and 10 tons of molding machine 15 minutes to complete the activation steps, takes 12 hours to allow all 26 machines to full production status - this does not include fully dry resin required time.If you use a traditional hot air drying machine, drying time is also the need for additional 4 hours, which also takes 16 hours to reach full capacity all of the state. As can be ready in time after full drying of the resin molding machines to meet the first start, Vacuum Dryer save this extra time.Furthermore, Mr. Rudi Vermeulen, 12 hot air drying machines start operating complex, and must first start one; in contrast to vacuum dryer start simple, and only one of the 3 sets to 26 sets of molding machine production line with . "We set a timer, on Monday morning, the old vacuum drier than before, 1 hour ahead of starting the dryer," Vermeulen said Mr., "When the operator for duty on time, due to the dry resin can provide, they can immediately start The first injection molding machines. "The principle of common mixer analysisMixing machines is the use of mechanical force and gravity, two or more materials will be uniformly mixed together machinery. Mixing machines are widely used in various industrial and everyday life.Machinery can be mixed with a variety of materials into a homogeneous mixture, such as the cement, sand, gravel and water mixture into the wet concrete and other materials; also can increase the material contact surface area to facilitate chemical reactions; also be able to speed up the physical changes, such as granular solute adding solvent, by mixing the role of mechanical mixing can accelerate the dissolution.Commonly used mechanical mixture of gases and low viscosity liquids into mixer, medium and high viscosity liquids and pastes mixed machinery, thermoplastic material mixer, powder mixing machine with the granular solid material four categories.Mixed gases and low viscosity liquids characterized by simple machinery, and no moving parts, maintenance and overhaul a small amount of low energy consumption. Such machines are divided into mixed-flow mixing, pipe mixing, jet mixing and blending four types of forced circulation.The high viscosity of the mixture of liquid and paste machinery, generally have strong shear; thermoplastic material mixer is mainly used for thermoplastic materials (such as rubber and plastics) and the additives mixed; powder, granular solid material mixing machines and more intermittent operation, including the role of both mechanical mixing and grinding, such as the wheel rolling machines.Require all mixed evenly in a mixture of materials. The degree of mixture into an ideal mix, random mixing and completely mixed three states. Machinery of various materials mixed in the mixing degree, depending on the ratio of the material to be mixed, physical state and properties, as well as the type of machinery used for mixing and blending operations duration and other factors.Mainly by mechanical mixing of liquid mixers, air and liquid jet to be mixed, so that the material was stirred to be mixed to achieve uniform mixing. Caused some stirring of liquid flow, flow of liquid and push the