人教版七年级数学下册二元一次方程组习题及答案

合集下载

(完整版)七年级下册数学二元一次方程组试卷及答案(人教版)

(完整版)七年级下册数学二元一次方程组试卷及答案(人教版)

一、选择题1.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天B .11天C .13天D .22天2.对于实数x ,y ,定义新运算1x y ax by *=++,其中a ,b 为常数,等式右边为通常的加法和乘法运算,若3515*=,4728*=,则59*=( ) A .40B .41C .45D .463.已知方程组263a b a b m -=⎧⎨-=⎩中,a ,b 互为相反数,则m 的值是( )A .4B .4-C .0D .84.两位同学在解方程组时,甲同学由24ax by cx y +=⎧⎨-=-⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把c 写错了解得22x y =-⎧⎨=⎩,则a b c ++的值为( )A .3B .0C .1D .75.已知关于x ,y 的方程组25241x y ax y a +=-⎧⎨-=-⎩给出下列结论:①当a =1时,方程组的解也是x +y =2a +1的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 的自然数解有3对;④若2x +y =8,则a =2.正确的结论有( )个. A .1B .2C .3D .46.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH DC ⊥,垂足为H .将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是( )A .24B .32C .36D .647.若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩8.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .1003100x y x y +=⎧⎨+=⎩C .1003100x y x y +=⎧⎨+=⎩D .100131003x y x y +=⎧⎪⎨+=⎪⎩9.已知x ,y 互为相反数且满足二元一次方程组2321x y kx y +=⎧⎨+=-⎩,则k 的值是( )A .﹣1B .0C .1D .210.如果32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,则a 2008+2b 2008的值为( )A .1B .2C .3D .4二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.12.已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.13.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________.14.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则方程组111222a x y c a a x y c a +=-⎧⎨+=-⎩的解是______.15.已知x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,则m +n 的值为 ___. 16.若实数a 与b 满足()24320a b a b -+-+=,则ab 的平方根为________.17.某中学七年级在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前50名获奖,原定一等奖5人,二等奖10人,三等奖35人,现调整为一等奖10人,二等奖15人,三等奖25人,调整后一等奖平均分降低5分,二等奖平均分降低3分,三等奖平均分降低1分,如果原来一等奖比二等奖平均分数多2分,则调整后二等奖比三等奖平均分数多______分.18.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.19.关于x ,y 的方程组215x ay bx y -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则6a b -的平方根是______.20.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则34m n -的立方根=________.三、解答题21.如图,在平面直角坐标系中,已知,点()0,A a ,(),0B b ,()0,C c ,a ,b ,c 满足()282122a b c -+-=-+,(1)直接写出点A ,B ,C 的坐标及ABC 的面积;(2)如图2,过点C 作直线//l AB ,已知(),D m n 是l 上的一点,且152ACD S ≤△,求n 的取值范围;(3)如图3,(),M x y 是线段AB 上一点, ①求x ,y 之间的关系;②点N 为点M 关于y 轴的对称点,已知21BCN S =△,求点M 的坐标.22.阅读感悟:有些关于方程组的问题,要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2728x y x y +=⎧⎨+=⎩,则x y -=_______,x y +=_______;(2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元?(3)对于实数x 、y ,定义新运算:*x y ax by c =++,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*515=,4*728=,那么1*1=_______.23.在平面直角坐标系xOy 中,把线段AB 先向右平移h 个单位,再向下平移1个单位得到线段CD (点A 对应点C ),其中()(),,,A a b B m n 分别是第三象限与第二象限内的点.(1)若|3|10,2a b h +++==,求C 点的坐标; (2)若1b n =-,连接AD ,过点B 作AD 的垂线l ①判断直线l 与x 轴的位置关系,并说明理由;②已知E 是直线l 上一点,连接DE ,且DE 的最小值为1,若点B ,D 及点(),s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(),x y 为坐标的点,试判断()()s m t n -+-是正数、负数还是0?并说明理由.24.在平面直角坐标系xOy 中,点()4,0A -,点()0,3B ,点()3,0C .(1)ABC 的面积为______;(2)已知点()1,2D -,()2,3E --,那么四边形ACDE 的面积为______.(3)奥地利数学家皮克发现了一类快速求解格点多边形的方法,被称为皮克定理:如果用m 表示格点多边形内的格点数,n 表示格点多边形边上的格点数,那么格点多边形的面积S 和m 与n 之间满足一种数量关系.例如刚刚求解的几个多边形面积中,我们可以得到如表中信息:形内格点数m 边界格点数n格点多边形面积SABC611四边形ACDE 8 11 五边形ABCDE208根据上述的例子,猜测皮克公式为S =______(用m ,n 表示),试计算图②中六边形FGHIJK 的面积为______(本大题无需写出解题过程,写出正确答案即可).25.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数. ①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?26.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.27.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B . (1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.28.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.29.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.30.我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A 光射线自AM 顺时针旋转至AN 便立即逆时针旋转至AM ,如此循环灯B 光射线自BP 顺时针旋转至BQ 便立即逆时针旋转至BP ,如此循环.两灯交叉照射且不间断巡视.若灯A 转动的速度是a 度/秒,灯B 转动的速度是b 度/秒,且a ,b 满足22(4)(5)0a b a b -++-=.若这一带江水两岸河堤相互平行,即//PQ MN ,且60BAN ∠=︒.根据相关信息,解答下列问题.(1)a =__________,b =__________.(2)若灯B 的光射线先转动24秒,灯A 的光射线才开始转动,在灯B 的光射线到达BQ 之前,灯A 转动几秒,两灯的光射线互相平行?(3)如图2,若两灯同时开始转动照射,在灯A 的光射线到达AN 之前,若两灯射出的光射线交于点C ,过点C 作CD AC ⊥交PQ 于点D ,则在转动的过程中,BAC ∠与BCD ∠间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】解:根据题意设有x 天早晨下雨,这一段时间有y 天,有9天下雨, 即早上下雨或晚上下雨都可称之为当天下雨, ①总天数﹣早晨下雨=早晨晴天; ②总天数﹣晚上下雨=晚上晴天;列方程组7(9)6y x y x -=⎧⎨--=⎩,解得411x y =⎧⎨=⎩,所以一共有11天, 故选B . 【点睛】本题考查二元一次方程组的应用.2.B解析:B 【分析】根据定义新运算列出二元一次方程组即可求出a 和b 的值,再根据定义新运算公式求值即可. 【详解】解:∵1x y ax by *=++,3515*=,4728*=,∴1535128471a b a b =++⎧⎨=++⎩解得:3725a b =-⎧⎨=⎩∴59*=3752591-⨯+⨯+=41 故选B . 【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.3.D解析:D 【分析】根据a 与b 互为相反数得到0a b +=,即=-b a ,代入方程组即可求出m 的值. 【详解】解:因为a ,b 互为相反数, 所以0a b +=, 即=-b a ,代入方程组得:364a a m =⎧⎨=⎩,解得:28a m =⎧⎨=⎩,故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值,也考查了代入消元法解二元一次方程组以及相反数的意义.4.D解析:D 【分析】把甲的结果代入方程组两方程中,乙的结果代入第一个方程中,分别求出a ,b ,c 的值,即可求出所求. 【详解】解:把32x y =⎧⎨=-⎩代入方程组24ax by cx y +=⎧⎨-=-⎩得:322324a b c -⎧⎨+-⎩== , 把22x y =-⎧⎨=⎩代入ax +by =2得:-2a +2b =2,即-a +b =1,联立得:3221a b a b -⎧⎨-+⎩==,解得:45a b ⎧⎨⎩== , 由3c +2=-4,得到c =-2, 则a +b +c =4+5-2=7. 故选:D . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.C解析:C 【分析】先解出二元一次方程组得1222x a y a =+⎧⎨=-⎩,①当a =1时,方程组的解为30x y =⎧⎨=⎩,则x +y =3=2a +1;②x +y =1+2a +2﹣2a =3,无论a 取何值,x ,y 的值不可能是互为相反数;③3x y +=,,x y 是自然数,解得,x y 有4对解;④2x +y =2(1+2a )+(2﹣2a )=4+2a =8,则a =2. 【详解】解:25241?x y a x y a +=-⎧⎨-=-⎩①②,①﹣②,得y =2﹣2a , 将y =2﹣2a 代入②,得 x =1+2a ,∴方程组的解为1222x ay a =+⎧⎨=-⎩,当a =1时,方程组的解为30x y =⎧⎨=⎩,∴x +y =3=2a +1, ∴①结论正确;∵x +y =1+2a +2﹣2a =30≠,∴无论a 取何值,x ,y 的值不可能是互为相反数, ∴②结论正确;3x y +=,,x y 是自然数0123,,,,3210x x x x y y y y ====⎧⎧⎧⎧∴⎨⎨⎨⎨====⎩⎩⎩⎩共4对 ∴x ,y 的自然数解有4对, ∴③结论不正确;∵2x +y =2(1+2a )+(2﹣2a )=4+2a =8, ∴a =2, ∴④结论正确; 故选:C . 【点睛】本题考查了二元一次方程的解,二元一次方程组的解,解二元一次方程组 ,解题的关键是掌握二元一次方程的解,二元一次方程组的解,解二元一次方程组.6.C解析:C 【分析】由图可知:重新拼成一个长方形BEMN ,长BN =8,宽BE =4,得二元一次方程组,解出可得结论. 【详解】 解:如图所示,由已知得:BN =8,S 长方形BNME =32, ∴BE =32÷8=4,则84x y x y +⎧⎨-⎩== , 解得:2x =12, ∴x =6,∴正方形ABCD 的面积是36, 故选:C . 【点睛】此题主要考查了几何图形和解二元一次方程组,正确得出长方形的长与宽是解题关键.7.A解析:A 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.【详解】 解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=, ∴113b =, 3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩. 故选:A .【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.8.D解析:D【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:D .【点睛】本题考查列二元一次方程组解决实际问题,是中考的常考题型,正确找到等量关系是关键 9.A解析:A【分析】根据x ,y 互为相反数得到0x y +=,然后与原方程组中的方程联立新方程组,解二元一次方程组,求得x 和y 的值,最后代入求值.【详解】解:由题意可得021x y x y +=⎧⎨+=-⎩①②, ②﹣①,得:y =﹣1,把y =﹣1代入①,得:x ﹣1=0,解得:x =1,把x =1,y =﹣1代入2x +3y =k 中,k =2×1+3×(﹣1)=2﹣3=﹣1,故选:A .【点睛】本题考查解二元一次方程组,掌握消元法(加减消元法和代入消元法)解二元一次方程组的步骤是解题关键.10.C解析:C【分析】将方程组的解代入方程组可得关于a 、b 的二元一次方程组321325a b a b -=⎧⎨+=⎩,再求解方程组即可求解.【详解】解:∵32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解, ∴321325a b a b -=⎧⎨+=⎩①②, ①+②得,a =1,将a =1代入①得,b =1,∴a 2008+2b 2008=1+2=3,故选:C .【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二、填空题11.7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y解析:7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品.则有x 2-y 2=48,即(x 十y )(x-y )=48.∵x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,又∵x+y >x-y ,48=24×2=12×4=8×6,∴242x y x y +⎧⎨-⎩==或124x y x y +⎧⎨-⎩==或86x y x y +⎧⎨-⎩==. 解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A 买了13件商品,b 买了4件.同时符合x-y=7的也只有一种,可知B 买了8件,a 买了1件.∴C 买了7件,c 买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.12.±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②, ①×2-②得:5m =15,解得:m =3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.13.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值. 14.【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组的解是,∴,∴c1−a1=2,c2−a2=2,∴可化为,①解析:2 xy=⎧⎨=⎩【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩, ∴112222a c a c +=⎧⎨+=⎩, ∴c 1−a 1=2,c 2−a 2=2,∴111222a x y c a a x y c a +=-⎧⎨+=-⎩可化为1222a x y a x y +=⎧⎨+=⎩①②, ①−②,得(a 1−a 2)x =0,∴x =0,将x =0代入①中,得y =2,∴方程组的解为02x y =⎧⎨=⎩, 故答案为02x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的解,会用加减消元法解方程组,并能灵活将方程组变形是解题的关键.15.0【分析】把x 、y 的值代入mx+ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m+n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx+ny =6的解,∴解析:0【分析】把x 、y 的值代入mx +ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m +n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,∴4626m n m n +=⎧⎨-=⎩①② ①+②,得6m =12解得:m =2,把m =2代入①,得8+n =6,解得:n =﹣2,∴m +n =2+(﹣2)=0,故答案为:0.【点睛】本题考查了二元一次方程及二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.16.±4【分析】根据题意,结合乘方和绝对值的性质,得二元一次方程组并求解,即可得到a 和b ;再根据平方根的性质计算,即可得到答案.【详解】∵∴∴①②,得∴∴∴的平方根为±4故解析:±4【分析】根据题意,结合乘方和绝对值的性质,得二元一次方程组并求解,即可得到a 和b ;再根据平方根的性质计算,即可得到答案.【详解】∵()24320a b a b -+-+= ∴()240320a b a b ⎧-=⎪⎨-+=⎪⎩∴40320a b a b -=⎧⎨-+=⎩①② ①-②,得2a =∴48b a ==∴16ab =∴ab 的平方根为±4故答案为:±4.【点睛】本题考查了乘方、绝对值、二元一次方程组、平方根的知识;解题的关键是熟练掌握乘方、绝对值、二元一次方程组、平方根的性质,从而完成求解.17.9【分析】先设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低解析:9【分析】先设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低1分,列出代数式,即可求出答案.【详解】解:设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,得:510351051532512x y z x y z x y ++=-+-+-⎧⎨=+⎩()()()①② 由①得:x+y -2z =24 ③将②代入③得:y +2+y -2z =24解得:y-z =11,则调整后二等奖比三等奖平均分数多=(y -3)-(z -1)=(y-z )-2=11-2=9(分). 故答案为:9.【点睛】此题主要考查了三元一次方程组的应用,关键是读懂题意,找到等量关系,列出方程组. 18.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11x y =-⎧⎨=⎩ 【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11xy=-⎧⎨=⎩.故答案为:11xy=-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.19.±4【分析】将方程组的解代入方程组中求出a、b的值,然后代入代数式中求解即可.【详解】解:将代入方程组,得:,解得:,∴=6×3﹣2=16,∴的平方根是±4,故答案为:±4.【点睛解析:±4【分析】将方程组的解代入方程组中求出a、b的值,然后代入代数式中求解即可.【详解】解:将21xy=⎧⎨=⎩代入方程组215x aybx y-=⎧⎨+=⎩,得:41215ab-=⎧⎨+=⎩,解得:32ab=⎧⎨=⎩,∴6a b-=6×3﹣2=16,∴6a b-的平方根是±4,故答案为:±4.【点睛】本题考查二元一次方程组的解、代数式求值、平方根,理解方程组的解,正确求出a、b值和平方根是解答的关键.20.【分析】把x与y的值代入方程组求出m与n的值,即可确定出所求.【详解】解:把代入方程组得:,解得:,∵1的立方根为1,∴的立方根是1故答案为:1【点睛】此题考查了二元一次方解析:1【分析】把x 与y 的值代入方程组求出m 与n 的值,即可确定出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得: 2821m n n m +=⎧⎨-=⎩, 解得:32m n =⎧⎨=⎩, 34981m n ∴-=-=∵1的立方根为1,∴34m n -的立方根是1故答案为:1【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.三、解答题21.(1)()0,8A ,()6,0B ,()0,2C -,30ABC S =;(2)n 的取值范围为40n -≤≤;(3)①4324x y +=;②()3,4M【分析】(1)根据()28212a b -+-=a 、b 、c 的值,由此求解即可;(2)分当D 点在直线l 上位于y 轴左侧时和当D 点在直线l 上位于y 轴右侧时讨论求解即可得到答案;(3)①由由AOB AON BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯,由此求解即可;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=,化简得,315x y +=,然后联立4324315x y x y +=⎧⎨+=⎩求解即可. 【详解】解:(1)∵()28212a b -+-=∴()282122=0a b c -+-++, ∴80a -=,2120b -=,20c +=, ∴8a =,6b =,2c =-,∴()0,8A ,()6,0B ,()0,2C -, ∴AC =10,OB =6,∴1302ABC S AC OB ==; (2)当D 点在直线l 上位于y 轴左侧时,由题意得,()()111510222ACD S AC m m =⨯⨯-=⨯⨯-≤△, 解得,32m ≥-, 当32m =-时,3,02D ⎛⎫- ⎪⎝⎭, 结合图形可知,当32m ≥-时,0n ≤; 同理可得,当D 点在直线l 上位于y 轴右侧时,32m ≤, 当32m =时,3,2D n ⎛⎫ ⎪⎝⎭, 12//,D D AB22,ACD BCD S S ∴=()()13113156262222222n n ⎛⎫⨯+⨯--⨯⨯-⨯⨯--= ⎪⎝⎭, 解得,4n =-,结合图形可知,当32m ≤时,4n ≥-,∴n 的取值范围为40n -≤≤; (3)①由AOB AOM BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯, 化简得,4324x y +=;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=, 化简得,315x y +=,联立方程组4324315x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩, ∴()3,4M【点睛】本题主要考查了绝对值和算术平方根的非负性,三角形面积,解二元一次方程组,坐标与图形,截图的关键在于能够熟练掌握相关是进行求解.22.(1)1-;5;(2)购买6支水笔、6块橡皮、6本记事本共需48元;(3)11-.【分析】(1)利用①−②可得x -y 的值,利用()13+①②可得出x +y 的值; (2)设铅笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,根据“买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①-②可得m n p ++的值,再乘5即可求得结果;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a b c ++的值,从而可求得结果.【详解】(1)2728x y x y +=⎧⎨+=⎩①②由①−②可得:x -y =-1,由()13⨯+①②可得x +y =5 故答案为:1-;5.(2)设水笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,依题意,得:203235395362m n p m n p ++=⎧⎨++=⎩①②, 由2⨯-①②可得8m n p ++=,6666848m n p ∴++=⨯=.故购买6支水笔、6块橡皮、6本记事本共需48元.(3)依题意得:35154728a b c a b c ++=⎧⎨++=⎩①②由3×①−2×②可得:11a b c ++=-即1*111=-故答案为:11-.【点睛】本题考查了二元一次方程组的应用及三元一次方程组的应用,解题的关键是:(1)运用“整体思想”求出x -y ,x +y 的值;(2)(3)找出等量关系,正确列出三元一次方程组. 23.(1)(-1,-2);(2)①结论:直线l ⊥x 轴.证明见解析;②结论:(s -m )+(t -n )=0.证明见解析【分析】(1)利用非负数的性质求出a ,b 的值,可得结论.(2)①求出A ,D 的纵坐标,证明AD ∥x 轴,可得结论.②判断出D (m +1,n -1),利用待定系数法,构建方程组解决问题即可.【详解】解:(1)|3|0a +,又|3|0a +10,3a ∴=-,1b =-,(3,1)A ∴--,点A 先向右平移2个单位,再向下平移1个单位得到点C ,(1,2)C ∴--.(2)①结论:直线l x ⊥轴.理由:1b n =-,(,1)A a n ∴-,(,)B m n ,向右平移h 个单位,再向下平移1个单位得到点D ,(,1)D m h n ∴+-,A ,D 的纵坐标相同,//AD x ∴轴,直线l AD ⊥,∴直线l x ⊥轴.②结论:()()0s m t n -+-=.理由:E 是直线l 上一点,连接DE ,且DE 的最小值为1,(1,1)D m n ∴+-,点B ,D 及点(,)s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(,)x y 为坐标的点,∴()()11p m q n k pm qn k ps qt k ++-=⎧⎪+=⎨⎪+=⎩①②③, ①-②得到0p q -=,p q ∴=,③-②得到,()()0p s m q t n -+-=,0pq ≠,0p q ∴=≠,()()0s m t n ∴-+-=.【点睛】本题考查坐标与图形变化-平移,非负数的性质,待定系数法等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数解决问题,属于中考常考题型.24.(1)10.5;(2)12.5;(3)10.5,12.5,23;12n m +-;30 【分析】(1)画出图形,根据三角形的面积公式求解;(2)画出图形,利用割补法求解;(3)设S =am +bn +c ,其中a ,b ,c 为常数,根据表中数据列方程组求出a ,b ,c ,然后根据公式即可求出六边形FGHIJK 的面积.【详解】(1)如图1,ABC 的底为7,高为3,所以面积为0.57310.5⨯⨯=,故答案为:10.5;(2)如图2,0.523320.5310.52236 1.5212.5S =⨯⨯+⨯+⨯⨯+⨯⨯=+++=,故答案为:12.5;(3)由(1)、(2)可填表格如下:形内格点数m 边界格点数n 格点多边形面积SABC 四边形ACDE 五边形ABCDE 设S = am +61110.581112.520823a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩, 解得1121a b c =⎧⎪⎪=⎨⎪=-⎪⎩, ∴皮克公式为12n S m =+-, ∵六边形FGHIJK 中,m =27,n =8,∴六边形FGHIJK 的面积为82712S =+-=30. 【点睛】本题考查了坐标与图形的性质,三角形的面积,三元一次方程组的应用等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【分析】(1)分别对连正确的数量进行分析,即可得到答案;(2)①设七年(1)班满分人数有x 人,则未满分的有2x 人,然后列出方程,解方程即可得到答案;②根据题意,先求出两个班各分数段的人数,然后求出各班的总分,即可进行比较.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故答案为:15.(2)①根据题意,设七年(1)班满分人数有x 人,则未满分的有2x 人,则4402x x ++=, 解得:24x =,∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,∴(1)班得5分和10分的人数相等, 人数为:1(40424)62--=(人); ∴(1)班得总分为:40656102420570⨯+⨯+⨯+⨯=(分);由题意,(2)班存在得5分、得10分、得20分,三种情况,设得5分的有y 人,得10分的有z 人,满分20分的有(2)y z +人,∴(2)40y z y z +++=,∴3240y z +=,∴七(2)班得总分为:51020(2)453015(32)1540600y z y z y z y z +++=+=+=⨯=(分);∵570600<,∴七(2)班的总分高.【点睛】本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是熟练掌握题意,正确掌握题目的等量关系,列出方程进行解题.26.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩,由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.27.(1)(6,0)A ,(0,1)B ,(4,1)C ;(2)见解析.【分析】(1)令26x y +=中的0y = ,求出相应的x 的值,即可得到A 的坐标,将方程40x y -=和方程26x y +=联立成方程组,解方程组即可得到C 的坐标,进而可得到B 的坐标; (2)分别利用梯形的面积公式表示出四边形MNAC 的面积与四边形MNOB 的面积,然后根据t 的范围,分情况讨论即可.【详解】(1)令0y =,则206x +⨯=,解得6x =,(6,0)A ∴.4026x y x y -=⎧⎨+=⎩ 解得41x y =⎧⎨=⎩(4,1)C ∴.//BC x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)(6,0)A ,(0,1)B ,(4,1)C ,6,4OA BC ∴==.。

