自考重点线性代数
自考本线性代数知识点总结
自考本线性代数知识点总结一、向量和矩阵1. 向量的定义向量是有向线段的数学表示,通常用加粗的小写字母来表示,如a、b等。
向量有大小和方向,可以表示为一组有序的数值,例如a=(a1, a2, ..., an)。
2. 向量的运算向量可以进行加法、数乘和内积运算。
加法是指对应位置上的数值相加,数乘是指一个标量与向量的每个分量相乘,内积是指两个向量对应位置上的数值相乘后再相加得到一个标量。
3. 矩阵的定义矩阵是一个按照长方阵列排列的复数或实数集合。
矩阵通常用大写字母来表示,如A、B 等,可以表示为一个矩形数表格。
4. 矩阵的运算矩阵可以进行加法、数乘和乘法等运算。
矩阵的加法是指对应位置上的元素相加,数乘是指一个标量与矩阵的每个元素相乘,矩阵的乘法则是一种复杂的运算,需要满足一定的规则。
5. 矩阵的转置和逆矩阵的转置是指将矩阵的行和列互换得到的新矩阵,用A^T表示。
矩阵的逆是指对于一个n阶方阵A,存在一个n阶方阵B,使得A与B的乘积为单位矩阵。
二、行列式和特征值1. 行列式行列式是矩阵的一个重要性质,它可以用来描述矩阵线性变换前后的面积或体积的缩放比例。
行列式的计算是一个重要的线性代数知识点,非常重要。
2. 特征值和特征向量特征值是矩阵的一个重要性质,它是矩阵A的一个标量λ,使得矩阵A减去λ乘以单位矩阵的行列式为0。
特征向量是对应于特征值的非零向量,它可以用来描述矩阵线性变换的方向。
三、线性方程组和矩阵的应用1. 线性方程组线性方程组是由线性方程组成的方程组,它可以用矩阵的形式表示为AX=B,其中A为系数矩阵,X为未知数向量,B为常数向量。
2. 矩阵的应用矩阵在各个领域都有着广泛的应用,如在工程学中可以用来描述结构的受力分布,计算机科学中用来表示图像和二维图形的变换,物理学中用来描述物质的状态等。
四、线性变换和空间1. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,它满足两个性质:对于所有的向量u和v以及标量c,有T(u+v) = T(u) + T(v),T(cu) = cT(u)。
自考《线性代数》重难点解析与全真练习
第⼀章 ⾏列式 ⼀、重点 1、理解:⾏列式的定义,余⼦式,代数余⼦式。
2、掌握:⾏列式的基本性质及推论。
3、运⽤:运⽤⾏列式的性质及计算⽅法计算⾏列式,⽤克莱姆法则求解⽅程组。
⼆、难点 ⾏列式在解线性⽅程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等⽅⾯的应⽤。
三、重要公式 1、若A为n阶⽅阵,则│kA│= kn│A│ 2、若A、B均为n阶⽅阵,则│AB│=│A│。
│B│ 3、若A为n阶⽅阵,则│A*│=│A│n-1 若A为n阶可逆阵,则│A-1│=│A│-1 4、若A为n阶⽅阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi 四、题型及解题思路 1、有关⾏列式概念与性质的命题 2、⾏列式的计算(⽅法) 1)利⽤定义 2)按某⾏(列)展开使⾏列式降阶 3)利⽤⾏列式的性质 ①各⾏(列)加到同⼀⾏(列)上去,适⽤于各列(⾏)诸元素之和相等的情况。
②各⾏(列)加或减同⼀⾏(列)的倍数,化简⾏列式或化为上(下)三⾓⾏列式。
③逐次⾏(列)相加减,化简⾏列式。
④把⾏列式拆成⼏个⾏列式的和差。
4)递推法,适⽤于规律性强且零元素较多的⾏列式 5)数学归纳法,多⽤于证明 3、运⽤克莱姆法则求解线性⽅程组 若D =│A│≠0,则Ax=b有解,即 x1=D1/D,x2= D2/D,…,xn= Dn/D 其中Dj是把D中xj的系数换成常数项。
注意:克莱姆法则仅适⽤于⽅程个数与未知数个数相等的⽅程组。
4、运⽤系数⾏列式│A│判别⽅程组解的问题 1)当│A│=0时,齐次⽅程组Ax=0有⾮零解;⾮齐次⽅程组Ax=b不是解(可能⽆解,也可能有⽆穷多解) 2)当│A│≠0时,齐次⽅程组Ax=0仅有零解;⾮齐次⽅程组Ax=b有解,此解可由克莱姆法则求出。
⼀、重点 1、理解:矩阵的定义、性质,⼏种特殊的矩阵(零矩阵,上(下)三⾓矩阵,对称矩阵,对⾓矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵) 2、掌握: 1)矩阵的各种运算及运算规律 2)矩阵可逆的判定及求逆矩阵的各种⽅法 3)矩阵的初等变换⽅法 ⼆、难点 1、矩阵的求逆矩阵的初等变换 2、初等变换与初等矩阵的关系 三、重要公式及难点解析 1、线性运算 1)交换律⼀般不成⽴,即AB≠BA 2)⼀些代数恒等式不能直接套⽤,如设A,B,C均为n阶矩阵 (A+B)2=A2+AB+BA+B2≠A2+2AB+B2 (AB)2=(AB)(AB)≠A2B2 (AB)k≠AkBk (A+B)(A-B)≠A2-B2 以上各式当且仅当A与B可交换,即AB=BA时才成⽴。
自学考试专题:线性代数复习材料
02198线性代数一、线性代数的基础内容:1、行列式——行列式的定义及计算性质(7条),克莱姆法则;2、矩阵——运算(包括相等、加法、数乘;转置,乘法,逆);矩阵的行列式、伴随矩阵;初等变换(包括行、列变换及与矩阵乘法的关系,求逆等);行等价标准形(行阶梯形、行简化阶梯形)及标准形;矩阵的秩;分块矩阵3、向量——线性组合、表示、相关性;秩及极大无关组特别的,除理解概念外,尽可能深刻的理解初等变换在解决矩阵相关问题中的作用;初等变换与矩阵乘积运算的关系;矩阵的秩与向量组的秩之间的关系;如何借助矩阵的初等行变换去求向量组的秩及其极大无关组 二、线性代数的应用性内容 1、线性方程组求解:i)齐次的0Ax =,讨论有不全为零解的条件,解的性质和基础解系(不唯一)—格式化的求基础解系的步骤;ii)非齐次的Ax b =,讨论有解的条件(唯一解、无穷多解),解的性质和结构—格式化的解题步骤2、向量空间:基、坐标、过渡矩阵、坐标变换公式;特殊的基,自然基和标准正交基及施密特正交化方法;正交矩阵3、特征值特征向量:i)特征值、特征向量——格式化的求解步骤,关键是在理解这组概念及其性质;ii)矩阵对角化:矩阵可对角化的条件;特征向量的性质;相似矩阵iii)实对称矩阵正交对角化:实对称矩阵特征值特征向量的性质(特征值都为实数,属于不同特征值的特征向量正交)——格式化的对角化步骤4、二次型:i)二次型与对称矩阵的关系ii) 利用正交变换的方法化二次型为标准型相当于实对称矩阵的正交对角化;配方法化二次型为标准形;合同矩阵(与等价、相似的关系) iii)二次型的规范形与惯性定理:正惯性指数与负惯性指数唯一确定iv)正定二次型与正定矩阵:如何判别?——四个等价的条件(正定;正惯性指数为n ;存在P 使TPP A =;所有特征值大于零)第一章 行列式关键字:行列式的概念和基本性质 行列式按行(列)展开定理 克莱默法则 一、1.行列式定义及相关概念:(这是行列式的递推法定义)由2n 个数(,1,2,,)ij a i j n =组成的n阶行列式111212122212n n n n nna a a a a a D a a a =是一个算式,特别当1n =时,定义1111||D a a ==;当2,n ≥时1111121211111nn n j j j D a A a A a A a A ==+++=∑,其中111(1)j j j A M +=-,1j M 是D 中去掉第1行第j 列全部元素后按照原顺序拍成的1n -阶行列式,称为元素1j a 的余子式,1j A 为元素1j a 的代数余子式。
自考线性代数重点总结
自考线性代数重点总结我跟你说啊,这自考线性代数啊,可是有点门道的。
我就瞅着那些个式子啊,一开始就跟看天书似的。
你知道我那时候啥样吗?我就皱着个眉头,眼睛瞪得老大,头发乱得像个鸡窝,就那么对着书本发呆。
这线性代数啊,行列式是个重点。
就那行列式,行和列排得整整齐齐的,就像一队队等着检阅的小兵。
我刚开始学的时候啊,那些什么对角线法则啦,按行按列展开啦,把我绕得晕头转向的。
我就跟旁边一起自考的伙伴嘟囔:“这啥玩意儿啊,咋这么复杂呢?”我那伙伴也愁眉苦脸的,跟我说:“我瞅着这就像一团乱麻,咋都理不清。