liquid around it, resulting in the formation of circulation flow inside the solution, the resulting liquid is called the spread between the main convective diffusion.When the agitation caused by liquid flow rate is very high, high-speed flow and low-speed flow around the interface between the shear stress appears to produce large amounts of localized vortex. Quickly to the edges of these eddies, again more fluid volume into the whirlpool, the formation of small scale convective diffusion disorder called eddy diffusion.Mechanical stirrer moving parts in the rotation will produce shearing on the liquid, the liquid flows through the wall and installed in the container when the various fixed components, but also by shearing, the shear will lead to many local eddy diffusivity.The main convective mixing caused by diffusion and eddy diffusion, an increase of molecular diffusion between the different liquid surface area to reduce the diffusion distance, which shortens the diffusion time. If the viscosity of the liquid to be mixed is not high, without stirring a long time to reach the state of random mixing; if high viscosity, it would take a longer mixing time.For the density, composition is different, immiscible liquid, agitation generated bystrong shear and turbulence to the liquid density, and tear into small droplets dispersed evenly to the main liquid. Produced by mixing the liquid flow rate must be greater than the droplet settling velocity.A small amount of insoluble solids and liquid powder mixing mechanism, and the density of different components, a mixture of liquid immiscible same mechanism, but mixing solid powder particle size can not be changed. If the mixture prior to settling velocity of solid particles can not be less than the liquid flow rate, no matter what kind of agitation do not form a homogeneous suspension of all.Mixture of different pastes mainly to be split and mixed materials to be pressed repeatedly, rolling, extrusion and other actions arising from the strong shear, followed by repeated mergers, kneading, and finally achieve the desired degree of mixing. This hybrid is difficult to achieve the desired mix, only to random mixing. Powdery solid with a small amount of liquid paste after mixing, the mixing mechanism and the mechanism of the same mixture of paste materials.Different thermoplastic materials and thermoplastic materials mixed with a small amount of powdered solid, need to rely on strong shearing, repeatedly rubbing and kneading to reach the random mixing.Granular solid with good liquidity depends mainly on the rotary container itself, or by moving parts in a container in the role, repeatedly turning, blending and can be mixed, such materials are also available airflow to achieve the mixed convection or turbulence . Solid particles is not easy vortex convection or turbulence, mixing speeds well below the liquid mixture, mixing only to the general level of random mixing.Poor liquidity, each occurrence of the adhesion of solid particles or powder is often required with mechanical turning and pressing, rolling and other movements of the hybrid machinery.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对普通硅酸盐水泥和粉煤灰的物理性能和力学性能的研究外文翻译2015届外文翻译Study on the physical and mechanical property of ordinary Portland cement andfly ash paste对普通硅酸盐水泥和粉煤灰的物理性能和力学性能的研究院、部:材料与化学工程学院完成时间: 2015年5月对普通硅酸盐水泥和粉煤灰的物理性能和力学性能的研究摘要对高掺量粉煤灰硅酸盐水泥做了一个实验,来对它的物理和力学性能进行研究。