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)一、单选题 1.方程组的解是( )A .B .C .D .2.甲,乙,丙三人共解出100道题,每人都解对其中的60道题,将其中只有1人解出的题叫做难题,2人解出叫做中等题,3人都解出的题叫做容易题,试问:难题和容易题谁多,多几题( ) A .容易题比难题多20题 B .难题比容易题多20题 C .一样多D .无法确定3.已知(2x -3y +1)2与|4x -3y -1|互为相反数,则x ,y 的值分别是( ) A .-1,1B .1,-1C .-1,-1D .1,14.若21a b +-与()224a b ++互为相反数,则+a b 的值为( ) A .1-B .0C .1D .25.下列方程组中不是二元一次方程组的是( ) .A .215x y y +=⎧⎨=⎩B .23x y =⎧⎨=⎩C .21214x y y ⎧-=⎪⎨⎪+=⎩D .220x y y x -=⎧⎨-=⎩6.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x 棵,y 棵,可列方程组为( )A .500(13%)(14%)500 3.6%x y x y +=⎧⎨+++=⨯⎩B .5003%4%500 3.6%x y x y +=⎧⎨+=⨯⎩C .500(13%)(14%)500 3.6%x y x y +=⎧⎨-+-=⨯⎩D .5003%4%500(1 3.6%)x y x y +=⎧⎨+=+⎩7.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是()A.容易题和中档题共60道B.难题比容易题多20道C.难题比中档题多10道D.中档题比容易题多15道8.若方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x yx y+--=⎧⎨++-=⎩的解是()A.6.32.2xy=⎧⎨=⎩B.8.31.2xy=⎧⎨=⎩C.10.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩9.下列是二元一次方程的是()A.3x-6=x B.3x=2y C.5x+ 2y=3z D.2x-3y=xy 10.已知方程组中的,互为相反数,则的值为()A.B.C.D.11.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( )A.36,8 B.28,6 C.28,8 D.13,312.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.8374y xy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=-⎩C.8374y xy x-=-⎧⎨-=-⎩D.8374y xy x-=⎧⎨-=⎩二、填空题13.若x a y b=⎧⎨=⎩是方程20x y -=的解,则362a b -+=_______________________.14.已知235m n -=,则用n 的代数式表示m 为________________15.关于x,y 的方程组03x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⊗⎩,其中y 的值被盖住了.不过仍能求出m ,则m 的值是___.16.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .17.已知方程8mx ny +=的两个解是32x y =⎧⎨=⎩,12x y =⎧⎨=-⎩,则m =___________,n =___________18.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1 240本,则男生志愿者有___人 ,女生志愿者有___人.19.在平面直角坐标系xOy 中,对于点() A x y ,,若点B 的坐标为() ax y x ay ++,,则称点B 是点A 的“a a -演化点”.例如,点()26A -,的“1122-演化点”为()11262622B ⎛⎫⨯-+-+⨯ ⎪⎝⎭,,即()51B ,.(1)已知点(15)P -,的“33-演化点”是1P ,则1P 的坐标为________; (2)已知点()60T ,,且点Q 的“22-演化点”是()148Q ,,则1QTQ ∆的面积1QTQ S ∆为__________;(3)己知()00O ,,() 0 8A , ,() 50C ,,() 38D ,,且点()1K k -,的“k k -演化点”为1K ,当11K AD K OC S S ∆∆=时,k =___________.20.某旅馆的客房有三人间和二人间两种,三人间每人每天80元,二人间每人每天110元,一个40人的旅游团到该旅馆住宿,租住了若干房间,且每个客房正好住满,一天共花去住宿费3680元.求两种客房各租住了多少间?若设租住了三人间x 间,二人间y 间,则根据题意可列方程组为____.三、解答题21.解二元一次方程组34 3.4 64 5.2 x yx y+=-⎧⎨-=⎩22.已知二元一次方程组3521ax yx by+=⎧⎨-=⎩的解为121xy⎧=⎪⎨⎪=-⎩,求a与b的值.23.由于近期出现新冠肺炎疫情,口罩出现热卖.某药店用8000元购进甲、乙两种口罩,销售完后宫获利2800元.进价和售价如下表:求该药店购进甲、乙两种口罩各多少盒?24.用消元法解方程组35432x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:由①-②,得33x =解法二:由②,得()332x x y +-=③ 把①代入③,得352x +=()1反思:上述两个解题过程中有无计算错误?若有误,哪种方法有错误? ()2请选择一种你喜欢的方法,完成解答.25.某种水果的价格如表:购买的质量(千克) 不超过10千克 超过10千克 每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?26.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发黄瓜和茄子分别多少千克?27.在等式y=kx+b中,当x=2时,y=-3;当x=4时,y=-7,求k,b的值.28.已知方程|2a+3b+1|+(3a-b-1)2=0,求a2+2ab+b2的值.29.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展觉馆,每一名学只能参加其中一项活动,共支付票款2000元,票价信息如下:请问参观历史博物馆和民俗展难馆的人数各是多少人?参考答案1.A2.B3.D4.A5.C6.A7.B8.A9.B10.D11.A12.B13.214.532n m+ =15.1 2 -16.375017.4 -2 18.12 1619.(2,14) 2020.3240 38021103680 x yx y+⎧⎨⨯+⨯⎩==.21.0.21 xy=⎧⎨=-⎩22.该药店购进甲种口罩200盒,乙种口罩160盒.23.a=16,b=0.24.(1)解法一有误;(2)12 xy=-⎧⎨=-⎩25.张欣第一次、第二次购买这种水果的质量分别为7千克、18千克.26.这天他批发黄瓜15 kg,茄子25 kg.27.21 kb=-⎧⎨=⎩28.由已知得解得∴29.参观历史博物馆的有100人,参观民俗博物馆的有50人.。

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案知识点1-1 二元一次方程(组)1)二元一次方程:含有两个未知数 且 所含未知数的次数项的次数都是1的方程。

注:所有未知数项的次数必须是1 例: 不是 2x -3xy =2 不是 2)将几个相同未知数的一次方程联合起来 就组成了二元一次方程组。

注:①在方程组中 相同未知数必须代表同一未知量。

②二元一次方程组不一定都是二元一次方程组合而成 方程个数也不一定是两个。

例: 是 3)判断二元一次方程组的方法:①方程组中是否一共有两个未知数;②含未知数的项的次数是否都是1;③是否含有多个方程组成.例1.(2021·湖南·衡阳市华新实验中学七年级月考)下列方程中 ①;②;③;④ 是二元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】A【分析】根据二元一次方程的定义:含有两个未知数 并且含有未知数的项的次数都是1的整式方程叫做二元一次方程 即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程 此项正确; ②化简后为 不符合定义 此项错误; ③含有三个未知数不符合定义 此项错误;④不符合定义 此项错误;所以只有①是二元一次方程 故选:A .【点睛】本题考二元一次方程 解题的关键是熟练运用二元一次方程的定义 本题属于基础题型.变式1.(2022·山东济南·八年级期末)下列方程中 为二元一次方程的是( ) A .2x +3=0 B .3x -y =2zC .x 2=3D .2x -y =5【答案】D【分析】根据二元一次方程的定义 从二元一次方程的未知数的个数和次数方面辨别. 【详解】解:A .是一元一次方程 故本选项不合题意; B .含有三个未知数 不是二元一次方程 故本选项不合题意;C .只含有一个未知数 且未知数的最高次数是2 不是二元一次方程 故本选项不合题意;D .符合二元一次方程的定义 故本选项符合题意.故选:D .20x y-=3235x y x y -=⎧⎨+=⎩6x y +=()16x y +=31x y z +=+7mn m +=6x y +=()16x y +=6xy x +=31x y z +=+7mn m +=【点睛】此题考查了二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数都是1 像这样的整式方程叫做二元一次方程.例2.(2021·湖南·衡阳市华新实验中学七年级月考)已知是关于 的二元一次方程 则______. 【答案】4【分析】根据二元一次方程的定义 可得方程组 解得m 、n 的值 代入代数式即可.【详解】解:由题意得 解得: ∴ 4 故填:4. 【点睛】本题考查二元一次方程的定义 属于基础题型. 变式2.(2021·天津一中七年级期中)若是关于 的二元一次方程 则( )A .B .C .D .【答案】D【分析】二元一次方程满足的条件:含有2个未知数 未知数的项的次数是1的整式方程. 【详解】解:是关于的二元一次方程解得: .故选:D . 【点睛】此题主要考查了二元一次方程的定义 关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例3.(2021·河南淇县·七年级期中)下列方程组中 是二元一次方程组的是( )A .B .C .D .【答案】C【分析】根据二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的 故本选项错误;B.方程组中含有3个未知数 故本选项错误;C. 符合二元一次方程组的定义 故本选项正确;D. 第二个方程中的xy 是二次的 故本选项错误.故选C .3211203n m x y -+-=x y n m +=31211n m -=⎧⎨+=⎩31211n m -=⎧⎨+=⎩40n m =⎧⎨=⎩n m +=20193(2020)(4)2021m n m x n y---++=x y 2020m =±4n =±2020m =-4n =-2020m =4n =2020m =-4n =()()20193202042021m n m x n y ---++=x y ∴2019120200m m ⎧-=⎨-≠⎩3140n n ⎧-=⎨+≠⎩2020m =-4n =2214x y x +=⎧⎨=⎩1236x y y z ⎧-=⎪⎨⎪-=⎩225x y x y +=-⎧⎨-=⎩213xy y y +=⎧⎨=-⎩2x【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数 且未知数的项最高次数都应是一次的整式方程 判断各选项即可.变式3.(2021·上海市建平中学西校期末)下列方程组 是二元一次方程组的是( ).A .B .C .D . 【答案】B【详解】A 选项:在中最高次数为2 故为二元二次方程组 不合题意;B 选项:为二元一次方程组 符合题意;C 选项:在中 共有3个未知数 为三元一次方程组 不合题意;D 选项:在中最高次数为2 故为二元二次方程组 不合题意.故选B . 【点睛】本题考查了二元一次方程的概念 掌握二元一次方程的概念(含有两个未知数 并且含有未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.例4.(2021·日照市新营中学七年级期中)若方程组是二元一次方程组 则a 的值为________. 【答案】-3【分析】根据二元一次方程组的定义得到|a |-2=1且a -3≠0 然后解方程与不等式即可得到满足条件的a 的值.【详解】解:∵方程组是二元一次方程组 ∴|a |-2=1且a -3≠0 ∴a =-3 故答案为:-3. 【点睛】本题考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起 就组成了一个二元一次方程组.变式4.(2021·全国·七年级课时练习)若是关于 的二元一次方程组 则__ __ __. 【答案】 3或2【分析】二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1 据此列式即可求解. 【详解】解:是关于 的二元一次方程组 或0 解得:或2 答案:3或2223xy x y =⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x-+=⎧⎨=⎩223xy x y=⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x -+=⎧⎨=⎩()20390a x ya x -⎧+=⎪⎨-+=⎪⎩23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y =a b =c =2-3-23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y 30c ∴+=21a -=31b +=3a =2b =-3c =-2-【点睛】本题主要考查了二元一次方程组的定义 利用它的定义即可求出代数式的解.知识点1-2 二元一次方程(组)的解1)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值(有序数对) 例:x+y=10 (1 9) (2 8) (3 7)等。