”再说说矩阵,矩阵就像个大盒子,里面装着各种各样的数。
这矩阵的运算啊,加法、减法还好说,就像把两个盒子里对应的东西加加减减。
可是一到乘法,那可就麻烦喽。
我就老是搞不清这行和列到底咋乘的。
我就一边拿着笔在纸上划拉,一边在心里骂自己:“我这脑子咋就这么笨呢?”还有向量,向量就像一个个箭头,在空间里指来指去的。
线性相关和线性无关啊,就像在判断这些箭头是不是能互相表示。
我记得有一次,我在一个小破教室里琢磨这个事儿。
那教室的墙皮都掉了几块,窗户缝里还透着风,吹得我直哆嗦。
我就那么咬着笔头,看着那些向量的式子,心里想:“你们这些个箭头啊,到底是咋回事儿呢?”特征值和特征向量也不是省油的灯。
这就好比每个矩阵都有自己的小秘密,特征值和特征向量就是解开这个秘密的钥匙。
我为了搞懂这个,天天晚上在那昏黄的灯光下看书。
灯光一闪一闪的,就像在跟我调皮捣蛋。
我就对着书本说:“你就不能痛痛快快地让我明白吗?”有时候想明白了一点,我就高兴得像个孩子,手舞足蹈的,把周围的人都吓一跳。
这自考线性代数啊,虽然难,但是咱也不能被它吓倒。
我就这么一点点抠,一点点琢磨。
有时候一道题做出来了,我就觉得自己可了不起了,就像打了一场大胜仗似的。
我想啊,只要坚持下去,这线性代数的重点也没那么可怕,咱也能把它拿下。
线性代数自考知识点汇总各章重点
行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行〔列〕,行列式变号.推论1 如果行列式有两行〔列〕的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行〔列〕中全部的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行〔列〕元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 假设行列式的某一行〔列〕的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行〔列〕的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132a a M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行〔列〕展开法则定理1 行列式的值等于它的任一行〔列〕的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行〔列〕的元素与另一行〔列〕的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠4. 行列式的计算〔1〕二阶行列式1112112212212122a a a a a a a a =- 〔2〕三阶行列式〔3〕对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-〔4〕三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==〔5〕消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.〔6〕降阶法:利用行列式的性质,化某行〔列〕只有一个非零元素,再按该行〔列〕展开,通过降低行列式的阶数求出行列式的值.〔7〕加边法:行列式每行〔列〕全部元素的和相等,将各行〔列〕元素加到第一列〔行〕,再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1〕对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2〕单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作 E.3〕上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭4〕下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭5〕对称矩阵:设A 为n阶方阵,假设T A A =,即ij ji a a =,则称A 为对称矩阵. 6〕反对称矩阵:设A 为n阶方阵,假设T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7〕正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 〔1〕矩阵的加法 如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. 〔2〕数乘矩阵如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.〔3〕矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵〔即一个数〕,即 列矩阵乘行矩阵是s 阶方阵,即 3. 逆矩阵设n 阶方阵A 、B ,假设AB=E 或BA=E ,则A ,B 都可逆,且11AB,B A --==.〔1〕二阶方阵求逆,设a b A c d ⎛⎫= ⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭〔两调一除法〕.〔2〕对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.〔3〕分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 〔4〕一般矩阵求逆,初等行变换的方法:()()ERT1A E E A -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式〔各元素的位置不变〕叫做方阵A 的行列式.记作A 或det 〔A 〕. 5. 矩阵的初等变换下面三种变换称为矩阵的初等行〔列〕变换: 〔1〕互换两行〔列〕;〔2〕数乘某行〔列〕;〔3〕某行〔列〕的倍数加到另一行〔列〕. 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作R 〔A 〕或r 〔A 〕. 求矩阵的秩的方法:〔1〕定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.〔2〕初等行变换法:ERTA −−−→行阶梯形矩阵,R 〔A 〕=R 〔行阶梯形矩阵〕=非零行的行数. 8. 重要公式及结论〔1〕矩阵运算的公式及结论矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地假设AB=AC ,无B=C ;只有当A 可逆时,有B=C.一般地假设AB=O ,则无A=O 或B=O.()222A B ?A 2AB B +++.〔2〕逆矩阵的公式及定理A 可逆⇔|A |≠0⇔A ~E 〔即A 与单位矩阵E 等价〕 〔3〕矩阵秩的公式及结论R ( AB ) ≤R ( A ), R ( AB ) ≤R ( B ).特别地,当A 可逆时,R(AB)=R(B);当B 可逆时,R(AB)=R(A).()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程〔1〕设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ .〔2〕设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -; ② ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系〔1〕等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B ,那么称矩阵A 与B 等价.即存在可逆矩阵P ,Q ,使得PAQ=B.