普通硅酸盐水泥分以0,20、30、40、50、60、70%几个等级分别被粉煤灰取代(按重量计算)。
在所有的混合物中,水胶比恒定为0.3。
试块在振动台上被振实。
预期的体积密度会随着粉煤灰掺量的增加而减少。
气孔率和吸水率会随着水泥被粉煤灰取代而增大。
添加了粉煤灰试块的3d、7d,28d的抗压强度降低了,这一点在假设粉煤灰掺量在30%以上的实验中更加明显。
超声波脉冲速度测试结果表明,浆体的性能会随着混合物中粉煤灰掺量的增加而降低。
关键词:粉煤灰,抗压强度,超声波脉冲检测技术,水泥1介绍每年印度的火力发电产能生产超过1.6亿吨的粉煤灰。
对于火力发电厂来说,处理粉煤灰是一个很重要的问题。
通常的,现在大量的飞灰和底灰在土地里会被用来阻塞和填充,以最小化的成本处理。
在1985年,加拿大的自然资源部首先调查发现:大量的粉煤灰具有许多优异的性能,各种标准规范规定在水泥行业粉煤灰的掺量不能超多35%。
在印度,水泥和混凝土行业每年消耗4000万吨粉煤灰。
另一个方面,水泥需求的不断上升可以进一步解决高掺量粉煤灰(超过50%)在混凝土上面的应用。
这个过程显然可以经济化,以及减少温室气体(GHG)的排放,减少废物处置和减少健康的危害。
因此在混凝土中使用高掺量粉煤灰开始兴起,对普通硅酸盐水泥(OPC)混凝土应用程序,是一个资源节约型、耐用、成本效益的、可持续的选择 (克劳奇,l·K理论研究。
2007)。
这项工作的目的是研究一些物理和机械属性,如容重、孔隙率、吸水率和超声波脉冲速度和抗压强度的粉煤灰硅酸盐水泥。
2 材料和方法2.1 材料普通硅酸盐水泥(OPC)28天抗压强度使用54 MPa。
普通硅酸盐水泥的主要性质见表1。
粉煤灰来自西孟加拉、印度的火力发电厂。
水泥和粉煤灰的化学成分见表2. 粉煤灰包含非常少碳含量,正如所指出的那样,低价值的损失在点火(LOSS)。
粉煤灰的硅铝比(SiO2/Al2O3)为2.5,二氧化硅,氧化铝和Fe2O3的总和等于95.74%。
氧化钙含量小于1%。
因此,按标准ASTMC618-08,它可以分为类F粉煤灰。
按照国际标准,3182-2003,它可分为硅质粉煤灰。
粉煤灰的粒子大小分布为图1,粉煤灰为深灰色的颜色,混合物的用水为正常的饮用水。
表1 普通硅酸盐水泥的主要性质比表面积(m2/kg)凝结时间(min) 标准稠度初凝终凝312 180 290 31.5SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO4 LOSS OPC(%) 18.62 4.75 3.02 61.42 3.21 1.42 1.51 2.29 3.55粉煤灰 64.58 25.89 5.27 0.59 0.26 0.041 0.027 0.31 2.40粒子大小(微米)图1 :粉煤灰的粒度分布2.2 混合设计和样品制备表3代表了不同混合物中不同粉煤灰比例的浆体,控制的混合物没有掺粉煤灰标记为F0和20 - 70%的普通硅酸盐水泥,已经被粉煤灰取代的分别标记为F20-F70,水胶比还是保持在0.3.准备好边长50mm的立方体试模,高频振动台,进行正常压实。
每组混合物准备十八个试模,进过二十四小时的养护,从试模中取出试块,保持其湿度并在室温25℃进行实验,抗压轻度值取六个的平均值。
表3 普通硅酸盐水泥和粉煤灰混合浆体的成分3结果和讨论图2表示被粉煤灰取代的样品的不一样的体积密度,结果发现,水泥(1.33gm/cm)的容重比粉煤灰(0.96gm/cm)的容重高得多。
正如之前所预期的,样品的体积密度会随着混合物粉煤灰掺量的增多而减少。
图2 不同粉煤灰掺量下样品的容重图3和图4分别表示样品的气孔率和吸水率,很明显孔隙率和吸水率在随着粉煤灰掺量的增加而增大。
这个结果表明粉煤灰对粉煤灰的微观结构的研究比较缺乏。
图3 不同粉煤灰掺量下样品的孔隙率图4 不同粉煤灰掺量下样品的吸水率通过采用标准13311(Part1)–1992中提到的方法完成了超声波脉冲速度测试,通过这个测试来评定样品的质量。
这个测试结果显示,所有UPV试样落在“好”的类别。
结果证实了粉煤灰增加,而UPV质量则下降。
表4:样品的超声波脉冲速度试验结果(公里/秒)粉煤灰含量(%) 0 20 30 40 50 60 70UPV 3.78 3.74 3.73 3.68 3.64 3.58 3.55抗压强度是使用压力试验机来进行试验。
我们看到实验的结果是平均抗压强度的值是在反抗粉煤灰掺量的增加。
结果证明样品的3d、7d、28d抗压强度随着粉煤灰掺量的增加而降低(图5)。
当粉煤灰含量在60%以上是抗压强度下降的趋势是最为明显的。
从实验结果来看最优的是粉煤灰掺量在60%(最大)。
OPC中掺粉煤灰可以用于一些低强度混凝土和砌体工程。
这将直接降低建筑成本以及减少温室气体的排放。
图5:粉煤灰样品的抗压强度4结论根据目前的研究,可能得出的结论是:在普通硅酸盐水泥中掺入粉煤灰会降低其28天的抗压强度。
当粉煤灰的掺量大于30%时抗压轻度会急剧下降。
凝结反应需要时间,有时强度可能会增大,所以长期的研究是必要的的。
粉煤灰的添加会降低容重,这会增加土木工程师对建设轻重量建筑的兴趣。
其他的物理性质,比如:孔隙率和吸水率的增加会降低掺加了粉煤灰混凝土的耐久性。
UPV 的实验结果表明高含量的粉煤灰会降低抗压强度。
参考文献[1]k.Jain(2011),<<粉煤灰的利用在印度水泥产业的现状和未来前景>>,混凝土可持续发展通过创新材料和技术全国巡回研讨会pp 46-51。
[2]ASTM C618 - 08a,(2008),<<粉煤灰和生或煅烧天然火山灰用于混凝土的标准规范>>、美国试验材料学会、美国。
[3]Bumjoo金,莫尼卡Prezzi(2008),<<压实性和腐蚀性的印第安纳F类飞灰和底灰的混合物>>。
[4]克劳奇,,休伊特,白阿德(2007),<<高掺量粉煤灰混凝土>>,程序上的煤灰(WOCA),美国肯塔基州pp1 - 14。
[5]规范:3812(第一部分)。
(2003)、粉煤灰-规范-第1部分:粉煤灰用作火山灰水泥,水泥砂浆和混凝土印度,新德里标准。
[6]规范:13311(第1部分)(1992),<<无损检测混凝土>>:第1部分超声波脉冲速度、印度新德里标准。
[7]马尔霍特拉。
(1986),<<粉煤灰混凝土在结构混凝土中的应用>>,混凝土国际、8(28),pp28-31。