(精练)人教版七年级下册数学第八章 二元一次方程组含答案

(精练)人教版七年级下册数学第八章 二元一次方程组含答案

人教版七年级下册数学第八章二元一次方程组含答案一、单选题(共15题,共计45分)1、甲、乙、丙三辆车均在A、B两地间往返,三辆车在A、B两地间往返一次所需时间分别为5小时、3小时和2小时.现在三辆车同时在A地视为第一次汇合,甲车先出发,1 小时后乙车出发,再经过2小时后丙车出发.那么丙车出发()小时后,三辆车第三次同时汇合于A地.A.50B.51C.52D.532、小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是()A. B. C. D.3、某县响应国家“退耕还林”号召,将一部分耕地改为林地,改还后,林地面积和耕地面积共有,耕地面积是林地面积的,设改还后耕地面积为,林地面积为,则下列方程组中正确的是A. B. C. D.4、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50B.100C.150D.2005、若是方程组的解,那么a-b的值是( )A.5B.1C.-1D.-56、如果单项式2a2m﹣5b n+2与ab3n﹣2的和是单项式,那么m和n的取值分别为()A.2,3B.3,2C.﹣3,2D.3,﹣27、小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A.他身上的钱会不足95元B.他身上的钱会剩下95元C.他身上的钱会不足105元D.他身上的钱会剩下105元8、已知方程组:的解x,y满足x+3y≥0,则m的取值范围是()A.﹣≤m≤1B.m≥C.m≥1D.m≥﹣9、若方程组的解满足方程,则的值为()A. B. C. D.10、由方程组可得出x与y的关系是( )A.2x+y=4B.2x-y=4C.2x+y=-4D.2x-y=-411、已知关于x、y的方程组和方程组有相同的解,那么(a+b)2007的值为()A.﹣2007B.﹣1C.1D.200712、方程■x﹣2y=x+5是二元一次方程,■是被弄污的x的系数,请你推断■的值属于下列情况中的()A.不可能是﹣1B.不可能是﹣2C.不可能是1D.不可能是213、把一根长的钢管截成长和长两种规格的钢管,如果保证没有余料,那么截取的方法有()A.2种B.3种C.4种D.5种14、若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是()A. B. C. D.15、解方程组时,某同学把c看错后得到,而正确的解是,那么a,b,c的值是( )A.a=4,b=5,c=2B.a,b,c的值不能确定C.a=4,b=5,c=-2D.a,b不能确定,c=-2二、填空题(共10题,共计30分)16、已知2x+3y=5,用含x的式子表示y,得:________.17、把方程3x+y-1=0写成用含x的代数式表示y的形式,则y=________.18、方程组的解中,x 与 y 的和等于 5,则 m=________.19、县城3路公交车每隔一定时间发车一次,一天小明在街上匀速行走,发现背后每隔15分钟开过来一辆公交车,而迎面每隔10分钟有一辆公交车驶来,则公交车每隔________分钟发车一次.20、二元一次方程3x+2y=15的正整数解为________21、若=0是关于x、y的二元一次方程,则a的值是________.22、已知关于x,y的二元一次方程组满足,则a的取值范围是________.23、已知是方程的一个解,则的值为________.24、二元一次方程组的解是:________ .25、在关于x,y的方程组:① :② 中,若方程组①的解是,则方程组②的解是________.三、解答题(共6题,共计25分)26、解方程组27、当k取何值时,等式的b是负数.28、将若干吨分别含铁和含铁的两种矿石混合后配成含铁的矿石70吨.求两种矿石分别需要多少吨?29、一农妇在市场卖葱,当时市场上的葱价是1.00元一斤,一葱贩对农妇说:“我想把你的葱分开来买,葱叶0.50元一斤,葱白0.50元一斤.”农妇听了葱贩的话,不假思索就把葱全部卖完.当农妇数过钱之后才发现只卖了一半钱.此时葱贩已不见踪影.聪明的你,请运用数学语言揭穿葱贩的把戏.过程如下:设总量z斤,葱叶x斤,葱白y斤,列方程∵x+y=z,∴卖给葱贩的钱为0.5x+0.5y=0.5z,而实际应卖的钱为1.0x+1.0y=1.0z,结果一目了然,那葱贩只用了一半钱就买了所有葱.(1)生活常识告诉我们,人们在吃葱的时候主要吃的是葱白,葱白应比葱叶卖的贵.假设一根葱的葱叶和葱白重量相同,葱叶和葱白的价钱之和仍是1.00元.请用数学语言说明此时农妇还是只卖了一半的钱.(2)假设一根葱的葱叶和葱白重量不同,且葱叶的重量大于葱白的重量,葱叶0.20元一斤,葱白0.80元一斤.请用数学语言说明此时农妇卖的钱少于一半.30、某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、C5、C6、B7、B8、D9、C10、A11、C12、C13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、28、30、。

人教版七年级下第八章二元一次方程组综合练习题(含答案)

人教版七年级下第八章二元一次方程组综合练习题(含答案)

人教版七年级下第八章二元一次方程组综合练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列方程是二元一次方程的是()A.2x+y=3z B.2x﹣1 y=2C.3x﹣5y=2D.2xy﹣3y=02.在下列方程组5231xy x=⎧⎨-=⎩、35x yx y+=⎧⎨-=⎩、3123xyx y=⎧⎨+=⎩、1111x yx y⎧+=⎪⎨⎪+=⎩、11xy=⎧⎨=⎩中,是二元一次方程组的有()个A.2个B.3个C.4个D.5个3.如图,AB⊥BC,⊥ABD的度数比⊥DBC的度数的两倍少15°,设⊥ABD和⊥DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=-⎩C.90152x yx y+=⎧⎨=-⎩D.290215xx y=⎧⎨=-⎩4.方程组1{25x yx y+=-=,的解是().A.1{2.xy=-=,B.2{3.xy,=-=C.2{1.xy==,D.2{1.xy==-,5.用代入法解方程组233210y xx y=-⎧⎨-=⎩①②将方程⊥代入⊥中,所得的正确方程是()A.3x-4x-3=10B.3x-4x+3=10C.3x-4x+6=10D.3x-4x-6=106.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A .2400cmB .2500cmC .2600cmD .2700cm7.若31,21x t y t =+=-,用含y 的式子表示x 的结果是( ) A .253x y -=B .352y x +=C .253x y +=D .352y x -=8.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为( ) A .0B .3-C .3D .69.关于x ,y 的方程组3212331x y k x y k +=-⎧⎨+=+⎩的解为x ay b =⎧⎨=⎩,若点P (a ,b )总在直线y =x上方,那么k 的取值范围是( ) A .k >1B .k >﹣1C .k <1D .k <﹣110.若方程组435,(1)8x y kx k y +=⎧⎨--=⎩的解中的x 的值比y 的值的相反数大1,则k 为( )A .3B .-3C .2D .-211.代数式2x ax b ++,当1x =,2时,其值均为0,则当1x =-时,其值为( ) A .0B .6C .6-D .212.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程是( ) A .1{4250802900x y x y +=+=B .15{802502900x y x y +=+=C .1{4802502900x y x y +=+=D .15{250802900x y x y +=+=二、填空题13.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______ .14.(1)若35m =,37=n ,则3m n +=________;(2)若x 、y 是正整数,且5222⋅=x y ,则x 、y 的值分别为________.15.在(1)32xy=⎧⎨=-⎩,(2)453xy=⎧⎪⎨=-⎪⎩,(3)1472xy⎧=⎪⎪⎨⎪=⎪⎩这三组数值中,_______是方程x-3y=9的解,______是方程2x+y=4的解,_________是方程组3924x yx y-=⎧⎨+=⎩的解.16.若二元一次方程组1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解,则a=_____.17.二元一次方程组321221x yx y+=⎧⎨-=⎩的解为________.18.已知|2x﹣4|+|x+2y﹣8|=0,则(x﹣y)2022=____.19.已知1,{2xy==是方程ax-3y=5的一个解,则a=________.20.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为________.三、解答题21(2x+3y+1)2互为相反数,求x﹣y的平方根.22.我市某著名景点门票价格规定如下表:小明妈妈的公司有一项短途旅行业务,就是去该景点一日游.学完一元一次方程以后,他妈妈让他给规划一个去该景点游玩的购票方案,给他的提示是:有甲、乙两个团队共32人,其中甲团队3人以上,不足10人.经估算,如果两个团队分别购票,则应付门票费2100元.(1)两个团队各有多少人?(2)如果两个团队联合起来,作为一个团体购票,可省钱元.(3)如果乙团队临时有事不能去了,只有甲团队单独去游玩,通过计算说明如何购票最省钱?23.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需315元,若购甲4件,乙10件,丙1件,共需420元.现在购甲、乙、丙各一件共需多少元?24.(1)解二元一次方程组5316,350;x y x y -=⎧⎨-=⎩(2)现在你可以用哪些方法得到方程组()()()()5316,350x y x y x y x y ⎧+--=⎪⎨+--=⎪⎩的解?请你对这些方法进行比较.25.先阅读下列解法,再解答后面的问题. 已知2343212x A Bx x x x -=+-+--,求A 、B 的值.解法一:将等号右边通分,再去分母,得:()()3421x A x B x -=-+-,即:()()342x A B x A B -=+-+,⊥()324A B A B +=⎧⎨-+=-⎩解得12A B =⎧⎨=⎩.解法二:在已知等式中取0x =时,有22BA -+=--,整理得24AB +=; 取3x =,有522A B +=,整理得25A B +=. 解2425A B A B +=⎧⎨+=⎩,得:12A B =⎧⎨=⎩.(1)已知21131424643x A B x x x x=+--++-,用上面的解法一或解法二求A 、B 的值.(2)计算:()111111(1)(1)(1)(3)(3)(5)(9)(11)x x x x x x x x x ⎡⎤+++⋅⋅⋅++⎢⎥-+++++++⎣⎦,并求x 取何整数时,这个式子的值为正整数.参考答案:1.C【详解】A 、2x+y=3z 不是二元一次方程,因为有3个未知数; B 、2x -1y=2不是二元一次方程,因为不是整式方程; C 、3x -5y=2是二元一次方程;D 、2xy -3y=0不是二元一次方程,因为最高项的次数为2. 故选C . 2.B【分析】根据二元一次方程组的定义逐个判断即可.【详解】解:方程组5231x y x =⎧⎨-=⎩,035x y x y +=⎧⎨-=⎩,11x y =⎧⎨=⎩符合二元一次方程组的定义,是二元一次方程组.方程组3121xy x y =⎧⎨+=⎩属于二元二次方程组,不是二元一次方程组.方程组1111x y x y ⎧+=⎪⎨⎪+=⎩中的第一个方程不是整式方程,不是二元一次方程组.故选:B .【点睛】本题考查了二元一次方程组的定义,解题关键是明确二元一次方程组的定义,准确进行判断. 3.B【详解】⊥AB⊥BC , ⊥⊥ABD+⊥DBC=90°,又⊥⊥ABD 的度数比⊥DBC 的度数的两倍少15度, ⊥当设⊥ABD 和⊥DBC 度数分别为x y 、时,由题意可得:90215x y x y +=⎧⎨=-⎩ . 故选:B. 4.D【详解】方程组1{25x y x y +=-=①②,由⊥+⊥得3x =6,x =2,把x =2代入⊥中得y =-1, 所以方程组1{25x y x y +=-=的解是2{1x y ==-. 故选D. 5.C 【解析】略 6.A【分析】设小长方形的宽为x cm ,长为y cm ,根据题意列方程组求解即可.【详解】设小长方形的宽为x cm ,长为y cm ,根据题意得504x y y x +=⎧⎨=⎩,解得1040x y =⎧⎨=⎩,∴一个小长方形的面积为21040400cm ⨯=,故选:A .【点睛】本题考查了二元一次方程组的实际应用,能够根据题意列出方程组并准确求解是解题的关键. 7.B【分析】根据21y t =-得,t =12y +,然后将其代入31x t =+即可求解. 【详解】解:由21y t =-,得t =12y +, ⊥31x t =+=3×12y ++1=352y +, 即x =352y +. ⊥用含y 的式子表示x 的结果是x =352y + 故选:B .【点睛】本题主要考查了二元一次方程的解法,解本题关键是把方程21y t =-中含有x 的项移到等号的右边,得到t =12y +. 8.A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:⊥324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,⊥=1324=1a b a b +⎧⎨+-⎩, 解得:=3=2a b ⎧⎨-⎩,⊥23=660+-=a b , 故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程. 9.B【分析】将k 看作常数,解方程组得到x ,y 的值,根据P 在直线上方可得到b >a ,列出不等式求解即可.【详解】解:解方程组3212331x y k x y k +=-⎧⎨+=+⎩可得,315715x k y k ⎧=--⎪⎪⎨⎪=+⎪⎩, ⊥点P (a ,b )总在直线y =x 上方, ⊥b >a ,⊥731155k k +>--, 解得k >-1, 故选:B .【点睛】本题考查了解二元一次方程组,一次函数上点的坐标特征,解本题的关键是将k 看作常数,根据点在一次函数上方列出不等式求解. 10.A【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.解出方程组的解,再列出关于两解的等式,求出k . 【详解】解:由题意,解得x =51974k k +-,y =53274k k --,⊥x 的值比y 的值的相反数大1, ⊥x +y =1,即51974k k +-+53274k k --=1, 解得k =3, 故选:A .【点睛】本题主要考查解二元一次方程组和它的解,熟练掌握解二元一次方程组的方法是关键. 11.B【分析】把x 与y 的两对值代入代数式列出方程组,求出方程组的解即可得到a 与b 的值,再将1x =-代入即可求解.【详解】解:由题意,得10420a b a b ++=⎧⎨++=⎩①② , ⊥-⊥得:30a += , 3a =- ,把3a =-代入⊥得:()130b +-+= ,2b = ,解得:32a b =-⎧⎨=⎩ , 把32a b =-⎧⎨=⎩代入代数式2x ax b ++得:232x x -+, 当1x =-时,2326x x -+=. 故选B .【点睛】此题考查了解二元一次方程组,利用了消元的思想,求出a 与b 的值是解题关键. 12.D【分析】根据关键语句“到学校共用时15分钟”可得方程:x +y =15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x +80y =2900,两个方程组合可得方程组.【详解】解:他骑车和步行的时间分别为x 分钟,y 分钟,由题意得:152********x y x y +=⎧⎨+=⎩ 故选D .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组. 13.1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可.【详解】⊥本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可⊥令1a =,1b =,得x y c += ⊥把21x y =⎧⎨=-⎩代入方程x y c +=解出1c = ⊥1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键.14. 35 14x y =⎧⎨=⎩,23x y =⎧⎨=⎩,32x y =⎧⎨=⎩,41x y =⎧⎨=⎩.【分析】(1)根据333m n m n +=⋅求解即可;(2)求根据5222⋅=x y 得到522x y +=即5x y +=,再由x 、y 是正整数求解即可. 【详解】解:(1)⊥35m =,37=n , ⊥3335735m n m n +=⋅=⨯=; (2)⊥5222⋅=x y ⊥522x y +=, ⊥5x y +=, ⊥x 、y 是正整数,⊥14xy=⎧⎨=⎩或23xy=⎧⎨=⎩或32xy=⎧⎨=⎩或41xy=⎧⎨=⎩.故答案为:35;14xy=⎧⎨=⎩,23xy=⎧⎨=⎩,32xy=⎧⎨=⎩,41xy=⎧⎨=⎩.【点睛】本题主要考查了同底数幂的乘法的逆用,二元一次方程,解题的关键在于能够熟练掌握相关知识进行求解.15.(1),(2)(1),(3)(1)【分析】根据二元一次方程解的定义:使二元一次方程左右两边相等的一组未知数的值,分别将三组数值代入两个方程中求出各自的解,即可得到方程组的解.【详解】解:当32xy=⎧⎨=-⎩时,方程39x y-=的左边为:()33329x y-=-⨯-=,方程左右两边相等,⊥32xy=⎧⎨=-⎩是方程39x y-=的解;当453xy=⎧⎪⎨=-⎪⎩时,方程39x y-=的左边为:534393x y⎛⎫-=-⨯-=⎪⎝⎭,方程左右两边相等,⊥453xy=⎧⎪⎨=-⎪⎩是方程39x y-=的解;当1472xy⎧=⎪⎪⎨⎪=⎪⎩时,方程39x y-=的左边为:174133424x y⎛⎫-=-⨯=-⎪⎝⎭,方程左右两边不相等,⊥1472xy⎧=⎪⎪⎨⎪=⎪⎩不是方程39x y-=的解;当32xy=⎧⎨=-⎩时,方程24x y+=的左边为:()22324x y+=⨯+-=,方程左右两边相等,⊥32xy=⎧⎨=-⎩是方程24x y+=的解;当453xy=⎧⎪⎨=-⎪⎩时,方程24x y+=的左边为:51322333x y⎛⎫+=⨯+-=⎪⎝⎭,方程左右两边不相等,⊥453xy=⎧⎪⎨=-⎪⎩不是方程24x y+=的解;当1472xy⎧=⎪⎪⎨⎪=⎪⎩时,方程24x y+=的左边为:1722442x y+=⨯+=,方程左右两边相等,⊥1472xy⎧=⎪⎪⎨⎪=⎪⎩不是方程24x y+=的解;⊥方程组3924x yx y-=⎧⎨+=⎩的解为32xy=⎧⎨=-⎩;故答案为:⊥(1),(2);⊥(1),(3);⊥(1).【点睛】本题主要考查了二元一次方程和二元一次方程组的解,数值二元一次方程解得定义是解题的关键.16.9 7【分析】根据方程组1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解得2+93210x yx y=⎧⎨-=⎩求出x,y得值,再代入方程152aax y--=,即可解答.【详解】1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解∴得2+9 3210x yx y=⎧⎨-=⎩解得:41 xy=⎧⎨=⎩把41xy=⎧⎨=⎩代入方程152aax y--=得:1452aa--=解得:a=9 7【点睛】此题考查了二元一次方程组的解,解决本题的关键是明确方程组的解即为能使方程组中两方程成立的未知数的值.17.23 xy=⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解:321221x yx y+=⎧⎨-=⎩①②.⊥+⊥×2得:7x=14,解得:x=2,把x=2代入⊥得:2×2-y=1解得:y=3,所以,方程组的解为23xy=⎧⎨=⎩,故答案为:23xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.1【分析】由非负数的意义求出x,y的值,再代入计算即可.【详解】解:⊥|2x﹣4|≥0,|x+2y﹣8|≥0,|2x﹣4|++|x+2y﹣8|=0,⊥2x﹣4=0,x+2y﹣8=0.⊥x=2,y=3.⊥(x﹣y)2022=(2﹣3)2022=1.故答案为:1.【点睛】本题考查非负数的意义,掌握绝对值,偶次幂的运算性质是解决问题的前提.19.11【详解】本题考查的是二元一次方程的解的定义由题意把1,{2xy==代入方程ax-3y=5即可得到结果.由题意得,20.2753x yx y+=⎧⎨=⎩【分析】根据图示可得:大长方形的长可以表示为x +2y ,长又是75厘米,故x +2y =75,长方形的宽可以表示为2x ,或x +3y ,故2x =3y +x ,整理得x =3y ,联立两个方程即可.【详解】解:根据图示可得大长方形的长可以表示为x +2y ,长又是75厘米,故x +2y =75,长方形的宽可以表示为2x ,或x +3y ,故2x =3y +x ,整理得x =3y ,联立两个方程得到: 2753x y x y+=⎧⎨=⎩, 故答案为:2753x y x y +=⎧⎨=⎩【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.21.x ﹣y 的平方根为(2x +3y +1)2()22310x y ++=,再结合二次根式非负性及平方的非负性得到4302310x y x y +-=⎧⎨++=⎩,求解代值即可得到结论.【详解】解:()2231x y ++互为相反数,()22310x y ++=, ()240,2310x y x y +++≥, ⊥4302310x y x y +-=⎧⎨++=⎩,解得11x y =⎧⎨=-⎩, ⊥x ﹣y =2,⊥x﹣y 的平方根为【点睛】本题考查求代数式的平方根,涉及到相反数的性质、二次根式非负性及平方的非负性、解二元一次方程组等知识点,熟练掌握相反数的性质和常见非负式的运用是解决问题的关键.22.(1)甲团队有9人,乙团队有23人;(2)500;(3)11张【分析】(1)设甲团队有x 人,由题意可知,乙团队人数大于20人小于30人,再根据门票的收费标准列出方程求解即可;(2)算出合在一起买的花销,然后用分开买的花销减去合买的花销即可;(3)分别算出单买和合买11张的花销,然后比较即可得到答案.【详解】解:(1)设甲团队有x 人,由题意可知,乙团队人数大于20人小于30人,列方程得8060(32)2100x x +-=解方程,得9x =这时,3223x -=答:甲团队有9人,乙团队有23人.(2)由题意得人数一共有32人,则合买的花销=3250=1600⨯ 元,⊥可省钱2100-1600=500元故答案为:500;(3)直接购买:809720⨯=(元);按团体票购买:6011660⨯=(元)⊥720>660,⊥购买11张票最省钱.答:购买11张票最省钱.【点睛】本题主要考查了一元一次方程的实际应用,解题的关键在于能够准确找到等量关系列出方程求解.23.105元【分析】先设甲、乙、丙各一件分别需要x ,y ,z 元,根据购甲3件,乙7件,丙1件,共需315元,购甲4件,乙10件,丙1件,共需420元,列出方程组求出x y z ++的值即可.【详解】解:设购甲、乙、丙各一件分别需要x ,y ,z 元,根据题意得:37315410420x y z x y z ++=⎧⎨++=⎩①② ⊥×3-⊥×2得105x y z ++=.则现在购甲、乙、丙各一件共需105元【点睛】此题考查了三元一次方程组的应用,关键是根据题意设出未知数,列出方程组,注意要把x ,y ,z 以整体形式出现.24.(1)5,3;x y =⎧⎨=⎩;(2)见解析 【分析】(1)利用加减消元法解方程组;(2)方法一:将两个方程分别化简再求解;方法二:根据(1)可得方程的解为53x y x y +=⎧⎨-=⎩,再利用加减法求解.【详解】解:(1)5316350x y x y -=⎧⎨-=⎩①②, 由35⨯-⨯①②得16y =48,⊥y =3,将y =3代入⊥得x =5,⊥这个方程组的解是53x y =⎧⎨=⎩; (2)方法一:去括号得到方程组2816,280,x y x y +=⎧⎨-+=⎩再解得结果41;x y =⎧⎨=⎩; 方法二:由(1)5316,350;x y x y -=⎧⎨-=⎩解为53x y =⎧⎨=⎩,可得()()()()5316,350x y x y x y x y ⎧+--=⎪⎨+--=⎪⎩的解为53x y x y +=⎧⎨-=⎩,解得41x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握二元一次方程组的解法:代入法和加减法,(2)可灵活运用解题方法求解,渗透一定的整体换元思想和化归思想.25.(1)3,2A B =-=;(2)61x -,当x 取2,3,4,7时,这个式子的值为正整数. 【分析】(1)解法一:先等式两边同乘以(6)(43)x x +-去分母,去括号化简可得一个关于A 、B 的二元一次方程组,解方程组即可得;解法二:分别取0x =和1x =可得一个关于A 、B 的二元一次方程组,解方程组即可得;(2)先将括号内的每一项拆分成两项的差的形式,再计算分式的加减法与乘法运算即可得,然后根据整数性质求出符合条件的整数x 的值即可.【详解】(1)解法一:21131424643x A B x x x x =+--++-, 等式两边同乘以(6)(43)x x +-去分母,得11(43)(6)x A x B x =-++,即11(3)46x A B x A B =-+++,则311460A B A B -+=⎧⎨+=⎩,解得32A B =-⎧⎨=⎩; 解法二:21131424643x A B x x x x =+--++-, 取0x =,得064A B +=,即230A B +=, 取1x =,得1177B A =+,即117A B +=, 联立230711A B A B +=⎧⎨+=⎩,解得32A B =-⎧⎨=⎩; (2)()111111(1)(1)(1)(3)(3)(5)(9)(11)x x x x x x x x x ⎡⎤+++⋅⋅⋅+⎢⎥-+++++++⎣⎦, ()111111111112111335911x x x x x x x x x ⎛⎫-+-+-+⋅⋅⋅+-+ ⎪-++++⎝⎭=+++, ()111112111x x x ⎛⎫-+ ⎪⎝⎭=-+, ()11112(1)(11)(11()1)11x x x x x x x ⎡⎤--+⎢⎥-+-+⎣⎦+=, ()1112(1)(11)12x x x ⋅⋅++=-, 61x =-, 要使61x -为正整数,则整数1x -的所有可能取值为1,2,3,6, 即整数x 的所有可能取值为2,3,4,7,经检验,当x 取2,3,4,7时,分式的分母均不为零,故当x 取2,3,4,7时,这个式子的值为正整数.【点睛】本题考查了分式的加减法与乘法运算、二元一次方程组的应用,读懂阅读材料中的两种解法是解题关键.。