性质:等价矩阵的秩相等.〔2〕相似矩阵:如果存在可逆矩阵P ,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. 〔3〕合约矩阵:如果存在可逆矩阵P ,使得T P AP B =,那么称A 与B 合约. 性质:合约矩阵的秩相等.向量空间1. 线性组合〔1〕假设α=k β,则称向量α与β成比例. 〔2〕零向量O是任一向量组的线性组合.〔3〕向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关〔1〕 单独一个向量线性相关当且仅当它是零向量. 〔2〕 单独一个向量线性无关当且仅当它是非零向量. 〔3〕 两向量线性相关当且仅当两向量对应成比例.〔4〕 两向量线性无关当且仅当两向量不对应成比例. 〔5〕 含有O向量的向量组肯定线性相关. 〔6〕 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.〔7〕n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.〔8〕 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.〔9〕 n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.〔10〕当m>n 时,m 个n 维向量肯定线性相关.定理1:向量组 a 1 , a 2 ,……, a m 〔m ≥2〕线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A 线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+假设A 线性相关,则向量组B 也线性相关;反之,假设向量组B 线性无关,则向量组A 也线性无关.〔即局部相关,则整体相关;整体无关,则局部无关〕. 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组.定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩。
自考线性代数试题及答案
自考线性代数试题及答案线性代数是数学中的一个重要分支,其应用广泛而深入。
对于参加自考线性代数考试的考生来说,熟悉并掌握相关的试题及答案是非常重要的。
本文将为大家提供一些常见的自考线性代数试题及答案,希望能对广大考生有所帮助。
第一部分:选择题1. 下列哪个不是线性代数的基本概念?A. 向量B. 矩阵C. 整数D. 行列式答案:C2. 在矩阵运算中,AB≠BA时,那么A和B一定是什么关系?A. 逆矩阵关系B. 对称矩阵关系C. 反对称矩阵关系D. 非方阵关系答案:D3. 线性方程组Ax=b,若有解,则必须满足下列哪个条件?A. 矩阵A可逆B. 矩阵A不可逆C. 矩阵A是对称阵D. 矩阵A的秩为0答案:A第二部分:填空题1. 设A为3×3矩阵,|A|=-2,那么A的行列式展开式中,元素a11、a12、a13分别是多少?答案:a11=-2,a12=0,a13=02. 矩阵的秩与其行数、列数之间有何关系?答案:矩阵的秩小于等于其行数和列数的最小值。
3. 矩阵的转置运算满足什么性质?答案:(AB)ᵀ = BᵀAᵀ第三部分:计算题1. 计算矩阵乘法:A = 2 1 3B = 0 -10 1 2 2 1-1 0 1 1 2答案:AB = (2*0 + 1*2 + 3*1) (2*-1 + 1*1 + 3*2)(0*0 + 1*2 + 2*1) (0*-1 + 1*1 + 2*2)(-1*0 + 0*2 + 1*1) (-1*-1 + 0*1 + 1*2)= 7 64 31 3第四部分:解答题1. 证明以下等式成立:(A + B)C = AC + BC证明:设A、B、C都是m×n的矩阵,按矩阵乘法的定义,左边的矩阵乘积为:(A + B)C = [(a11 + b11)*c11 + (a12 + b12)*c21 + ... + (a1n + b1n)*cn1][(a21 + b21)*c12 + (a22 + b22)*c22 + ... + (a2n + b2n)*cn2] ...[(am1 + bm1)*c1n + (am2 + bm2)*c2n + ... + (amn + bmn)*cnn]右边的矩阵乘积为:AC + BC = [a11*c11 + a12*c21 + ... + a1n*cn1] + [b11*c11 + b12*c21 + ... + b1n*cn1][a21*c12 + a22*c22 + ... + a2n*cn2] + [b21*c12 + b22*c22+ ... + b2n*cn2]...[am1*c1n + am2*c2n + ... + amn*cnn] + [bm1*c1n + bm2*c2n + ... + bmn*cnn]可以观察到左右两边的每一项是相等的,因此左边的矩阵乘积等于右边的矩阵乘积,得证。
自考线性代数(经管类)重点内容
《线性代数(经管类)》重点内容前言:很多自考学员反映,在自考复习过程中大多数时候感到既畏惧,又无从下手。
那么,如何才能在有限的时间里,让我们的学员了解报考课程的重点难点,做到胸有成竹,运筹帷幄,从而提高复习效率,卓有成效地提高学生的成绩呢,自考网教学研发中心各专业研发团队特结合近10年自学考试历年真题的命题趋势及规律总结出考试重点,考生通过对重点考点的复习可以系统掌握考试常考的的知识点,明确复习目标,减轻考生的复习压力,减少复习时间,提高复习质量,让考生轻轻松松备考,简简单单通过考试。
第一章行列式1.简单的二阶、三阶行列式的计算。
(P3)2.利用行列式的定义计算行列式。
(P9)3.利用行列式的六大性质计算行列式。
(P11)4.利用克拉默法则求解线性方程组。
(P27)第二章矩阵5.矩阵的乘法运算。
(P37)6.矩阵乘法运算规律。
(P41)7.方阵的行列式具有的性质。
(P45)8.方阵的逆矩阵及其具有的性质。
(P48)9.利用矩阵的初等变换求解逆矩阵。
(P66)10.矩阵秩的求法。
(P70)11.利用矩阵求解线性方程组。
(P75)第三章向量空间12.线性表示。
(P83)13.线性相关和线性无关的性质与证明。
(P88)14.求向量组的极大无关组。
(P94)15.向量组的秩具有的性质。
(P97)16.求向量组的秩。
(P99)17.求向量空间的基与维数。
(P106)第四章线性方程组18.齐次线性方程组的性质。
(P110)19.求解齐次线性方程组。
(P114)20.非齐次线性方程组解的判别定理。
(P119)21.非齐次线性方程组的求通解方法。
(P)第五章特征值与特征向量22.特征值与特征向量的定义求法。
(P129)23.特征值与特征向量的一些重要结论。
(P131)24.特征值的性质。
(P132)25.求特征值与特征向量的一般方法。
(P133)26.方阵相似具有的性质。
(P138)27.求向量内积。
(P146)28.正交矩阵的性质与证明。
自学考试线性代数笔记讲义新版[1]
自考高数线性代数笔记第一章行列式1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。
所以在行列式的第i行和第j列的交叉位置上。
2022年自考27391工程数学(线性代数-复变函数)复习资料
2022年自考27391工程数学(线性代数\复变函数)复习资料2022年自考27391工程数学(线性代数\复变函数)复习资料线性代数部分本课程考试采纳教材:《工程数学——线性代数》〔附大纲〕,申亚男、卢刚主编,外语教学与讨论出版社,2022年版。
考试的重点内容第一章行列式1.行列式的定义了解行列式的定义,掌控行列式的余子式与代数余子式,牢记上〔下〕三角行列式的计算公式,掌控用行列式定义计算含0特别多或结构非常的行列式。
2.行列式的性质理解行列式的性质,会用行列式性质化简行列式。
3.行列式按一行〔或一列〕开展娴熟掌控行列式按一行〔或一列〕开展的方法计算行列式。