Study on the physical and mechanical property of ordinaryportland cement and fly ash pasteABSTRACTAn experimental investigation has been carried out to study the physical and mechanical property of high volume fly ash cement paste. Ordinary portland cement was replaced by 0,20, 30, 40, 50, 60 and 70 % class F fly ash (by weight). Water- binder ratio in all mixture was kept constant at 0.3. Cube specimens were compacted in table vibrator. As expected bulk density decreases with fly ash increment in the mixture. Apparent porosity and water absorption value increases with replacement of cement by fly ash. Results confirm the decrease in compressive strength at 3, 7 and 28 day with fly ash addition and it is more prominent in case of more than 30% fly ash content mixes. Ultrasonic pulse velocity test results indicate that the quality of the paste deteriorate with increase of fly ash content in the mixture.Keywords: Fly Ash, OPC, Compressive Strength, Pastes, UPV.1.IntroductionMore than 160 million tonnes of fly ash is being produced by thermal power plant in India(A. K. Jain, 2011). The disposal of fly ash is now a significant concern for the electricity manufacturing plants. Commonly, huge volume of fly ash and bottom ash are now being either ponded or used as land filling to minimize the disposal cost (Bumjoo Kim and Monica Prezzi, 2008). In the year 1985 CANMET first investigate and confirmed that high volume of fly ash has many excellent properties (V.M. Malhotra, 1986). Various standard codes limited the use of quality fly ash up to 35% in cement industry. In India, cement and concrete industry consumes about 40 million tonnes of fly ash . On the other hand, the rising of cement demand can be further resolved by utilizing high volume (more than 50 %) of fly ash in the concrete. This process obviously will be economical as well as reduce greenhouse gas (GHG) emission, minimize waste disposal and health hazards. Thus the use of high volume fly ash in concrete has recently gained popularity as a resource-efficient, durable, costeffective, sustainable option for ordinary portland cement (OPC) concrete applications (Crouch, L. K et.al. 2007). The aim of this work is to study some physical and mechanical properties such as bulk density, apparent porosity, water absorption and ultrasonic pulse velocity and compressive strength of ordinary portland cement- fly ash pastes (without any aggregate).2. Materials and Method2.1 MaterialsOrdinary Portland Cement (OPC) having 28 day compressive strength of 54 MPa was used. Typical properties of the OPC used are given in table 1. The fly ash was collected from National Thermal Power Plant, Farakka, West Bengal, India. Chemical composition of both cement and fly ash is shown in table 2. The fly ash contains very less carbon content as indicated by the low value of loss on ignition (LOI). Silica to alumina ratio (SiO2/Al2O3) of the fly ash was ~2.5.The sum total of SiO2, Al2O3 and Fe2O3 equal to 95.74%.Calcium oxide (CaO) content was less than 1%. Hence, as per ASTM C 618-08, it can be classified as class F fly ash. Based on IS: 3812 (Part I)-2003 it can be classified as siliceous pulverized fuel ash. The particle size distribution of fly ash has been given in Figure 1. The fly ash showed a dark gray colour. Normal potable water was used in making the mixture。