人教版七年级数学下册第八章二元一次方程组课时分层练习题及答案(每课时2-3套)

人教版七年级数学下册第八章二元一次方程组课时分层练习题及答案(每课时2-3套)

8.1 二元一次方程组基础题知识点1 认识二元一次方程(组)1.下列方程中,是二元一次方程的是(D )A .3x -2y =4zB .6xy +9=0C .1x +4y =6D .4x =y -242.下列方程组中,是二元一次方程组的是(A )A .⎩⎪⎨⎪⎧x +y =42x +3y =7 B .⎩⎪⎨⎪⎧2a -3b =115b -4c =6C .⎩⎪⎨⎪⎧x 2=9y =2x D .⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.(龙口市期中)在方程(k -2)x 2+(2-3k)x +(k +1)y +3k =0中,若此方程为关于x ,y 的二元一次方程,则k 值为(C )A .-2B .2或-2C .2D .以上答案都不对4.写出一个未知数为a ,b 的二元一次方程组:答案不唯一,如⎩⎪⎨⎪⎧2a +b =1,a -b =2等.5.已知方程x m -3+y2-n=6是二元一次方程,则m -n =3.6.已知xm +n y 2与xym -n的和是单项式,则可列得二元一次方程组⎩⎪⎨⎪⎧m +n =1m -n =2.知识点2 二元一次方程(组)的解7.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是(B )A .⎩⎪⎨⎪⎧x =0y =-12 B .⎩⎪⎨⎪⎧x =1y =1 C .⎩⎪⎨⎪⎧x =1y =0 D .⎩⎪⎨⎪⎧x =-1y =-1 8.(丹东中考)二元一次方程组⎩⎪⎨⎪⎧x +y =5,2x -y =4的解为(C )A .⎩⎪⎨⎪⎧x =1y =4B .⎩⎪⎨⎪⎧x =2y =3C .⎩⎪⎨⎪⎧x =3y =2D .⎩⎪⎨⎪⎧x =4y =1 9.若⎩⎪⎨⎪⎧x =1,y =2是关于x ,y 的二元一次方程ax ―3y =1的解,则a 的值为(D )A .-5B .-1C .2D .7知识点3 建立方程组模型解实际问题10.(温州中考)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是(A )A .⎩⎪⎨⎪⎧x +y =7x =2y B .⎩⎪⎨⎪⎧x +y =7y =2xC .⎩⎪⎨⎪⎧x +2y =7x =2yD .⎩⎪⎨⎪⎧2x +y =7y =2x 11.(盘锦中考)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x 吨,一辆小货车一次可以运货y 吨,根据题意所列方程组正确的是(A )A .⎩⎪⎨⎪⎧2x +3y =15.55x +6y =35B .⎩⎪⎨⎪⎧2x +3y =355x +6y =15.5C .⎩⎪⎨⎪⎧3x +2y =15.55x +6y =35D .⎩⎪⎨⎪⎧2x +3y =15.56x +5y =35 中档题12.(大名县期末)若方程x |a|-1+(a -2)y =3是二元一次方程,则a 的取值范围是(C ) A .a >2 B .a =2 C .a =-2 D .a <-213.(萧山区期中)方程y =1-x 与3x +2y =5的公共解是(B )A .⎩⎪⎨⎪⎧x =-3y =-2B .⎩⎪⎨⎪⎧x =3y =-2C .⎩⎪⎨⎪⎧x =-3y =4D .⎩⎪⎨⎪⎧x =3y =2 14.(内江中考)植树节这天有20名同学种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y 人,根据题意,下列方程组正确的是(D )A .⎩⎪⎨⎪⎧x +y =523x +2y =20B .⎩⎪⎨⎪⎧x +y =522x +3y =20C .⎩⎪⎨⎪⎧x +y =202x +3y =52D .⎩⎪⎨⎪⎧x +y =203x +2y =52 15.(齐齐哈尔中考)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(B )A .1种B .2种C .3种D .4种16.(滨州模拟)若⎩⎪⎨⎪⎧x =a ,y =b 是方程2x +y =0的解,则6a +3b +2=2.17.已知两个二元一次方程:①3x -y =0,②7x -2y =2.(1)对于给出x 的值,在下表中分别写出对应的y 的值; x -2 -1 0 1 2 3 4 y ① -6 -3 0 3 6 9 12 y ②-8-4.5-12.569.513(2)请你写出方程组⎩⎪⎨⎪⎧3x -y =0,7x -2y =2的解.解:⎩⎪⎨⎪⎧x =2,y =6.18.已知甲种物品每个重4 kg ,乙种物品每个重7 kg ,现有甲种物品x 个,乙种物品y 个,共重76 kg .(1)列出关于x ,y 的二元一次方程; (2)若x =12,则y =4;(3)若乙种物品有8个,则甲种物品有5个; (4)写出满足条件的x ,y 的全部整数解. 解:(1)4x +7y =76.(4)由4x +7y =76,得x =76-7y4.又由题意得y 为正整数,当y =0时,x =19; 当y =1时,x =76-74=694,不合题意;当y =2时,x =76-2×74=312,不合题意;当y =3时,x =76-3×74=554,不合题意;当y =4时,x =76-4×74=12;当y =5时,x =76-5×74=414,不合题意;当y =6时,x =76-6×74=172,不合题意;当y =7时,x =76-7×74=274,不合题意;当y =8时,x =76-8×74=5;当y =9时,x =76-9×74=134,不合题意;当y =10时,x =76-10×74=32,不合题意;当y =11时,x =76-11×74<0,不合题意.∴满足x ,y 的全部整数解是⎩⎪⎨⎪⎧x =5,y =8,⎩⎪⎨⎪⎧x =12,y =4,⎩⎪⎨⎪⎧x =19,y =0.19.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼中放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?解:(1)设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得⎩⎪⎨⎪⎧x +y =13,0.8x +2y =20.(2)设有x 只鸡,y 个笼,根据题意得⎩⎪⎨⎪⎧4y +1=x ,5(y -1)=x.综合题20.甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2 016+(-110b)2 017.解:把⎩⎪⎨⎪⎧x =-3,y =-1代入方程②中,得4×(-3)-b ×(-1)=-2,解得b =10.把⎩⎪⎨⎪⎧x =5,y =4代入方程①中,得5a+5×4=15,解得a=-1.∴a2 016+(-110b)2 017=(-1)2 016+(-110×10)2 017=1+(-1)=0. 不用注册,免费下载!【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