第二章矩阵1.矩阵的概念理解矩阵的概念,掌控非常的方阵:上〔下〕三角形矩阵、对角矩阵和单位矩阵、对称矩阵和反对称矩阵。
2.矩阵的运算娴熟掌控矩阵的线性运算〔加法及数乘〕、乘法、方阵的方幂、转置等运算。
3.可逆矩阵4.矩阵的初等变换与初等矩阵娴熟掌控矩阵的初等变换,理解初等矩阵和初等变换的关系,会用初等行变换法求可逆矩阵的逆矩阵。
5.矩阵的秩知道矩阵的秩的定义,会用初等行变换求矩阵的秩。
第三章向量空间1.维向量空间2.向量间的线性关系会判断向量组的线性相关或线性无关,将给定的向量由向量组线性表出。
3.向量组的极大线性无关组掌控用矩阵的初等行变换求向量组的极大线性无关组。
4.向量组的秩与矩阵的秩掌控用矩阵的初等行变换求向量组的秩或矩阵的秩。
第四章线性方程组1.齐次线性方程组会判断齐次线性方程组是否有非零解,娴熟掌控用初等行变换求齐次线性方程组的基础解系及其通解。
2.非齐次线性方程组会判断非齐次线性方程组解的状况〔无解、有唯一解、有无穷解〕,娴熟掌控用初等行变换求非齐次线性方程组的通解。
第五章矩阵的相像对角化1.特征值与特征向量理解特征值与特征向量的定义,掌控求特征值与特征向量的方法。
2.相像矩阵与矩阵对角化理解矩阵相像的概念,掌控将矩阵化为相像对角矩阵的方法。
线代自考知识点总结
线代自考知识点总结一、向量的基本概念1. 向量的定义与性质2. 向量的线性运算3. 向量的数量积与向量积4. 线性相关与线性无关5. 向量组的基和维数向量是线性代数中的基本概念,它是有大小和方向的量。
向量的定义可以通过其几何意义和代数表示两种方式来理解。
在几何意义上,向量可以表示为有向线段,具有模长和方向两个属性。
在代数表示上,向量可以表示为一组有序的实数或复数。
向量的线性运算包括向量的加法和数乘,满足交换律和结合律等性质。
向量的数量积是向量的点乘,其结果是一个实数,表示两个向量的夹角关系。
向量积是向量的叉乘,其结果是一个新的向量,表示两个向量的垂直关系。
线性相关与线性无关是向量组的重要概念,用于刻画向量组之间的线性关系。
向量组的基和维数是向量空间的重要性质,在一定条件下可以用来刻画向量空间的结构。
二、矩阵与行列式1. 矩阵的定义和性质2. 矩阵的运算3. 行列式的定义和性质4. 行列式的性质和应用矩阵是一种重要的数学工具,它可以用来表示线性变换和线性方程组。
矩阵的定义是一个由数构成的矩形阵列,具有行数和列数两个维度。
矩阵的运算包括矩阵的加法、标量乘法和矩阵乘法等。
矩阵乘法是矩阵运算中的基本运算,具有结合律和分配律等性质。
行列式是一个重要的数学概念,它可以用来刻画矩阵的性质和求解线性方程组。
行列式的定义是一个递归定义,它包含二阶和高阶行列式两种情况。
行列式的性质包括对换行列式、倍加行列式和倍减行列式等,这些性质在计算行列式时非常有用。
三、线性方程组1. 线性方程组的概念与解的存在唯一性2. 线性方程组的解的性质3. 线性方程组的解的结构线性方程组是线性代数中的一个重要内容,它可以用来描述多个未知数的线性关系。
线性方程组的解的存在唯一性是一个重要的判别条件,用来判断线性方程组是否有解以及解的唯一性。
线性方程组的解的性质包括解空间的性质、基础解系和特解等,这些性质在求解线性方程组时非常有用。
线性方程组的解的结构是一个重要的理论问题,它可以用来描述线性方程组解的多样性和规律性。
线性代数自考知识点汇总
线性代数自考知识点汇总 The Standardization Office was revised on the afternoon of December 13, 2020行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =. 性质2 互换行列式的两行(列),行列式变号.推论1 如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行(列)元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i j ij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132a a M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行(列)展开法则定理1 行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==4. 行列式的计算 (1)二阶行列式1112112212212122a a a a a a a a =- (2)三阶行列式111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++---(3)对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-(4)三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==111,n 11n1n n(n 1)212,n 12,n 12n 21n 2,n 1n1n1n1n2nna a a a a a a a (1)a a a a a a a -----==-(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值. (6)降阶法:利用行列式的性质,化某行(列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1)对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2)单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作E.3)上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭ 4)下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭5)对称矩阵:设A 为n阶方阵,若T A A =,即ij ji a a =,则称A 为对称矩阵.6)反对称矩阵:设A 为n阶方阵,若T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7)正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 (1)矩阵的加法如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪ ⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. (2)数乘矩阵如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.(3)矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵(即一个数),即()112111121s 111112211s s1s1b ba a a ab a b a b b ⎛⎫ ⎪ ⎪=++⎪ ⎪⎝⎭列矩阵乘行矩阵是s 阶方阵,即()1111111112111s 2121112112211s 11121s s1s111s112s11s a a b a b a b a a b a b a b b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭3. 逆矩阵设n 阶方阵A 、B ,若AB=E 或BA=E ,则A ,B 都可逆,且11A B,B A --==.(1)二阶方阵求逆,设a b A c d ⎛⎫= ⎪⎝⎭ ,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭(两调一除法). (2)对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.(3)分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. (4)一般矩阵求逆,初等行变换的方法:()()ERT1A E E A -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式(各元素的位置不变)叫做方阵A 的行列式.记作A 或det (A ). 5. 矩阵的初等变换下面三种变换称为矩阵的初等行(列)变换:(1)互换两行(列);(2)数乘某行(列);(3)某行(列)的倍数加到另一行(列). 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作R (A )或r (A ). 求矩阵的秩的方法:(1)定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.(2)初等行变换法:ERTA −−−→行阶梯形矩阵,R (A )=R (行阶梯形矩阵)=非零行的行数.8. 重要公式及结论 (1)矩阵运算的公式及结论()()12121212k k k k k k k k k k k k kk 10A B B A,(A B )C A (B C ),(A B )A B(AB )C A(BC ),(A B )C AC BC ,(AB )(A )B A(B )A A A ,(A )A ,(A )A ,E EAB A BA B ,EA AE A,A Eλλλλλλλλ+-+=+++=+++=+=+=+==⋅========()()()()()()T TTT T T T T T TTT nT n n A A,(A B )A B ,A A ,AB B A A A ,AB B A ,AA A A A EA A ,A A ,AB A B BA ,A A ,A B A Bλλλλ*******=+=+===========+≠+矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地若AB=AC ,无B=C ;只有当A 可逆时,有B=C.一般地若AB=O ,则无A=O 或B=O.()222A B ?A 2AB B +++.(2)逆矩阵的公式及定理()()()()()()()()11111111n 11111k1k 1T11T 1A A ,A A ,,A A 1A A,A A,A A ,A A AB B A1A A A A AA A ,A λλ----------*-**--**-----===========A 可逆⇔|A |≠0⇔A ~E (即A 与单位矩阵E 等价) (3)矩阵秩的公式及结论()()()T m n R(O )0,R(A )min{m,n },R(A )R(A ),R(kA )R(A ),k 0A 0R(A )n ,R A B R A R B ⨯=≤==≠≠⇔=+≤+R ( AB ) ≤R ( A ), R ( AB ) ≤R ( B ).特别地,当A 可逆时,R(AB)=R(B);当B 可逆时,R(AB)=R(A).()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程(1)设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -;② ()()ERT A B EX −−−→ .(2)设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -;② ECT A E B X ⎛⎫⎛⎫−−−→ ⎪ ⎪⎝⎭⎝⎭ .10. 矩阵间的关系(1)等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B ,那么称矩阵A 与B 等价.即存在可逆矩阵P ,Q ,使得PAQ=B.性质:等价矩阵的秩相等.(2)相似矩阵:如果存在可逆矩阵P ,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. (3)合同矩阵:如果存在可逆矩阵P ,使得T P AP B =,那么称A 与B 合同. 性质:合同矩阵的秩相等.向量空间1. 线性组合(1)若α=k β,则称向量α与β成比例. (2)零向量O是任一向量组的线性组合.(3)向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关(1) 单独一个向量线性相关当且仅当它是零向量. (2) 单独一个向量线性无关当且仅当它是非零向量. (3) 两向量线性相关当且仅当两向量对应成比例. (4) 两向量线性无关当且仅当两向量不对应成比例. (5) 含有O向量的向量组一定线性相关. (6) 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.(7)n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.(8) 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.(9) n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.(10)当m>n 时,m 个n 维向量一定线性相关.定理1:向量组 a 1 , a 2 ,……, a m (m ≥2)线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示.定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A 线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+若A 线性相关,则向量组B 也线性相关;反之,若向量组B 线性无关,则向量组A 也线性无关.(即部分相关,则整体相关;整体无关,则部分无关). 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组. 定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩。
自考线性代数(经管类)重点考点
自考线性代数(经管类)重点考点线性代数(经管类)考点逐个击破第一章行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数aij(i,j1,2)得到下列式子:a11a12a21a22称为一个二阶行列式,其运算规则为a11a12a21a22a11a22a12a212.三阶行列式a11a12a13由9个数aij(i,j1,2,3)得到下列式子:a21a22a23 a31a32a33称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式a11a12a13设有三阶行列式D3a21a22a23a31a32a33对任何一个元素aij,我们划去它所在的第i行及第j列,剩下的元素按原先次序组成一个二阶行列式,称它为元素aij的余子式,记成Mij例如M11a22a23a32a33ij,M21a12a13a32a33,M31a12a13a22a23再记Aij(1)Mij,称Aij为元素aij的代数余子式.例如A11M11,A21M21,A31M31那么,三阶行列式D3定义为a11a12a13D3a21a22a23a11A11a21A21a31A31a31a32a33简写成D3我们把它称为D3按第一列的展开式,经常ai13i1Ai1(1)i1ai1Mi1i134.n阶行列式一阶行列式D1a11a11a11a12a1nn阶行列式Dna21a22a2nan1an2anna11A11a21A21an1An1其中Aij(i,j1,2,,n)为元素aij的代数余子式.5.