七年级数学下册 二元一次方程组经典练习题+答案解析100道 人教新课标

七年级数学下册 二元一次方程组经典练习题+答案解析100道  人教新课标

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组) 一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x-2y=13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a 的值为±1( )6、若x+y=0,且|x|=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x+y=5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a+5|=5,a+b=1则32-的值为ba ………()12、在方程4x-3y=7里,如果用x 的代数式表示y ,则437yx +=( )二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a<2; (B )34->a ; (C )342<<-a ;(D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x m y x 932的解是方程3x+2y=34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( ) (A )15x-3y=6 (B )4x-y=7 (C )10x+2y=4 (D )20x-4y=3 19、下列方程组中,是二元一次方程组的是( ) (A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a=-3,b=-14 (B )a=3,b=-7 (C )a=-1,b=9(D )a=-3,b=14 21、若5x-6y=0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23(C )1 (D )-1 22、若x 、y 均为非负数,则方程6x=-7y 的解的情况是( )(A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y=kx+b 的解,则k 与b 的值为( ) (A )21=k ,b=-4 (B )21-=k ,b=4 (C )21=k ,b=4(D )21-=k ,b=-4 三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x+3y=10中,当3x-6=0时,y=_________;27、如果0.4x-0.5y=1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29、方程|a|+|b|=2的自然数解是_____________; 30、如果x=1,y=2满足方程141=+y ax ,那么a=____________;31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a=______,m=______;32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;34、若x+y=a ,x-y=1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x:z=_______;y:z=________;36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________;四、解方程组□x +5y =13 ① 4x -□y =-2 ②37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x+4y=|a|成立的x 、y 的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a 的值; 49、代数式ax2+bx+c 中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

人教版七年级下第八章二元一次方程组(二元一次方程组的解法)同步练习题含解析

人教版七年级下第八章二元一次方程组(二元一次方程组的解法)同步练习题含解析

人教版七年级下第八章二元一次方程组(二元一次方程组的解法)同步练习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.已知两个数的和是7,差是1,则这两个数的积是_____.2.对于实数,x y ,规定新运算:1x y ax by *=+-,其中,a b 是常数.若124*=,()2*310-=,则a b *= ___________.3.二元一次方程组2222x y x y +=-⎧⎨+=⎩的解为___. 4.如果ABC 的三边长分别为3,5,7,DEF 的三边长分别为3,32x -,21y -,若这两个三角形全等,则x y +=______.5.解方程组213211x y x y +=⎧⎨-=⎩①②既可用_____消去未知数x ,也可用_____消去未知数y . 6.若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______.二、单选题7.如果x ,y 满足方程组127x y x y +=-⎧⎨-=⎩,那么x ﹣2y 的值是( ) A .﹣4 B .2 C .6 D .88.方程组839845x y x y -=⎧⎨+=-⎩ 消去x 得到的方程是( ) A .y =4 B .y =-14 C .7y =14 D .-7y =14 9.有理数m ,n 满足|m +1|+(n ﹣2)2=0,则mn +mn 等于( ).A .3B .-2C .-1D .010.若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为( ) A .3 B .-3 CD.11.不解方程组,下列与237328x y x y +=⎧⎨+=⎩的解相同的方程组是( )A .2836921y x x y =-⎧⎨+=⎩B .283237y x x y =+⎧⎨=+⎩C .372283y x y y +⎧=⎪⎪⎨+⎪=⎪⎩D .372382y x x y -+⎧=⎪⎪⎨+⎪=⎪⎩12.如果3xm +1+5yn ﹣2=0是关于x 、y 的二元一次方程,那么( )A .01m n =⎧⎨=⎩B .11m n =⎧⎨=⎩C .03m n =⎧⎨=⎩D .13m n =⎧⎨=⎩三、解答题13.解方程(组)(1)2(21)4x -= (2)1243231y x x y ++⎧=⎪⎨⎪-=⎩ 14.已知关于x 、y 的方程组123x y a x y a-=--⎧⎨-=-⎩. (1)若0x y +=,求实数a 的值;(2)若15x y -≤-≤,求实数a 的取值范围.15.已知关于x ,y 的方程组2331x y ax by -=⎧⎨+=-⎩和2333211ax by x y +=⎧⎨+=⎩的解相同,求(3a +b )2020的值.参考答案:1.12【分析】要求这两个数,可设这两个数是x 、y ,因为这两个数的和是7,它们的差是1,所以71x y x y +=⎧⎨-=⎩,解方程求出这两个数,再求它们的积. 【详解】设这两个数是x 、y依题意得:71x y x y +=⎧⎨-=⎩解得: 43x y =⎧⎨=⎩∴这两个数的积是43=12⨯【点睛】此类题目的解决只需仔细分析题意,利用方程组即可解决问题.2.9【分析】先根据题意得到关于a 、b 的二元一次方程组21423110a b a b +-=⎧⎨-+-=⎩,求出a 、b 的值,然后根据221a b a b *=+-进行求解即可.【详解】解:由题意得:21423110a b a b +-=⎧⎨-+-=⎩, 解得13a b =-⎧⎨=⎩, ∴()222211319a b a b *=+-=-+-=,故答案为:9.【点睛】本题主要考查了新定义下的实数运算,解二元一次方程组,正确理解题意求出a 、b 的值是解题的关键.3.22x y =⎧⎨=-⎩ 【分析】由加减消元法或代入消元法都可求解.【详解】解:2222x y x y +=-⎧⎨+=⎩①②, 由∴式得:22x y =-- ,代入∴式,得:2(22)2y y ,解得2y =- , 再将2y =-代入∴式,222x ,解得2x = ,∴22x y =⎧⎨=-⎩, 故填:22x y =⎧⎨=-⎩. 【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单. 4.6或193【分析】根据全等三角形的对应边相等分类讨论,分别求出x 值判断即可.【详解】解:∴ABC 和DEF 全等,∴当325217x y -=⎧⎨-=⎩时,解得:734x y ⎧=⎪⎨⎪=⎩, ∴719433x y +=+=; 当327215x y -=⎧⎨-=⎩时,解得:33x y =⎧⎨=⎩, ∴336x y +=+=;∴综上所述,193x y +=或6. 故答案为:6或193. 【点睛】此题考查的是根据全等三角形的性质求字母的值,掌握全等三角形的对应边相等是解决此题的关键.5. ∴×3-∴ ∴+∴【解析】略6.-6【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.【详解】解:∴x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点睛】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.7.D【分析】利用方程组中的第二个方程减去第一个方程即可得.【详解】解:127x y x y +=-⎧⎨-=⎩①②, 由∴-∴得:27(1)x x y y ---=--,即28x y -=,故选:D .【点睛】本题考查了利用加减消元法解二元一次方程组,熟练掌握方程组的解法是解题关键.8.D【分析】直接利用两式相减进而得出消去x 后得到的方程.【详解】解:839845x y x y -=⎧⎨+=-⎩①② ∴-∴得:-7y =14.故答案为:-7y =14,故选:D .【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键. 9.C【分析】根据非负数的性质列方程求出m 、n 的值,再代入所求代数式计算即可.【详解】解:∴|m +1|+(n −2)2=0,∴m +1=0,n −2=0,解得:m =−1,n =2,∴mn +mn =−1×2+(−1)2=−2+1=−1.故选:C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,也考查了有理数的混合运算.10.C【分析】将21a b =⎧⎨=⎩代入二元一次方程组中解出x 和y 的值,再计算2x y +的算术平方根即可. 【详解】解:将21a b =⎧⎨=⎩代入二元一次方程3522ax by ax by ⎧+=⎪⎨⎪-=⎩中, 得到:3522x y x y +=⎧⎨-=⎩①②, ∴+∴得:57,x =7,5x ∴= 1442,55y ∴=-= 所有方程组的解是:75,45x y ⎧=⎪⎪⎨⎪=⎪⎩74223,55x y ∴+=+⨯= ∴2x y +故选:C .【点睛】本题考查了二元一次方程组的解法,算术平方根的概念,解题的关键是熟练掌握二元一次方程组的解法.11.A【详解】试题解析:对A 选项,将方程283y x =-移项,得328.x y +=将方程6921x y +=两边同除以3,得237.x y +=所以A 选项的方程组中的两个方程与题目中的两个方程相同,即解相同,故选A12.C【分析】根据二元一次方程的定义可得到关于m 、n 的方程,可求得答案.含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.【详解】解:∴3xm +1+5yn ﹣2=0是关于x 、y 的二元一次方程,∴1121m n +=⎧⎨-=⎩,解得03m n =⎧⎨=⎩, 故选:C .【点睛】本题主要考查二元一次方程的定义,掌握二元一次方程的未知项的次数为1是解题的关键.13.(1)32x =或12x =- (2)373x y =-⎧⎪⎨=-⎪⎩【分析】(1)利用平方根的定义解方程;(2)将方程组整理后,根据加减消元法解二元一次方程组即可求解.(1)解:2(21)4x -=,212x -=±, 解得32x =或12x =-; (2) 1243231y x x y ++⎧=⎪⎨⎪-=⎩ 整理得345231y x x y -=⎧⎨-=⎩①②, ∴+∴得,26x -=,将3x =-,代入∴得,()3435y -⨯-=, 解得73y =-,∴方程组的解为373x y =-⎧⎪⎨=-⎪⎩. 【点睛】本题考查了根据平方根解方程,加减消元法解二元一次方程组,正确的计算是解题的关键.14.(1)1a =;(2)60a -≤≤.【分析】(1)根据方程组分别用a 表示出x 、y 的值,代入0x y +=求解即可; (2)根据方程组分别用a 表示出x 、y 的值,代入15x y -≤-≤求解即可【详解】(1)由方程组123x y a x y a -=--⎧⎨-=-⎩①②, ∴-∴得:21x a =-+,将21x a =-+代入1x y a -=--得:2y a =-+,又∴0x y +=,∴2120a a -+-+=,解得:1a =;(2)由(1)可知21x a =-+,2y a =-+,又∴15x y -≤-≤,∴()12125a a --+--+≤≤,整理得:115a ---≤≤,解得:60a -≤≤.【点睛】此题考查了二元一次方程和不等式结合的含参数问题,,解题的关键是根据题意列出关于参数a 的方程或不等式.15.25a b =-⎧⎨=⎩,1. 【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值,代入(3a +b )2020计算即可.【详解】解:由题意可得2333211x y x y -=⎧⎨+=⎩, 解得31x y =⎧⎨=⎩, 将31x y =⎧⎨=⎩代入1233ax by ax by +=-⎧⎨+=⎩得31633a b a b +=-⎧⎨+=⎩,解得25ab=-⎧⎨=⎩,∴(3a+b)2020=(﹣6+5)2020=1.【点睛】本题考查了二元一次方程组的解,解答此题的关键是根据两方程组有相同的解得到关于x、y的方程组,求出x、y的值,再将x、y的值代入含a、b的方程组即可求出a、b的值,即可求出代数式的值.。

8.1 二元一次方程组 人教版数学七年级下册同步练习(含答案)

8.1 二元一次方程组 人教版数学七年级下册同步练习(含答案)

8.1 二元一次方程组 同步练习一、单选题 (本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.方程2=5x y +的非负整数解有() A .1组B .2组C .3组D .4组2.若关于x ,y 的二元一次方程组42x y kx y k -=⎧⎨+=⎩的解也是二元一次方程36x y -=的解,则k 的值为( ) A .1B .1-C .2-D .23.已知关于x 、y 的方程组2025x y x y -=+=,的解是x a y b ==,,则3a b -的值是( )A .2B .3C .4D .54.二元一次方程27x y +=的正整数解的个数有( ) A .1个B .2个C .3个D .4个5.下列方程组中,以12x y =-⎧⎨=⎩为解的二元一次方程组是( )A .13x y x y +=⎧⎨-=-⎩B .11x y x y +=⎧⎨-=-⎩C .243x y x y +=⎧⎨-=-⎩D .120x y x y +=⎧⎨-=⎩6.方程5x -2y =4与下列方程构成的方程组的解为23x y =⎧⎨=⎩的是( )A .2x +y =7B .2x -y =5C .x -2y =-3D .x +y =107.下列各组数中是方程217x y +=的解的是( )A .17x y =⎧⎨=⎩B .65x y =⎧⎨=⎩C .310x y =-⎧⎨=⎩D .36,10x y =⎧⎨=-⎩8.若22x y =⎧⎨=-⎩是二元一次方程3ax by +=的一个解,则a ﹣b ﹣1=( )A .12B .1C .32D .29.二元一次方程321x y -=的解的情况是( ) A .有且只有一解 B .有且只有两解 C .无解D .有无数解10.由331x y -+=可得( )A .443x y =-+B .114y x =+ C .443x y =-D .1143y x =-二、填空题(本题共6小题,每小题4分,共24分)11.已知1||231m x y --=是关于x ,y 的二元一次方程,则m =_____. 12.已知方程326m n x y --+=是二元一次方程,则m n -=_____.13.方程24ax bx +=的解为2x =,则方程()()1214a y b y -+-=的解为______. 14.把方程43x y -=改写成用含y 的式子表示x 的形式是 _____. 15.已知方程:()233n n xy -++=为二元一次方程,则n 的值为 _____.16.如果13420a b b x y +---=是关于,x y 的二元一次方程,那么=a _________ b =__________.三、解答题 本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.18-21题 每题8分 22题10分 23题10分 24题13分 25题13分 17.解下列方程组(1)3324x y x y +=⎧⎨-=⎩ (2)5232(3)3(2)3m nm n n m ⎧+=⎪⎨⎪---=⎩ 18.解方程组51521ax y x by +=⎧⎨-=-⎩时,小卢由于看错了系数a ,结果得到的解为31x y =-⎧⎨=-⎩,小龙由于看错了系数b ,结果得到的解为54x y =⎧⎨=⎩,求a b +的值.19.若x ay b =⎧⎨=⎩是方程35x y +=的解,求623a b +-的值.20.已知23m n =⎧⎨=⎩是关于m ,n 的二元一次方程318m an +=的一组解,求a 的值.21.小明用8块相同的长方形地砖拼成一个矩形,求这个长方形地砖的面积.22.列方程组解应用题:李明在玩具厂做工,做 4 个玩具熊和 9 个小汽车用去 1 小时 10 分钟,做 5 个玩具熊 和 8 个小汽车用去 1 小时 8 分钟,求做 2 个玩具熊和 1 个小汽车共用多少时间?23.已知关于x ,y 的二元一次方程组3426x y m x y +=+⎧⎨-=⎩的解满足x+y <3,求m 的取值范围.24.定义:对任意一个两位数m ,如果m 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“互异数”.将一个“互异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f m .例如:12m =,对调个位数字与十位数字得到新两位数21,新两位数与原两位数的和为211233+=,和与11的商为33113÷=,所以()123f =. 根据以上定义,回答下列问题∶(1)下列两位数30,52,77中,“互异数”为 ;()24f =________. (2)若“互异数”b 满足()5f b =,求所有“互异数”b .25.学校七年级举行数学说题比赛,计划购买笔记本作为奖品.根据比赛设奖情况,需购买笔记本共30本.已知A 笔记本的单价是12元,B 笔记本的单价是8元. (1)若学校购买A ,B 两种笔记本作为奖品.设购买A 种笔记本x 本. ∶根据信息填表(用x 的代数式表示).∶若购买笔记本的总费用为340元,则购买A ,B 笔记本各多少本?(2)为缩减经费,学校最终花费186元购买A ,B ,C 三种笔记本作为奖品.若C 笔记本C笔记本的数量是________本(请直接写出答案).参考答案:1.C 2.A 3.D 4.C 5.A 6.A 7.C 8.A 9.D 10.C 11.2± 12.3 13.3 14.34yx += 15.316. 2- 417.(1)21x y =⎧⎨=⎩,(2)49m n =⎧⎨=⎩. 18.4 19.7 20.4 21.675cm 2 22.14分钟. 23.m <5224.(1)52,6 (2)14或23或32或4125.(1)∶()30x -;()830x -或()2408x -;∶购买A 笔记本25本,B 笔记本5本(2)3,5,22。

人教版七年级下册消元——解二元一次方程组练习题(含答案)

人教版七年级下册消元——解二元一次方程组练习题(含答案)