特殊行列式a11上三角行列式a12a1na22a2n00ann00a11a22anna11a22ann00a11a21an1a1100下三角行列式a22an2ann000a220对角行列式anna11a22ann(二)行列式的性质性质1行列式和它的转置行列式相等,即DDT性质2用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD,也就是说,行列式可以按行和列提出公因数.性质3互换行列式的任意两行(列),行列式的值改变符号.推论1如果行列式中有某两行(列)相同,则此行列式的值等于零.推论2如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4行列式可以按行(列)拆开.性质5把行列式D的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n阶行列式Daijn等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即Dai1Ai1ai2Ai2ainAin(i1,2,,n)或Da1jA1ja2jA2janjAnj(j1,2,,n)前一式称为D按第i行的展开式,后一式称为D按第j列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2n阶行列式Daij的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.n即ai1Ak1ai2Ak2ainAkn0(ik)或a1jA1a2jA2anjAn0(j)(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:2141例1计算行列式D4312152327025解:观察到第二列第四行的元素为0,而且第二列第一行的元素是a121,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.2141D4312170255312列251列1021412行11行506270250按第二行展开31237581562按第二列展开15072552323行(2)1行10507375abbb例2计算行列式D4babbbbabbbba解:方法1这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为a3b(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子a3b,再将后三行都减去第一行:abbbbabbbbabbbbaa3bbbba3babba3bbaba3bbba1b00b00b00ab00(a3b)1 bbb1abb1bab1bba(a3b)ab0ab(a3b)(ab)3方法2观察到这个行列式每一行元素中有多个b,我们采用“加边法”来计算,即是构造一个与D4有相同值的五阶行列式:abbbD4babbbbabbbba1bbbb0abbb0babb0bbab0bbba1行(1)2,3,4,行51111b000bb0b001ab000ab0ab00ab这样得到一个“箭形”行列式,如果ab,则原行列式的值为零,故不妨假设ab,即ab0,把后四列的1倍加到第一列上,可以把第一列的(-1)化为零.ab4b1bbbbab0ab0004b400ab001(ab)(a3b)(ab)ab000ab00000ab1例3三阶范德蒙德行列式V3某11某221某3(某2某1)(某3某1)(某3某2)2某1某2某32(四)克拉默法则定理1(克拉默法则)设含有n个方程的n元线性方程组为a11某1a12某2a1n某nb1,a某a某a某b,2112222nn2an1某1an2某2ann某nbn如果其系数行列式Daijn0,则方程组必有唯一解:某jDjD,j1,2,,n其中Dj是把D中第j列换成常数项b1,b2,,bn后得到的行列式.把这个法则应用于齐次线性方程组,则有定理2设有含n个方程的n元齐次线性方程组a11某1a12某2a1n某n0,a某a某a某0,2112222nnan1某1an2某2ann某n0如果其系数行列式D0,则该方程组只有零解:某1某2某n0换句话说,若齐次线性方程组有非零解,则必有D0,在教材第二章中,将要证明,n个方程的n元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.第二章矩阵(一)矩阵的定义1.矩阵的概念由mn个数aij(i1,2,,m;j1,2,,n)排成的一个m行n列的数表a11a12a1na21a22a2nAam1am2amn称为一个m行n列矩阵或mn矩阵当mn时,称Aaijnn为n阶矩阵或n阶方阵元素全为零的矩阵称为零矩阵,用Omn或O表示2.3个常用的特殊方阵:a11000a022①n阶对角矩阵是指形如A的矩阵00ann100010②n阶单位方阵是指形如En的矩阵001a11a12a1na11000a22a2na21a220③n阶三角矩阵是指形如的矩阵,00aaaan2nnnnn13.矩阵与行列式的差异矩阵仅是一个数表,而n阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“某”与矩阵记号“某”也不同,不能用错.(二)矩阵的运算1.矩阵的同型与相等设有矩阵A(aij)mn,B(bij)k,若mk,n,则说A与B是同型矩阵.若A与B同型,且对应元素相等,即aijbij,则称矩阵A与B相等,记为AB 因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2.矩阵的加、减法设A(aij)mn,B(bij)mn是两个同型矩阵则规定AB(aijbij)mnAB(aijbij)mn注意:只有A与B为同型矩阵,它们才可以相加或相减.由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.3.数乘运算。
自考线性代数(经管类)各章考核重点解析
自考线性代数(经管类)各章考核重点解析第一章行列式(一)考核知识点1.行列式定义。
2.行列式的性质与计算。
3.克拉默(Cramer)法则。
(二)自学要求学习本章,要确切了解行列式的定义;理解行列式的性质;熟练掌握行列式的计(特别是低阶的数字行列式和具有特殊形状的文字或数字行列式),会计算简单的行式;理解克拉默法则在线性方程组求解理论中的重要性。
本章的重点;行列式的性质与计算。
难点;n阶行列式的计算(三)考核要求1.行列式的定义。
要求达到“识记”层次。
1.1熟练计算二阶与三阶行列式。
1.2清楚行列式中元素的余子式和代数余子式的定义。
1.3了解行列式的按其第一列展开的递归定义。
1.4熟记三角行列式的计算公式。
2.行列式的性质与计算。
要求达到“简单应用”层次。
2.1掌握并会熟练运用行列式的性质。
2.2掌握行列式的基本方法。
2.3回计算具有特殊形状的数字和文字行列式以及简单的n阶行列式。
2.4低阶范德蒙德行列式的计算。
3.克拉默法则。
要求达到“简单应用”层次。
3.1知道克拉默法则。
3.2会用克拉默法则求解简单的线性方程组。
第二章矩阵(一)考核知识点1.矩阵的各种运算的定义及其运算律。
重点是矩阵的乘法。
2. 分快矩阵的定义及其运算。
3.逆矩阵的定义与性质,伴随矩阵,方阵可逆的判别条件。
4.矩阵的初等变换和初等矩阵。
5.可逆矩阵的逆矩阵的求法。
6.矩阵的秩的定义与求法。
(二)自学要求学习本章,要求掌握矩阵的各种运算及其运算法则;知道方阵可逆的充分必要条件;会求可逆矩阵的逆矩阵;熟练掌握矩阵的初等变换;理解矩阵的秩定义,会求矩阵的秩。
本章的重点;矩阵运算及其矩阵的求法,矩阵的初等变换。
难点;逆矩阵的求法及矩阵的概念。
(三)考核要求1.矩阵的定义。
要求达到“识记”层次。
1.1理解矩阵的定义。
1.2知道三角矩阵、对角矩阵、单位矩阵和零矩阵的定义。
1.3清楚矩阵与行列式是两个有本质区别的概念,清楚矩阵与行列式符号的区别。
专升本自学中的数学线性代数要点
专升本自学中的数学线性代数要点在专升本自学中,数学线性代数是非常重要的一门学科。
它在计算机科学、经济学、物理学等领域都有广泛应用。
掌握数学线性代数的要点,对于专升本考试非常有帮助。
本文将介绍数学线性代数的要点,希望能够帮助自学专升本的同学们更好地理解和掌握这门学科。
一、向量的概念和运算向量是数学线性代数中非常基础的概念。
它是一个有方向和大小的量。
向量的运算包括加法、减法和数乘。
加法和减法满足交换律和结合律,数乘满足分配律。
二、矩阵的定义和运算矩阵是由一系列数排列成的矩形阵列。
矩阵的运算包括加法、减法和数乘。
矩阵的乘法是矩阵运算中非常重要的一部分,需要掌握矩阵乘法的计算规则。
另外,矩阵还有转置、逆矩阵等重要概念,需要熟悉这些概念的定义和性质。
三、线性方程组的求解线性方程组是数学线性代数中的重要内容。
求解线性方程组的方法有很多,包括高斯消元法、克拉默法则、矩阵的逆等。
在自学中,需要掌握这些求解方法,并能够灵活运用。
四、向量空间和基向量空间是由所有可能的线性组合所构成的集合。
基是向量空间中最简单且线性无关的向量组。
了解向量空间和基的概念对于理解向量空间的性质和应用非常重要。
五、特征值和特征向量特征值和特征向量是矩阵运算中的重要内容。
特征值表示线性变换中方向不变的值,而特征向量则是对应于特征值的向量。
掌握特征值和特征向量的计算方法和应用,对于矩阵的对角化和矩阵的性质分析非常有帮助。
六、线性变换线性变换是指将一个向量空间映射到另一个向量空间的变换。
了解线性变换的定义和性质,对于理解矩阵的几何意义和应用非常重要。
七、内积和正交性内积是向量空间中的一种运算。
掌握内积的定义和性质,对于判断向量的正交性和计算向量的夹角非常有帮助。
综上所述,数学线性代数在专升本自学中是一门很重要的学科。
掌握数学线性代数的要点,对于专升本考试以及日后的学习和工作都有着重要的意义。
希望通过本文的介绍,能够帮助自学专升本的同学们更好地理解和掌握数学线性代数。
自考本科线性代数经管类知识汇总
自考高数线性代数笔记第一章行列式1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:.解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。
所以在行列式的第i行和第j列的交叉位置上。
自考线性代数02198 复习要点、公式
1、|A|=|A T|、|A*|=|A|n-1、A=(A-1)-1、A=(A*)*、|kA-1|=k n|A-1|、|A-1|=1/|A|2、n(n≥2)阶行列式的第i行元素与第k行元素的代数余子式乘积之和为03、n元线性方程组的系数行列式|A|≠0,则方程组有惟一解,且xi =|Bj|/|A|,当所有常数项都为0时,则方程组有惟一零解;反之,若n元齐次线性方程组有非零解,则系数行列式|A|=04、一般情况下AB≠BA、(AB)k≠A k B k5、A T A=0 => A=06、A T A=E <=> A是一个正交矩阵、A可逆,|A|=±1,且A T=A-17、(AB)T=B T A T、(AB)-1=B-1A-1、(AB)*=B*A*、A*A=AA*=|A|E8、若AB =E,则A、B互为可逆矩阵(AB=BA=E)、AA-1= A-1A=E、|A|≠0、|B|≠09、若|B|≠0,则r(AB)= r(A)10、若P、Q为m、n阶可逆矩阵,则对任意m×n阶矩阵A有r(PA)=r(AQ)= r(PAQ)= r(A)若n阶方阵A,当r(A)=n时,r(A*)=n;当r(A)=n-1时,r(A*)=1;当r(A)﹤n-1时,r(A*)=011、A可逆 <=> r(A)=n12、A不可逆(或|A|=0) <=> r(A)<n13、R n中的向量组α1,α2,…,αs线性相关 <=> 存在不全为0的常数k1,k2,…,ks,使得k1α1+k2α2+…+ksαs=0 成立14、如果s=n,α1,α2,…,αs线性相关(线性无关) <=>|A|=0(|A|≠0)α1,α2,…,αs线性相关(线性无关) <=> s元齐次线性方程组有非零解(仅有零解)α1,α2,…,αs线性相关(线性无关) <=> r(A)<s(r(A)=s)如果s>n,(向量个数大于微量的维数),则α1,α2,…,αs线性相关15、部分相关,则整体相关;整体无关,则部分无关16、本身相关,则缩短也相关;本身无关,则加长也无关17、设α1,α2,…,αs可以由β1,β2,…,βt线性表出,则r(α)≤r(β),且有:若α1,α2,…,αs线性相关,则s>t;若α1,α2,…,αs线性无关,则s≤t18、r(AB) ≤min(r(A),r(B))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国2011年7月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,A T 表示方阵A 的转置钜阵,A *表示矩阵A 的伴随矩阵,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。
错选、多选或未选均无分。
1.设101350041A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则T AA =( ) A .-49 B .-7 C .7D .492.设A 为3阶方阵,且4A =,则2A -=( ) A .-32 B .-8 C .8D .323.设A ,B 为n 阶方阵,且A T =-A ,B T =B ,则下列命题正确的是( ) A .(A +B )T =A +B B .(AB )T =-AB C .A 2是对称矩阵D .B 2+A 是对称阵4.设A ,B ,X ,Y 都是n 阶方阵,则下面等式正确的是( ) A .若A 2=0,则A =0 B .(AB )2=A 2B 2 C .若AX =AY ,则X =YD .若A +X =B ,则X =B -A5.设矩阵A =1131021400050000⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,则秩(A )=( ) A .1 B .2 C .3D .46.若方程组02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩仅有零解,则k ≠( )A .-2B .-1C .0D .27.实数向量空间V={(x 1,x 2,x 3)|x 1 +x 3=0}的维数是( ) A .0 B .1 C .2D .38.若方程组12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解,则λ=( )A .1B .2C .3D .49.设A =100010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则下列矩阵中与A 相似的是( ) A .100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ B .110010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ C .100011002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D .101020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦10.设实二次型2212323(,,)f x x x x x =-,则f ( )A .正定B .不定C .负定D .半正定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设A =(-1,1,2)T ,B =(0,2,3)T ,则|AB T |=______.12.设三阶矩阵[]123,,A ααα=,其中(1,2,3)i i α=为A 的列向量,且|A |=2,则[]122123,,αααααα++-=______.13.