8.2消元——解二元一次方程组练习题一、选择题1. 二元一次方程组{x −y =4x +y =2的解是( ) A. {x =3y =−7 B. {x =1y =1 C. {x =7y =3 D. {x =3y =−1 2. m 为正整数,已知二元一次方程组{mx +2y =103x −2y =0有整数解,则m 2的值为( ) A. 4 B. 49 C. 4或49 D. 1或493. 在解方程组{ax +5y =104x −by =−4时,由于粗心,甲看错了方程组中的a ,得到的解为{x =−3y =−1,乙看错了方程组中的b ,得到的解为{x =5y =4.则原方程组的解( ) A. {x =−2y =8 B. {x =15y =8 C. {x =−2y =6 D. {x =−5y =8 4. 方程组{2x +y =◼x +y =3的解为{x =2y =◼,则被遮盖的两个数分别是( ) A. 1,2 B. 5,1 C. 2,−1 D. −1,95. 若二元一次方程组{x +y =33x −5y =4的解为{x =a y =b ,则a −b =( ) A. 1 B. 3C. −14D. 74 6. 用加减法解方程组{4x +3y =7 ①6x −5y =−1 ②时,若要求消去y ,则应( ) A. ①×3+②×2 B. ①×3−②×2C. ①×5+②×3D. ①×5−②×37. 利用加减消元法解方程组{2x +5y =3①5x −3y =6②,下列做法正确的是( ) A. 要消去y ,可以将①×5+②×2B. 要消去x ,可以将①×3+②×(−5)C. 要消去y ,可以将①×5+②×3D. 要消去x ,可以将①×(−5)+②×28. 若满足方程组{3x +y =m +32x −y =2m −1的x 与y 互为相反数,则m 的值为( ) A. 1 B. −1C. 11D. −11 9. 用“代入消元法”解方程组{y =x −2 ①3x −2y =7 ②时,把①代入②正确的是( )A. 3x −2x +4=7B. 3x −2x −4=7C. 3x −2x +2=7D. 3x −2x −2=710. 用代入法解方程组{y =1−x,x −2y =4时,代入正确的是( ) A. x −2−x =4B. x −2−2x =4C. x −2+2x =4D. x −2+x =4二、填空题 11. 若二元一次方程组{2x −3y =12ax +by =1和{cx −ay =5x +y =1的解相同,则x = ______ ,y = ______ . 12. 关于x ,y 的二元一次方程组{5x +3y =23x +y =p的解是正整数,则整数p 的值为____________. 13. 若方程x −y =−1的一个解与方程组{x −2y =k 2x −y =1的解相同,则k 的值为______. 14. 写出一个以{x =−1y =3为解的二元一次方程组是______. 15. 方程组{x +y =13x −y =3的解是______. 16. 已知{2x +y =a x −2y =a,则x y =____. 17. 已知实数x 、y 满足{x +2y =54x −y =2,则x −y =______. 18. 已知x ,y 满足方程组{x +k =y +2x +3y =k,则无论k 取何值,x ,y 恒有关系式是______. 19. 用代入法解二元一次方程组{x +5y =6 ①3x −6y =4 ②最为简单的方法是将_________式中的_________表示为_________,再代入_________式.20. 若关于a ,b 的二元一次方程组{5a −6b =m 7a +8b =n 的解为{a =1b =2则关于x ,y 的二元一次方程组{5(x −1)−6(y +2)=m 7(x −1)+8(y +2)=n的解为________. 三、解答题21. 解方程组{2x +3y =7 ①x −3y =8 ②.22. 解方程组{3x −4(x −2y)=5,x −2y =1.1D 2A 3B 4B 5D 6C 7D 8C 9A 10C 11.3;−212.5或713.−414.{x +y =22x −y =−515.{x =1y =016.−317.−118.x +y =119.①;x ;6−5y ;②20.{x =2y =021.解:①+②得,3x =15,解得x =5,把x =5代入①得,10+3y =7,解得y =−1. 故方程组的解为:{x =5y =−1. 22.解:{3x −4(x −2y)=5, ①x −2y =1 ②., 将①化简得:−x +8y =5 ③,②+③,得y =1,将y =1代入②,得x =3,∴{x =3y =1;。

人教版七年级下学期数学 第8章 二元一次方程组 同步单元习题 含解析

人教版七年级下学期数学 第8章 二元一次方程组 同步单元习题    含解析

第8章二元一次方程组一.选择题(共17小题)1.下列方程中,是二元一次方程的是()A.B.C.3x﹣y2=0D.4xy=3 2.若一个二元一次方程的一个解为,则这个方程可以是()A.y﹣x=1B.x﹣y=1C.x+y=1D.x+2y=13.已知A.1是关于x,y的方程3x﹣ay=5的一个解,则a的值为()B.2C.3D.44.下列方程组中,不是二元一次方程组的是()A.B.C.D.5.用加减法解方程组A.①×3+②×2,消去yC.①×(﹣3)+②×2,消去x ,下列解法正确的是()B.①×2﹣②×3,消去yD.①×2﹣②×3,消去x6.解方程组A.﹣3t=1时,①﹣②,得()B.﹣3t=3C.9t=3D.9t=17.关于x,y的二元一次方程组是()的解也是二元一次方程2x+3y=6的解,则k的值A.﹣B.C.D.﹣8.若方程组A.2018的解中x+y=2019,则k等于()B.2019C.2020D.20219.若甲数为x,乙数为y,则“甲数的3倍比乙数的一半少2”,列成方程是()A.3x 10.方程组y=2B.的解为=2C.3x=2D.+2=3x,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,311.已知方程组A.2中x,y的互为相反数,则m的值为()B.﹣2C.0D.412.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为()A.C.B.D.13.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x天,生产乙种玩具零件y天,则有()A.C.B.D.14.一辆轿车行驶2小时的路程比一辆卡车行驶3小时的路程少40千米.如果设轿车平均速度为a千米/小时,卡车的平均速度为b千米/小时,则()A.2a=3b+40B.3b=2a﹣40C.2a=3b﹣40D.3b=40﹣2a 15.为安置200名因暴风雪受灾的灾民,需要同时搭建可容纳12人和8人的两种帐篷,则搭建方案共有()A.8种B.9种C.16种D.17种16.有甲、乙、丙三种货物,若购甲3件,乙7件丙1件,共需64元,若购甲4件,乙10件,丙1件,共需79元.现购甲、乙、丙各一件,共需()元.A.32B.33C.34D.3517.一个两位数,把其十位数字与个位数字交换位置后,所得的数比原数多9,则这样的两位数的个位数字与十位数字的差是()A.0B.1C.2D.9二.填空题(共9小题)18.若5x m﹣1+5y n﹣3=﹣1是关于x、y的二元一次方程,则m+n=.19.已知二元一次方程3x﹣y=1,当x=2时,y等于.20.二元一次方程组的解是,则b﹣a=.21.若二元一次方程组的解为,则m+n=22.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.23.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为.24.如图,有一张边长为x的正方形ABCD纸板,在它的一个角上切去一个边长为y的正方形AEFG,剩下图形的面积是32,过点F作FH⊥DC,垂足为H.将长方形GFHD切下,与长方形EBCH重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是.25.体育馆的环形跑道长400米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80秒乙追上甲一次;如果反向而行,他们每隔30秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x米/秒,乙的速度是y米/秒,所列方程组是26.《九章算术》是我国古代一部数学专著,其中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银各重几何?”意思是甲袋中装有黄金9枚(每枚黄金重量相同)乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).则黄金每枚重两,白银每枚重两.三.解答题(共9小题)27.解方程组(1)(2)28.已知是二元一次方程组29.已知关于x、y的方程组的解,求m+n的值.的x、y的值之和等于2,求m的值.30.已知关于x,y的二元一次方程组的解互为相反数,求k的值.31.若方程组与方程组有相同的解,求a、b的值.32.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?33.学校订做校服,要求在规定期限内完成.若按服装厂原来生产能力,每天可生产这种校服150套,则在期限内只能完成校服数量的;现服装厂改进设备,每天可生产这种校服200套,则可提前1天完成,且多生产25套,求原规定期限多少天?订做校服数量多少套?34.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:黑色文化衫白色文化衫批发价(元)2520零售价(元)4535(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.35.篝火晚会前夕,德强学校附近一超市从厂家购进了甲、乙两种发光道具,甲种道具的每件进价比乙种道具的每件进价少2元.若购进甲种道具7件,乙种道具2件,需要76元.(1)求甲、乙两种道具的每件进价分别是多少元?(2)若该超市从厂家购进了甲乙两种道具共50件,所用资金恰好为440元.在销售时,甲种道具的每件售价为10元,要使得这50件道具所获利润率为20%,乙道具的每件售价为多少元?参考答案与试题解析一.选择题(共17小题)1.【解答】解:A、﹣y=6是二元一次方程,符合题意;B、+=1不是整式方程,不符合题意;C、3x﹣y2=0是二元二次方程,不符合题意;D、4xy=3是二元二次方程,不符合题意,故选:A.2.【解答】解:A、把代入方程得:左边=﹣1﹣2=﹣3,右边=1,左边≠右边,不是方程的解,不符合题意;B、把代入方程得:左边=2+1=3,右边=1,左边≠右边,不是方程的解,不符合题意;C、把代入方程得:左边=2﹣1=1,右边=1,左边=右边,是方程的解,符合题意;D、把代入方程得:左边=2﹣2=0,右边=1,左边≠右边,不是方程的解,不符合题意,故选:C.3.【解答】解:∵是关于x,y的方程3x﹣ay=5的一个解∴3a﹣a×(﹣2)=5∴3a+2a=5∴5a=5∴a=1故选:A.4.【解答】解:A、是分式方程组,符合题意;B、是二元一次方程组,不符合题意;C、是二元一次方程,不符合题意;D、是二元一次方程组,不符合题意;故选:A.5.【解答】解:用加减法解方程组①×(﹣3)+②×2,消去x,故选:C.6.【解答】解:解方程组,时,①﹣②,得:9t=3.故选:C.7.【解答】解:解方程组得:,∵关关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,∴代入得:14k﹣6k=6,解得:k=,故选:B.8.【解答】解:,①+②得,5x+5y=5k﹣5,即:x+y=k﹣1,∵x+y=2019,∴k﹣1=2019∴k=2020,故选:C.9.【解答】解:若甲数为x,乙数为y,可列方程为y﹣3x=2.故选:B.10.【解答】解:把代入方程组得:解得:故选:B.11.【解答】解:由题意得:x+y=0,即y=﹣x,代入方程组得:解得:m=x=2,,故选:A.12.【解答】解:设这个队胜x场,负y场,根据题意,得.故选:A.13.【解答】解:设生产甲种玩具零件x天,生产乙种玩具零件y天,依题意,得:.故选:C.14.【解答】解:根据题意得:轿车行驶2小时的路程为:2a,卡车行驶3小时的路程为:3b,∵轿车行驶2小时的路程比卡车行驶3小时的路程少40千米,∴3b﹣2a=40,整理得:3b=2a+40,2a=3b﹣40,故选:C.15.【解答】解:设12人的帐篷有x顶,8人的帐篷有y顶,依题意,有:12x+8y=200,整理得y=25﹣1.5x,因为x、y均为非负整数,所以25﹣1.5x≥0,解得0≤x≤16,从0到16的偶数共有9个,所以x的取值共有9种可能,由于需同时搭建两种帐篷,x不能为0(舍去),即共有8种搭建方案.故选:A.16.【解答】解:设购甲每件x元,购乙每件y元,购丙每件z元.列方程组得:,①×3﹣②×2得:x+y+z=34.故选:C.17.【解答】解:设原两位数的十位数字为x,个位数字为y,(10y+x)﹣(10x+y)=9,9y﹣9x=9,y﹣x=1.故选:B.二.填空题(共9小题)18.【解答】解:∵5x m﹣1+5y n﹣3=﹣1是关于x、y的二元一次方程,∴m﹣1=1,n﹣3=1,解得:m=2,n=4,∴m+n=6.故答案为:619.【解答】解:把x=2代入方程得:6﹣y=1,解得:y=5,故答案为:5.20.【解答】解:∵二元一次方程组的解是,∴,①+②,可得:2b﹣2a=4,∴b﹣a=4÷2=2.故答案为:2.21.【解答】解:①+②得:5x+5y=10∴x+y=2,方程组的解为∴m+n=x+y=2.故答案为:2.是关于x,y的二元一次方程组,22.【解答】解:若方程组则c+3=0,a﹣2=1,b+3=1,解得c=﹣3,a=3,b=﹣2.所以代数式a+b+c的值是﹣2.或c+3=0,a﹣2=0,b+3=1,解得c=﹣3,a=2,b=﹣2.所以代数式a+b+c的值是﹣3.故答案为:﹣2或﹣3.23.【解答】解:(解法一)设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴图中阴影部分的面积之和为16×(8+2×2)﹣6×10×2=72(cm2).(解法二)设小长方形的宽为xcm,则长为(16﹣3x)cm,依题意,得:x+(16﹣3x)﹣2x=8,解得:x=2,∴16﹣3x=10,∴图中阴影部分的面积之和为16×(8+2×2)﹣6×10×2=72(cm2).故答案为:72cm2.24.【解答】解:如图所示,由已知得:BN=8,S=32,长方形BNME∴BE=32÷8=4,则,解得:2x=12,x=6,∴正方形ABCD的面积是36,故答案为:36.25.【解答】解:根据题意,得.故答案为:.26.【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:,解得.即每枚黄金重两,每枚白银重两.故答案是:;.三.解答题(共9小题)27.【解答】解:(1)①﹣②×4得:11y=﹣11,解得:y=﹣1,把y=﹣1代入②得:x=2,,则方程组的解为;(2)方程组整理得:①×2﹣②得:3y=9,解得:y=3,把y=3代入①得:x=5,,则方程组的解为28.【解答】解:把.代入方程组得:,解得:,则m+n=﹣=.29.【解答】解:关于x、y的方程组为:,由①﹣②得:x+2y=2,∵x、y的值之和等于2,∴,解这个方程组得,把代入②得:m=4.答:m的值是4.30.【解答】解:①﹣②得:x+y=k+1,∵关于x,y的二元一次方程组∴x+y=0,即k+1=0,解得:k=﹣1.的解互为相反数,31.【解答】解:解得该方程组的解为,,由题意该方程组的解也是方程组的解,代入ax+by=3可得a+b=3③,代入2ax+by=4可得2a+b=4④,④﹣③可得a=1,代入③可得b=2,∴a=1,b=2.32.【解答】解:设A型号客车用了x辆,B型号客车用了y辆,依题意,得:,解得:.答:A型号客车用了6辆,B型号客车用了2辆.33.【解答】解:设原规定期限为x天,订做校服数量为y套,依题意,得:,解得:.答:原规定期限为18天,订做校服数量为3375套.34.【解答】解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.35.【解答】解:(1)设甲种道具的每件进价是x元,则乙种道具的每件进价是(x+2)元,依题意,得:7x+2(x+2)=76,解得:x=8,∴x+2=10.答:甲种道具的每件进价是8元,乙种道具的每件进价是10元.(2)设购进甲种道具m件,购进乙种道具n件,依题意,得:,解得:.设乙道具的售价为y元,依题意,得:(10﹣8)×30+(y﹣10)×20=440×20%,解得:y=11.4.答:乙道具的每件售价为11.4元.。