设0100102A a c b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,且秩(A )=3,则a,b,c 应满足______.14.矩阵1212Q ⎤-⎥⎢=⎢⎢⎣的逆矩阵是______. 15.三元方程x 1+x 3=1的通解是______. 16.已知A 相似于1002-⎡⎤Λ=⎢⎥⎣⎦,则|A -E |=______. 17.矩阵001010100A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的特征值是______. 18.与矩阵1221A ⎡⎤=⎢⎥⎣⎦相似的对角矩阵是______. 19.设A 相似于100010001⎡⎤⎢⎥Λ=-⎢⎥⎢⎥⎣⎦,则A 4______. 20.二次型f (x 1,x 2,x 3)=x 1x 2-x 1x 3+x 2x 3的矩阵是______. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算4阶行列式D=1234234134124123.22.设A =101020161⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,而X 满足AX +E =A 2+X ,求X . 23.求向量组:123412532101,,,327512532341αααα⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦的秩,并给出该向量组的一个极大无关组,同时将其余的向量表示成该极大无关组的线性组合.24.当λ为何值时,齐次方程组1231231232202030x x x x x x x x x λ+-=⎧⎪-+=⎨⎪+-=⎩有非零解?并求其全部非零解.25.已知1,1,-1是三阶实对称矩阵A 的三个特征值,向量1(1,1,1)T α=、2(2,2,1)Tα=是A的对应于121λλ==的特征向量,求A 的属于31λ=-的特征向量. 26.求正交变换Y =PX ,化二次型f (x 1,x 2,x 3)=2x 1x 2+2x 1x 3-2x 2x 3为标准形. 四、证明题(本大题6分)27.设123ααα,,线性无关,证明1121323ααααα++,,也线性无关.全国2011年10月高等教育自学考试线性代数(经管类)试题 课程代码:04184说明:在本卷中,A T表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 表示单位矩阵。
A 表示方阵A 的行列式,r(A )表示矩阵A 的秩。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。
错选、多选或未选均无分。
1.设3阶方阵A 的行列式为2,则12A -=( ) A.-1B.14-C.14D.12.设212()222122,323235x x x f x x x x x x x ---=------则方程()0f x =的根的个数为( )A.0B.1C.2D.33.设A 为n 阶方阵,将A 的第1列与第2列交换得到方阵B ,若,≠A B 则必有( )A.0=AB. 0+≠A BC. 0A ≠D. 0-≠A B4.设A ,B 是任意的n 阶方阵,下列命题中正确的是( ) A.222()2+=++A B A AB B B.22()()+-=-A B A B A B C.()()()()-+=+-A E A E A E A ED.222()=AB A B5.设111213212223313233,a b a b a b a b a b a b a b a b a b ⎛⎫⎪= ⎪ ⎪⎝⎭A 其中0,0,1,2,3,i i a b i ≠≠=则矩阵A 的秩为( ) A.0 B.1C.2D.36.设6阶方阵A 的秩为4,则A 的伴随矩阵A *的秩为( ) A.0 B.2 C.3 D.47.设向量α=(1,-2,3)与β=(2,k ,6)正交,则数k 为( ) A.-10 B.-4 C.3 D.108.已知线性方程组1231231243224x x x x ax x x ax ++=⎧⎪++=⎨⎪+=⎩无解,则数a =( )A.12-B.0C.12D.19.设3阶方阵A 的特征多项式为2(2)(3),λλλ-=++E A 则=A ( )A.-18B.-6C.6D.1810.若3阶实对称矩阵()ij a =A 是正定矩阵,则A 的3个特征值可能为( ) A.-1,-2,-3 B.-1,-2,3 C.-1,2,3 D.1,2,3 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设行列式304222,532D =-其第3行各元素的代数余子式之和为__________.12.设,,a a b b a a b b -⎛⎫⎛⎫==⎪ ⎪---⎝⎭⎝⎭A B 则=AB __________.13.设A 是4×3矩阵且103()2,020,103r ⎛⎫⎪== ⎪ ⎪-⎝⎭A B 则()r =AB __________.14.向量组(1,2),(2,3)(3,4)的秩为__________.15.设线性无关的向量组α1,α2,…,αr 可由向量组β1,β2,…,βs 线性表示,则r 与s 的关系为__________.16.设方程组123123123000x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩有非零解,且数0,λ<则λ=__________.17.设4元线性方程组x =A b 的三个解α1,α2,α3,已知T1(1,2,3,4),=αT 23(3,5,7,9),r() 3.+==A αα则方程组的通解是__________.18.设3阶方阵A 的秩为2,且250,+=A A 则A 的全部特征值为__________.19.设矩阵21100413a -⎛⎫ ⎪= ⎪ ⎪-⎝⎭A 有一个特征值2,λ=对应的特征向量为12,2x ⎛⎫ ⎪= ⎪ ⎪⎝⎭则数a =__________.20.设实二次型T123(,,),f x x x x x =A 已知A 的特征值为-1,1,2,则该二次型的规形为__________.三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵2323(,2,3),(,,),αγγβγγ==A B 其中23,,,αβγγ均为3维列向量,且18, 2.==A B 求.-A B22.解矩阵方程11101110221011.1104321--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭X 23.设向量组α1=(1,1,1,3)T ,α2=(-1,-3,5,1)T ,α3=(3,2,-1,p+2)T ,α4=(3,2,-1,p+2)T 问p 为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组1231231232124551x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪+-=-⎩,(1)确定当λ取何值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示).25.已知2阶方阵A 的特征值为11λ=及21,3λ=-方阵2.=B A (1)求B 的特征值; (2)求B 的行列式.26.用配方法化二次型2221231231223(,,)22412f x x x x x x x x x x =---+为标准形,并写出所作的可逆线性变换.四、证明题(本题6分)27.设A 是3阶反对称矩阵,证明0.=A全国2010年7月高等教育自学考试线性代数(经管类)试题课程代码:04184试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;r (A )表示矩阵A的秩;| A |表示A 的行列式;E 表示单位矩阵。