人教版七年级数学下册第八章二元一次方程组达标测试卷带参考答案和解析

人教版七年级数学下册第八章二元一次方程组达标测试卷带参考答案和解析

人教版七年级数学下册第八章二元一次方程组达标测试卷带参考答案和解析选择题将方程2x+y=3写成用含x的式子表示y的形式,正确的是()A. y=2x-3B. y=3-2xC. x=D. x=【答案】B【解析】把x看做已知数求出y即可.解:2x+3=y,移项,得:y=3-2x.故选B.选择题方程2x-=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】由二元一次方程的定义“如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程”可知,是二元一次方程的有:3x+y=0和3x+y-2x=0,共2个.故选B.选择题用加减法解方程组,下列解法正确的是()A. ①×3+②×2,消去yB. ①×2-②×3,消去yC. ①×(-3)+②×2,消去xD. ①×2-②×3,消去x【答案】C【解析】用加减法解二元一次方程组时,必须使同一未知数的系数相等或者互为相反数.如果系数相等,那么相减消元;如果系数互为相反数,那么相加消元.解:A、①×3+②×2,不能消去y,故不正确;B、①×2-②×3,不能消去y,故不正确;C、①×(-3)+②×2,可消去x,故正确;D、①×2-②×3,不能消去x,故不正确.故选C.选择题已知是方程kx+y=3的一个解,那么k的值是()A.7 B.1 C.-1 D.-7【答案】C.【解析】试题解析:把代入方程kx+y=3中,得k+4=3,解得,k=-1,故选C.选择题已知二元一次方程2x+3y﹣2=0,当x,y的值互为相反数时,x、y的值分别为()A. 2,﹣2B. ﹣2,2C. 3,﹣3D. ﹣3,3【答案】B【解析】试题根据题意可得出方程组为:,解得:,故选B.选择题若和是二元一次方程mx+ny=6的两个解,则m,n的值分别为()A. 4,2B. 2,4C. -4,-2D. -2,-4【答案】A【解析】将x与y的两对值代入方程计算即可求出m与n的值.解:把和分别代入方程mx+ny=6中,得:解得:故选A.选择题已知-y2m-5xn+1与xm+2yn-2是同类项,则m-n等于()A. -1B. 1C. -7D. 7【答案】A【解析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出m、n的值,再代入m-n计算即可.解:由题意,得:解得:∴m-n=4-5=-1.故选A.选择题若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k 的取值为( )A. 3B. ﹣3C. ﹣4D. 4【答案】D【解析】先利用方程3x-y=7和2x+3y=1组成方程组,求出x、y,再代入y=kx-9求出k值.解:由题意,得:解得:将代入y=kx-9中,得:-1=2k-9,解得:k=4.故选D.选择题《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.【答案】D【解析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.选择题小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19B. 18C. 16D. 15【答案】B【解析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.填空题已知(m-2)x|m|-1+3y=0是关于x,y的二元一次方程,则m =________.【答案】-2【解析】根据二元一次方程的定义解答即可.解:依题意可知|m|-1=1且m-2≠0,∴|m|=2,且m≠2,∴m=-2.故答案为:-2.填空题若关于x,y的方程组的解是,则|m+n|的值是________.【解析】将x=1,y=3代入方程组得:,解得:,则|m+n|=|−1−2|=|−3|=3.故答案为:3填空题试写出一个关于x,y的二元一次方程组,使它的解是,这个方程组可以是________________.【答案】(答案不唯一)【解析】根据方程组的解的定义,应满足所写方程组的每一个方程.解:∵x+y=-3+4=1,x+2y=-3+4×2=5,∴这个方程组可以是故答案为:(答案不唯一).填空题当a=________时,方程组的解也是x+y=1的一个解.【解析】将2x+y=3与x+y=1组成方程组求出x、y,再将x、y的值代入,即可求出a的值.解:由已知可得:-,得:x=2,把x=2代入,得:2+y=1,解得y=-1,∴把代入ax+2y=4-a,得:2a-2=4-a,解得:a=2.故答案为:2.填空题以二元一次方程组的解为坐标的点(x,y)在平面直角坐标系的第________象限.【答案】一【解析】先解方程组,求出方程组的解,即可得出点的坐标,再作出判断.解:①+②,得:4y=8,解得:y=2,将y=2代入②,得:2-x=1,解得x=1,∴点的坐标为(1,2),在第一象限.故答案为:一.填空题已知,则a-b的值为________.【答案】3【解析】分析题意,先根据加减消元法解二元一次方程组,将两个二元一次方程相加可得3a-3b=9,再对方程两边同时除以3即可求解.解:①+②,得:3a-3b=9,∴a-b=3.故答案为:3.填空题为奖励消防演练活动中表现优异的同学,某校决定用1 200元购买篮球和排球(各至少买1个),其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有________种.【答案】3【解析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.解:设购买篮球x个,购买排球y个,根据题意,得:120x+90y=1200,∵x、y是整数,∴方程的整数解为:,,,∴购买方案有三种:方案一,购买1个篮球,12个排球;方案二,购买4个篮球,8个排球;方案三,购买7个篮球,4个排球.故答案为:3.填空题一千官兵一千布,一官四尺无零数,四兵才得布一尺,请问官兵多少数?这首诗的意思是:一千名官兵分一千尺布,一名军官分四尺,四名士兵分一尺,正好分完,则军官有________名,士兵有________名.【答案】200 800【解析】设军官有x名,士兵y名,根据共有1000名,得方程x+y=1000;根据共有1000尺布,得方程4x+y=1000,联立方程组即可.解:设军官有x名,士兵y名,根据题意,得:解之,得:所以军官有200名,士兵有800名.故答案为:200,800.解答题用适当的方法解下列方程组:(1)(2)(3)(4)【答案】(1)(2)(3)(4)【解析】根据方程组的特点应用相应的方法解答.(1)②-①,得x=6.将x=6代入①,得y=4.所以这个方程组的解是(2)化简②,得3x-2y=6.③将①代入③,得6y-2y=6,解得y=.将y=代入①,得x=3.所以这个方程组的解是(3)设x+y=a,x-y=b,则原方程组变为由①,得3a+2b=36.③解由②③组成的方程组,得所以解得所以原方程组的解是(4)①-③,得3y-z=0,即z=3y.④将④代入②,得y-6y=5,解得y=-1.将y=-1代入①,得x=8.将x=8代入③,得z=-3.所以这个方程组的解为故答案为:(1);(2);(3);(4).解答题解关于x、y的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.【答案】a=,b=1,c=2.【解析】分析:把甲的结果代入方程组求出c的值,以及关于a 与b的方程,再将已知的结果代入第一个方程得到关于a与b的方程,联立求出a与b的值即可.详解:把代入方程,得:,解得:.把分别代入方程,得:,解得.所以,.解答题在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.【答案】A型粽子40千克,B型粽子60千克.【解析】分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.设订购了A型粽子x千克,B型粽子y千克,根据题意,得,解得.答:订购了A型粽子40千克,B型粽子60千克.解答题甲、乙二人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20 km,那么甲用1 h就能追上乙;如果乙先走1 h,那么甲只用15 min就能追上乙.求甲、乙二人的速度.【答案】甲的速度为25 km/h,乙的速度为5 km/h【解析】设甲、乙二人的速度分别为xkm/h、ykm/h,根据乙先走20 km,那么甲用1h就能追上乙,列出方程x-y=20;根据乙先走1h,那么甲只用15min就能追上乙,可以列出方程(x-y)=y,联立方程组求解即可.设甲、乙二人的速度分别为x km/h,y km/h.依题意得解得答:甲的速度为25 km/h,乙的速度为5 km/h.故答案为:甲的速度为25 km/h,乙的速度为5 km/h.解答题某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD 上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?【答案】1【解析】利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9ym,进而利用AD为18m,AB为13m,得出等式求出即可.设通道的宽是xm,AM=8ym.因为AM∶AN=8∶9,所以AN=9ym.所以解得答:通道的宽是1m.故答案为:1.解答题某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案既省时又省钱?试比较说明.【答案】(1)60天,40天;(2)方案③既省时又省钱.【解析】(1)设甲小组单独修完需要x天,乙小组单独修完需要y天,根据“甲小组单独修理这批桌凳比乙小组多用20天”,以及桌凳总数不变,便可建立方程组进行解答;(2)综合(1)所得求出这批旧桌凳的数目,然后求出三种方案的工作时间与实际花费,再进行比较即可.解:(1)设甲小组单独修理这批桌凳需要x天,乙小组单独修理这批桌凳需要y天.根据题意,得解得答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天.(2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5400(元);方案②:学校需付费用为40×(120+10)=5200(元);方案③:学校需付费用为×(120+80+10)=5040(元).比较知,方案③既省时又省钱.故答案为:(1)60天,40天;(2)方案③既省时又省钱.。

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案) (100)

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案) (100)

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案)已知4x-y=6,用含x的代数式表示y,则y=______________.【答案】-6+4x.【解析】【分析】把x当作已知数,求出关于y的方程的解即可.【详解】解:∵4x-y=6,∴-y= 6-4x,∴ y= -6+4x,故答案为:-6+4x【点睛】本题考查了解二元一次方程,解题关键是把x当作已知数表示y.92.|5212||326|0x y x y+-++-=,则2x+4y=________.【答案】0【解析】【分析】根据非负数的性质列出方程组,求出x、y的值代入所求代数式计算即可.【详解】由题意得52120 3260x yx y+-⎧⎨+-⎩==,两个方程相减得:2x=6,解得x=3.把x=3代入5x+2y-12=0得,5×3+2y-12=0,解得y=-32.把x=3,y=-32代入2x+4y得:原式=2×3+4×(-32)=0.故答案为:0.【点睛】此题考查绝对值的非负性,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.93.对于方程238x y+=,用含x的代数式表示y,则可以表示为________.【答案】823xy-=【解析】【分析】根据等式的基本性质移项、系数化1即可.【详解】解:238x y+=移项,得382y x=-系数化1,得823xy-=故答案为:823xy-=.【点睛】此题考查的是用含一个字母的式子表示另一个字母,掌握等式的基本性质是解决此题的关键.94.已知 x ,y 是方程组2624x y x y +=⎧⎨+=⎩的解,则 x −y 的值为_____. 【答案】2【解析】【分析】用①-②可直接求解.【详解】2624x y x y +=⎧⎨+=⎩①② ①-②得:x −y=2故答案为:2【点睛】本题考查的是解二元一次方程组-加减消元法,掌握加减消元的方法是关键.95.以方程组2123y x y x =+⎧⎨=--⎩的解为坐标的点(,)x y 在第__________象限. 【答案】三【解析】【分析】解出x ,y 的值,再通过符号判断出在第几象限即可.【详解】解:由方程组2123y x y x =+⎧⎨=--⎩可得11x y =-⎧⎨=-⎩, 根据第三象限点的特点可知,点(-1,-1)在第三象限,故答案为:三.【点睛】本题考查了二元一次方程组的解法及直角坐标系中各象限点的坐标特点,解题的关键是熟记各象限点的坐标特点.96.几个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是68x y =⎧⎨=⎩,求方程组111222326326a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解.”乙说:“它们的系数有一定的规律,可以试试.”丙说:“能不能把第二个方程组的两个方程的两边都除以6,通过换元替换的方法来解决.”参考他们的讨论,你认为这个题目的解应该是_______.【答案】1224x y =⎧⎨=⎩【解析】【分析】把第二个方程组的两个方程的两边都除以6,通过换元替代的方法即可得到一个关于x ,y 的方程组,即可求解.【详解】第二个方程组的两个方程的两边都除以6得:11122211231123a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩, ∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是68x y =⎧⎨=⎩,∴162183xy⎧=⎪⎪⎨⎪=⎪⎩,解得1224xy=⎧⎨=⎩.故答案为:1224xy=⎧⎨=⎩.【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.97.若25(4)0x y x y+++--=,则___________xy=【答案】94【解析】【分析】根据非负数性质列出方程组,再用加减法解方程组可得.【详解】因为25(4)0x y x y+++--=,且250;(4)0x y x y+≥--≥+所以250;(4)0x y x y+=--=+所以5040 x yx y++=⎧⎨--=⎩解得1292 xy⎧=-⎪⎪⎨⎪=-⎪⎩,所以xy=94故答案为:94【点睛】 考核知识点:解二元一次方程组.利用非负数性质列方程组,再运用加减法求解是关键.98.小明用加减消元法解二元一次方程组236223x y x y +=⎧⎨-=⎩①②.由①-②得到的方程是________.【答案】53y =【解析】【分析】直接利用两式相减进而得出消去x 后得到的方程.【详解】236223x y x y +=⎧⎨-=⎩①②, ①-①得:53y =.故答案为:53y =.【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.99.已知x ,y 满足方程345254x y x y +=⎧⎨+=⎩的值为_____. 【答案】9727x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】根据二元一次方程组的加减消元法,即可求解.【详解】345254x y x y +=⎧⎨+=⎩①②, ①×5﹣②×4,可得:7x =9,解得:x =97, 把x =97代入①,解得:y =27, ∴原方程组的解是:9727x y ⎧=⎪⎪⎨⎪=⎪⎩. 故答案为:9727x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题主要考查二元一次方程组的解法,掌握加减消元法,是解题的关键.100.若3126x y x y -=⎧⎨+=⎩,则2x y -=________. 【答案】7【解析】【分析】解方程求出x 、y 的值,然后代入求值即可.3126x y x y -=⎧⎨+=⎩①② ①-②得-5y=-5,解得,y=1,把y=1代入①,得:x=4,∴2x-y=8-1=7.故答案为:7【点睛】此题主要考查了二元一次方程组的解法,解二元一次方程组的方法有代入消元法和加减消元法.。

人教版七年级数学下册-《二元一次方程组》课时练习(有答案)

人教版七年级数学下册-《二元一次方程组》课时练习(有答案)

七年级数学8.1《二元一次方程组》课时练习一、选择题:1、在下列方程中:(1)8x -4y =5;(2)3x 2-2y =1;(3)2x+3y =8;(4)2x +4y =3z ;(5)2xy +3x =0;(6)x 2+y 3=1.其中二元一次方程有( ) A .1个 B .2个 C .3个 D .4个2、某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( ) A .x ﹣y=20 B .x +y=20 C .5x ﹣2y=60 D .5x +2y=603、由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可得出x 与y 的关系是( ) A .2x +y =4 B .2x -y =4C .2x +y =-4D .2x -y =-44、下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧2x +y =3,x -2y =5B.⎩⎪⎨⎪⎧12x -y 3=1,xy =5C.⎩⎪⎨⎪⎧x -2y =1,x +3z =8D.⎩⎪⎨⎪⎧32x -23y =-1,x 3+2y=3 5、若方程x 2m -1+5y 3n -2=7是关于x ,y 的二元一次方程,则(m -n)2020=( ) A. 0 B. 1 C. -1 D.无法确定6、已知⎩⎪⎨⎪⎧x =2,y =-3是关于x ,y 的二元一次方程ax -(2a -3)y =7的解,则a 的值为( ) A. 2 B. 4 C.3 D.57、下列各组数是二元一次方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解的是 ( ) A.⎩⎪⎨⎪⎧x =2,y =1 B.⎩⎪⎨⎪⎧x =1,y =2 C.⎩⎪⎨⎪⎧x =1,y =-2 D.⎩⎪⎨⎪⎧x =2,y =-1 8、学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .B .C .D . 9、为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种 C .2种 D .1种10、已知⎩⎪⎨⎪⎧x =2,y =1是方程y =kx -3的一组解,则k =( ) A. 2 B. -1 C.3 D.111、夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .B .C .D .12、某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x 桶,买乙种水y 桶,则所列方程组中正确的是( )A.⎩⎪⎨⎪⎧8x +6y =250,y =75%xB.⎩⎪⎨⎪⎧8x +6y =250,x =75%y C.⎩⎪⎨⎪⎧6x +8y =250,y =75%x D.⎩⎪⎨⎪⎧6x +8y =250,x =75%y 二、填空题:13、将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有 种。

人教新版七年级数学下学期 第8章 二元一次方程组 单元练习题 含解析

人教新版七年级数学下学期 第8章 二元一次方程组 单元练习题  含解析

第8章二元一次方程组一.选择题(共8小题)1.下列各式,属于二元一次方程的个数有()①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y⑦x+y+z=1 ⑧y(y﹣1)=2y2﹣y2+x.A.1 B.2 C.3 D.42.若x4﹣3|m|+y3|n|=2009是关于x,y的二元一次方程,且mn<0,0<m+n≤3,则m﹣n的值是()A.B.2 C.4 D.﹣23.关于x,y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是()A.B.C.D.4.二元一次方程5a﹣11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解5.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.46.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=﹣1 C.x+y=9 D.x+y=﹣97.已知方程组和有相同的解,则a,b的值为()A.B.C.D.8.王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)()A.6 B.7 C.8 D.9二.填空题(共9小题)9.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.10.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=.11.已知方程x﹣8=2y,用含y的代数式表示x,那么x=.12.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为.13.我国古代有一种回文诗,倒念顺念都有意思,例如“上海自来水”,倒读起来便是“水来自海上”.“回文数“是一种数字.如:98789,这个数字正读是98789,倒读也是98789,正读倒读一样.下面的乘法算式中每个汉字代表一个数字,不同的汉字代表不同的数字,则绿水青山代表的四位数是.14.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,一个螺栓配两个螺母,应分配人生产螺栓,人生产螺母,才能使生产的螺栓和螺母正好配套.15.轮船顺流航行时m千米/小时,逆流航行时(m﹣6)千米/小时,则水流速度是.16.为确保信息安全,信息需加密传输,发送者将明文加密为密文传输给接收方,接收方收到密文后解密为明文,已知某种加密规则为:明文a,b对应密文为a﹣2b,2a+b,例如,明文1,2对应的密文是﹣3,4.当接收方收到的密文是2,9时,解密得到的明文是.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图所示,请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是cm.三.解答题(共4小题)18.已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,求A、B的值.19.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?20.(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?21.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)参考答案与试题解析一.选择题(共8小题)1.下列各式,属于二元一次方程的个数有()①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y⑦x+y+z=1 ⑧y(y﹣1)=2y2﹣y2+x.A.1 B.2 C.3 D.4【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【解答】解:①xy+2x﹣y=7,不是二元一次方程,因为其未知数的最高次数为2;②4x+1=x﹣y,是二元一次方程;③+y=5,不是二元一次方程,因为不是整式方程;④x=y是二元一次方程;⑤x2﹣y2=2不是二元一次方程,因为其未知数的最高次数为2;⑥6x﹣2y,不是二元一次方程,因为不是等式;⑦x+y+z=1,不是二元一次方程,因为含有3个未知数;⑧y(y﹣1)=2y2﹣y2+x,是二元一次方程,因为变形后为﹣y=x.故选:C.2.若x4﹣3|m|+y3|n|=2009是关于x,y的二元一次方程,且mn<0,0<m+n≤3,则m﹣n的值是()A.B.2 C.4 D.﹣2【分析】根据二元一次方程的定义,从二元一次方程的未知数次数为1这一方面考虑,先求出常数m、n的值,再进一步计算.【解答】解:根据二元一次方程的定义,x和y的次数必须都为1,所以4﹣3|m|=1,且3|n|=1,解得m=±1,n=±.又∵mn<0,0<m+n≤3,∴m=1,n=﹣.∴m﹣n=.故选:A.3.关于x,y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是()A.B.C.D.【分析】如果当a取一个确定的值时就得到一个方程,这些方程有一个公共解,说明无论a取何值,都不影响方程,即含a的项的系数相加为0.【解答】解:方程整理为ax﹣x+ay+2y+5﹣2a=0,a(x+y﹣2)﹣x+2y+5=0.根据题意,即可得,用加减法解得.故选:A.4.二元一次方程5a﹣11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解【分析】对于二元一次方程,可以用其中一个未知数表示另一个未知数,给定其中一个未知数的值,即可求得其对应值.【解答】解:二元一次方程5a﹣11b=21,变形为a=,给定b一个值,则对应得到a的值,即该方程有无数个解.故选:B.5.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.4【分析】由是二元一次方程组的解,根据二元一次方程根的定义,可得,即可求得m与n的值,继而求得2m﹣n的算术平方根.【解答】解:∵是二元一次方程组的解,∴,解得:,∴2m﹣n=4,∴2m﹣n的算术平方根为2.故选:C.6.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=﹣1 C.x+y=9 D.x+y=﹣9【分析】由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.【解答】解:由方程组,有y﹣5=m∴将上式代入x+m=4,得到x+(y﹣5)=4,∴x+y=9.故选:C.7.已知方程组和有相同的解,则a,b的值为()A.B.C.D.【分析】因为方程组和有相同的解,所以把5x+y=3和x﹣2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选:D.8.王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)()A.6 B.7 C.8 D.9【分析】设购买x支中性笔,y本笔记本,根据题意得出:9.2<0.8x+1.2y≤10,进而求出即可.【解答】解;设购买x支中性笔,y本笔记本,根据题意得出:9.2<0.8x+1.2y≤10,当x=2时,y=7,当x=3时,y=6,当x=5时,y=5,当x=6时,y=4,当x=8时,y=3,当x=9时,y=2,当x=11时,y=1,故一共有7种方案.故选:B.二.填空题(共9小题)9.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是﹣2或﹣3 .【分析】根据二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1.【解答】解:若方程组是关于x,y的二元一次方程组,则c+3=0,a﹣2=1,b+3=1,解得c=﹣3,a=3,b=﹣2.所以代数式a+b+c的值是﹣2.或c+3=0,a﹣2=0,b+3=1,解得c=﹣3,a=2,b=﹣2.所以代数式a+b+c的值是﹣3.故答案为:﹣2或﹣3.10.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=﹣2 .【分析】根据二元一次方程组的解的定义得到x=5满足方程2x﹣y=12,于是把x=5代入2x﹣y=12得到2×5﹣y=12,可解出y的值.【解答】解:把x=5代入2x﹣y=12得2×5﹣y=12,解得y=﹣2.∴★为﹣2.故答案为:﹣2.11.已知方程x﹣8=2y,用含y的代数式表示x,那么x=10y+40 .【分析】要用含y的代数式表示x,就要把方程中含有x的项移到方程的左边,其它的项移到方程的右边,再进一步合并同类型、系数化为1即可.【解答】解:移项,得x=2y+8,系数化1,得x=10y+40.故答案为:10y+40.12.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为72cm2.【分析】(方法一)设小长方形的长为xcm,宽为ycm,根据图形中给定的长度,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积和=大长方形的面积﹣6个小长方形的面积,即可求出结论;(方法二)设小长方形的宽为xcm,则长为(16﹣3x)cm,根据AB的长度,可得出关于x的一元一次方程,解之即可求出小长方形的长和宽,再利用阴影部分的面积和=大长方形的面积﹣6个小长方形的面积,即可求出结论.【解答】解:(解法一)设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴图中阴影部分的面积之和为16×(8+2×2)﹣6×10×2=72(cm2).(解法二)设小长方形的宽为xcm,则长为(16﹣3x)cm,依题意,得:x+(16﹣3x)﹣2x=8,解得:x=2,∴16﹣3x=10,∴图中阴影部分的面积之和为16×(8+2×2)﹣6×10×2=72(cm2).故答案为:72cm2.13.我国古代有一种回文诗,倒念顺念都有意思,例如“上海自来水”,倒读起来便是“水来自海上”.“回文数“是一种数字.如:98789,这个数字正读是98789,倒读也是98789,正读倒读一样.下面的乘法算式中每个汉字代表一个数字,不同的汉字代表不同的数字,则绿水青山代表的四位数是1089 .【分析】根据“回文数”的定义进而分析得出“绿”=1,“山”=9或“绿”=0,“山”=0,即可得出符合题意的答案.【解答】解:四位数×9还是四位数,说明有两种情况:“绿”=1,“山”=9或“绿”=0,“山”=0①“绿”=0,且“山”=0;不符合题意,②“绿”=1,且“山”=9三位数×9还是三位数,则说明“水”=0或1,代入可得1089为四位数.故答案为:1089.14.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,一个螺栓配两个螺母,应分配12 人生产螺栓,16 人生产螺母,才能使生产的螺栓和螺母正好配套.【分析】先设分配x人生产螺栓,则有(28﹣x)人生产螺母,根据x人生产的螺栓数×2=(28﹣x)人生产螺母数,由等量关系列出方程,求出方程的解即可.【解答】解:设分配x人生产螺栓,则有(28﹣x)人生产螺母,根据题意得:12x×2=(28﹣x)×18,解得:x=12,生产螺母的人数是:28﹣12=16(人);答:应分配12人生产螺栓,16人生产螺母,才能使每天生产量刚好配套.故答案为:12,16.15.轮船顺流航行时m千米/小时,逆流航行时(m﹣6)千米/小时,则水流速度是3千米/时.【分析】设轮船在静水中航行的速度为x千米/小时,水流速度为y千米/小时,根据“顺流航行速度=轮船速度+水流速度”与“逆流航行速度=轮船速度﹣水流速度”列出关于x、y的二元一次方程组,解方程组求出y值即可.【解答】解:设轮船在静水中航行的速度为x千米/小时,水流速度为y千米/小时,依题意得,解得:y=3.故答案为:3千米/时.16.为确保信息安全,信息需加密传输,发送者将明文加密为密文传输给接收方,接收方收到密文后解密为明文,已知某种加密规则为:明文a,b对应密文为a﹣2b,2a+b,例如,明文1,2对应的密文是﹣3,4.当接收方收到的密文是2,9时,解密得到的明文是4,1 .【分析】根据题意可知,本题中的相等关系是“a﹣2b=2”和“2a+b=9”,列方程组求解即可.【解答】解:根据题意列方程组,得,解得.答:解密得到的明文是4,1.故答案为:4,1.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图所示,请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是106 cm.【分析】通过理解题意可知本题存在两个等量关系,即单独一个纸杯的高度+3个纸杯叠放在一起比单独的一个纸杯增高的高度=9,单独一个纸杯的高度+8个纸杯叠放在一起比单独的一个纸杯增高的高度=14.根据这两个等量关系可列出方程组.【解答】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得,则99x+y=99×1+7=106.答:把100个纸杯整齐地叠放在一起时的高度约是106cm.三.解答题(共4小题)18.已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,求A、B的值.【分析】本题根据关键语“等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立”,只要让等式两边x的系数和常数分别相等即可列出方程组求解.【解答】解:由题意有,解得,答:A、B的值分别为、.19.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?【分析】设出平路和坡路的路程,从家里到学校走平路和下坡路一共用10分钟,从学校到家里走上坡路和平路一共用15分钟,利用这两个关系式列出方程组解答即可.【解答】解:设平路有xm,下坡路有ym,根据题意得,解得:,答:小华家到学校的平路和下坡路各为300m,400m.20.(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【分析】(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=90000;(2)算出各方案的利润加以比较.【解答】解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.21.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)【分析】(1)本题的等量关系是:甲做8天需要的费用+乙作8天需要的费用=3520元.甲组6天需付的费用+乙做12天需付的费用=3480元,由此可得出方程组求出解.(2)根据(1)得出的甲乙每工作一天,商店需付的费用,然后分别计算出甲单独做12天需要的费用,乙单独做24天需要的费用,让两者进行比较即可.(3)本题可将每种施工方法的施工费加上施工期间商店损失的费用,然后将不同方案计算出的结果进行比较,损失最少的方案就是最有利商店的方案.【解答】解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得解得答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二元一次方程组》§8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。

5、方程2x+y=5的正整数解是______。

6、若(4x-3)2+|2y+1|=0,则x+2= 。

7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。

8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。

二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。

A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=6 4、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对 5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( )A 、2B 、-2C 、2或-2D 、以上答案都不对. 6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y xB 、⎩⎨⎧=--=523x y x yC 、⎩⎨⎧=+=-152y x y xD 、⎩⎨⎧+==132y x y x7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y 8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( =)A、k=6 = B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+cy ax y x 27,试确定c a 、的值,使方程组:(1)有一个解;(2)有无数解;(3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。

§8.2消元——二元一次方程组的解法一、用代入法解下列方程组(1)⎩⎨⎧=+=-5253y x y x (2)⎩⎨⎧=--=523x y x y (3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 451332二、用加减法解下列方程组 (1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x(3)⎩⎨⎧=--=-7441156y x y x (4)⎩⎨⎧-=+-=-53412911y x y x(5)⎪⎩⎪⎨⎧=-=+2.03.05.0523151y x y x (6)⎩⎨⎧=+=+a y x a y x 343525( 其中a 为常数)三、解答题1、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。

2、求满足方程组⎩⎨⎧=-=--20314042y x m y x 中的y 值是x 值的3倍的m 的值,并求y x xy+ 的值。

3、列方程解应用题一个长方形的长减少10㎝,同时宽增加4㎝,就成为一个正方形,并且这两个图形的面积相等,求员长方形的长、宽各是多少。

§8.3实际问题与二元一次方程组列方程解下列问题1、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?2、一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。

3种包装的饮料每瓶各多少元?3、某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A 处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。

已知汽车速度是60千米/时,步行速度是4千米/时,求A 点距北山站的距离。

4、某校体操队和篮球队的人数是5:6,排球队的人数比体操队的人数2倍少5人,篮球队的人数与体操队的人数的3倍的和等于42人,求三种队各有多少人?5、甲乙两地相距60千米,A 、B 两人骑自行车分别从甲乙两地相向而行,如果A 比B先出发半小时,B 每小时比A 多行2千米,那么相遇时他们所行的路程正好相等。

求A 、B 两人骑自行车的速度。

(只需列出方程即可)6、已知甲、乙两种商品的原价和为200元。

因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。

求甲、乙两种商品的原单价各是多少元。

7、2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车各运多少吨垃圾。

8、12支球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分。

若有一支球队最终的积分为18分,那么这个球队平几场?9、现有A 、B 、C 三箱橘子,其中A 、B 两箱共100个橘子,A 、C 两箱共102个,B 、C 两箱共106个,求每箱各有多少个?第八单元测试一、选择题(每题3分,共24分) 1、表示二元一次方程组的是( ) A 、⎩⎨⎧=+=+;5,3x z y x B 、⎩⎨⎧==+;4,52y y x C 、⎩⎨⎧==+;2,3xy y x D 、⎩⎨⎧+=-+=222,11xy x x y x 2、方程组⎩⎨⎧=-=+.134,723y x y x 的解是( )A 、⎩⎨⎧=-=;3,1y xB 、⎩⎨⎧-==;1,3y xC 、⎩⎨⎧-=-=;1,3y xD 、⎩⎨⎧-=-=.3,1y x3、设⎩⎨⎧=+=.04,3z y y x ()0≠y 则=z x ( )A 、12B 、121- C 、12- D 、.1214、设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x 那么b a ,的值分别为( )A 、;3,2-B 、;2,3-C 、;3,2-D 、.2,3- 5、方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、16、在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,=y( )。

A 、23B 、-13C 、-5D 、13 7、关于关于y x 、的方程组⎩⎨⎧-=+-=-5m212y 3x 4m113y 2x 的解也是二元一次方程2073=++m y x 的解,则m 的值是( )A 、0B 、1C 、2D 、21 8、方程组⎩⎨⎧=-=-82352y x y x ,消去y 后得到的方程是( )A 、01043=--x xB 、8543=+-x xC 、8)25(23=--x xD 、81043=+-x x二、填空题(每题3分,共24分) 1、21173+=x y 中,若,213-=x 则=y _______。

2、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。

3、如果⎩⎨⎧=-=+.232,12y x y x 那么=-+-+3962242yx y x _______。

4、如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =___, b =__。

5、购面值各为20分,30分的邮票共27枚,用款6.6元。

购20分邮票_____枚,30分邮票_____枚。

6、已知⎩⎨⎧==⎩⎨⎧=-=310y 2x y x 和是方程022=--bx ay x 的两个解,那么a = ,b = 7、如果b a a b y x y x 4222542-+-与是同类项,那么 a = ,b = 。

8、如果63)2(1||=---a x a 是关于x 的一元一次方程,那么aa 12--= 。

三、用适当的方法解下列方程(每题4分,共24分)1、⎩⎨⎧=-=+-6430524m n n m2、⎪⎪⎩⎪⎪⎨⎧=--=-323113121y x y x3、⎩⎨⎧=-=+110117.03.04.0y x y x4、⎪⎩⎪⎨⎧=+=+-722013152y x y x 5、⎩⎨⎧-=+=--c y x c y x 72963112(c 为常数) 6、⎩⎨⎧-=++=--cd y x dc y x 23434(d c 、为常数)四、列方程解应用题(每题7分,共28分)1、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。

问一工多少名学生、多少辆汽车。

2、某校举办数学竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分,则这次数学竞赛中,及格的学生有多少人,不及格的学生有多少人。

3、有一个两位数,其数字和为14,若调换个位数字与十位数字,就比原数大18则这个两位数是多少。

(用两种方法求解)4、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进,两小时后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千米,求A、B二人的速度。

答案 第八章§8.1一、1、-4,-0,34,38-- 2、y x xy 33,33-=-=3、-1,14、2,35、⎩⎨⎧==⎩⎨⎧==12,31y x y x6、2.757、,23⎩⎨⎧==y x 8、11.5二、ADDBCCAADB三、1、当32≠≠a a 且时,=x 32-a 2、略 3、⎪⎩⎪⎨⎧==232y x§8.2一、1、⎪⎪⎩⎪⎪⎨⎧-==75720y x 2、⎩⎨⎧-=-=118y x 3、⎩⎨⎧-==12y x 4、⎩⎨⎧-=-=21y x 5、⎪⎪⎩⎪⎪⎨⎧-==196195y x6、⎪⎪⎩⎪⎪⎨⎧=-=75673y x 二、1、⎪⎩⎪⎨⎧==212n m 2、⎪⎪⎩⎪⎪⎨⎧-==2123y x 3、⎪⎪⎩⎪⎪⎨⎧-==221163y x 4、⎪⎩⎪⎨⎧==733y x 5、⎪⎪⎩⎪⎪⎨⎧==17121714y x 6、⎩⎨⎧==0y a x 三、1、⎩⎨⎧-==43b a 2、3 3、长3216、宽322§8.31、⎩⎨⎧==250150y x2、⎪⎩⎪⎨⎧===163050z y x 3、2.25Km 4、体操队10人,排球队15人,篮球队12人 5、设甲的速度是x 千米/小时,乙的速度是y 千米/小时, ⎪⎩⎪⎨⎧=-=+2130302y x yx 6、7、⎩⎨⎧==24y x8、平5场或3场或1场 9、⎪⎩⎪⎨⎧===545248C B A第八单元测试一、DBCABDCD 二、1、4 2、1169,9611+-y x 3、2 4、718 5、15 6、2,31- 7、53,115- 8、2-=a三、1、⎪⎩⎪⎨⎧=-=143y m 2、⎪⎪⎩⎪⎪⎨⎧==11121130y x 3、⎩⎨⎧==11y x 4、⎪⎪⎩⎪⎪⎨⎧==1136225y x 5⎪⎪⎩⎪⎪⎨⎧-==c y c x 2145 6、⎪⎪⎩⎪⎪⎨⎧+-=+=1361113115d c y d c x四 1、240名学生,5辆车 2、及格的70人,不及格的50人 3、原数是68 4、A 的速度5.5千米/时,B 的速度是4.5千米/时。

相关文档
最新文档