电容式传感器1完整ppt课件

合集下载

电容式传感器PPT课件

电容式传感器PPT课件

l1
C 22 (l l1) 21l1
d
ln( D ) ln( D )
D
d
d
ε1—被测液体介电常数 ε2—空气的介电常数 D、d—两同心圆柱的直径
l—柱体的有效总长度 l1——浸入液体的实际高度
C
2
ln( D
)
(1
2
)l1
d
K C 2 (1 2 )
l1 ln( D d )
第二节 电容传感器测量电路
5、新型电容式指纹传感器
FPS110电容式指纹传感器表面集合了300×300个电容器, 其外面是绝缘表面,当用户的手指放在上面时,由皮肤来组成 电容阵列的另一面。电容器的电容值由于导体间的距离而降低, 这里指的是脊(近的)和谷(远的)相对于另一极之间的距离。 通过读取充、放电之后的电容差值,来获取指纹图像。该传感 器的生产采用标准CMOS技术,大小为15×15mm2,获取 的图像大小为300×300,分辨率为500DPI。FPS110提供有 与8位微处理器相连的接口,并且内置有8位高速A/D转换器, 可直接输出8位灰度图像。FPS110指纹传感器整个芯片的功 耗很低(<200mw),价格也比较便宜(人民币600元以 下)。下图为利用FPS110获取的指纹图象
5、新型电容式指纹传感器
电容传感器系列 创新应用
第五章小结
1、变极距型电容传感器 输出呈非线性关系,灵敏度与极距平方成反比, 适合检测微小位移。
2、变面积型电容传感器
输出与被测量呈线性关系,适合检测较大的位移。 3、变介质型电容传感器
输出与被测量呈线性关系,典型应用是检测液位。 4、检测电路
运算放大器检测电路和电桥检测电路
剂固定两个截面为T型的绝缘体,

5第五章电容式传感器1精品PPT课件

5第五章电容式传感器1精品PPT课件

5.2 电容传感器输出特性
1 变极距型( d )
传感器原理及工程应用
电容的总的变化量
C
C1
C2
2C0
[
d d0
( d d0
)3
]
电容的相对变化量 C 2 d [1 ( d )2 ( d )4 ]
C0
d0
d0
d0
电容特征方程忽略高次项得: C 2 d
C0
d0
提问与解答环节
Questions And Answers
d
d0
d0
非性线误性差误δ就差在和2%d~d0 1有0%关之,间如。果也当就d是d0 说0.,02在~ 0d.1产时生,微则小非变线
化△d时,会产生比较大的非线性误差。显然这种单极板
式变间距型传感器适用于微小位移的测量
第5章 电容式传感器
传感器原理及工程应用
5.2 电容传感器输出特性
1 变极距型(d)
第5章 电容式传感器 5.2 电容传感器输出特性
1 变极距型( d )
传感器原理及工程应用
差动结构的电容特征方程式为(当动极板向上移动时)
C1
C0
C
C0
1
1 d
d0
C0[1
d d0
( d )2 d0
]
定极板
C2
C0 [1
d d0
( d d0
)2
]
动极板
C1 d1 C2 d2
定极板
第5章 电容式传感器
A
d0 d
A
d0
(1
d d0
)
C01ຫໍສະໝຸດ 1 dd0增加的电容量为:
电容的相对变化量:
第5章 电容式传感器

电容式传感器PPT精品文档70页

电容式传感器PPT精品文档70页

0R2 2dr2
0
d为极间距离,动极板转动Δα后
则:
c1

c01

0

c2

c0
1
0

c2 c1 c1 c2 0
07.01.2020
18
l
A
r α0 R
C B
O
柱面板变面积型
07.01.2020
19
同理:
初始时:
lr C A0C C B0 CC 0 Rr 0
第五章: 电容式传感器
电容式传感器是将被测非电量的变化转化为电容量的 一种传感器。结构简单、高分辨力、可非接触测量, 并能在高温、辐射和强烈震动等恶劣条件下工作,这 是它独特优点。随着集成电路技术和计算机技术的发 展,促使它扬长避短,成为一种很有发展前途的传感 器。
电容传感器
07.01.2020
1
1 基本原理与结构类型
c d1
1d2
S
2dn
n
d1 d2 d
d1,d2,….分别是各层的厚度 1, 2, ….是各层的介电常数
07.01.2020
4
二、结构类型
按改变的参数: 变极距、变面积、变介质 按被测位移量: 线位移、角位移 按组成的方式: 单一式、差动式 按极板的形状:平行平面型、平行曲面型
9
移动后两极板的电容分别为:
c1d0Sd1 S dd0 d0c0 1 dd 0
c2d0Sd1 S dd0 d0c0 1 dd 0
07.01.2020
10

d d
1

c1c0 1 dd 0 dd 0 2 dd 0 3

电容式传感器PPT课件

电容式传感器PPT课件



通过测量电路取出两电容器的差值
C=C1
C2

C0 2
d d0

2
d d0
3


2
d d0
5



C =2 C0
d d0

1

d d0
2



d d0
4

C1

C0
1 1- d
d0
C2

C0
1 1 d
d0
C1=C0

1

d d0



d d0
2



d d0
3



C2=C0

1

d d0



d d0
2



d d0
3

较小的d0会提高灵敏度,但过小容易引起击穿或短路,可 以极板间加入高介电常数材料,如云母。形成串联电容。
C0=

0 r
d0
A

0A
d0
Cg=
0 g
dg
A
g 0
d0 dg
C CgC0
A
Cg C0
dg d0
0 g 0
εg—云母的相对介电常数,为7.
一般极板间距在25~200um范围内,而最大位移应小于 间距的十分之一,因此这种电容式传感器主要用于微位移 测量。


d d0
6



C 2 d

电容式传感器原理及其应用PPT课件

电容式传感器原理及其应用PPT课件

2.1 变面积式电容传感器
变面积式电容式传感器通常分为线位移型 和角位移型两大类。
〔1〕线位移变面积型
常用的线位移变面积型电容式传感器可分 为平面线位移型和柱面线位移型两种结 构。
➢ 对于平板状结构,在图4-2〔a〕中,两极板有效覆盖面积就发生变化,电容 量也随之改变,其值为:

➢ 式中,
,为初始电容值。
➢ 当电容式传感器的电介质改变时,其介电常数变化, 也会引起电容量发生变化。
➢ 变介电常数式电容传感器就是通过介质的改变来实 现对被测量的检测,并通过传感器的电容量的变化 反映出来。它通常可以分为柱式和平板式两种,如 下图。
〔a〕柱式
〔b〕平板式
变介电常数式电容传感器
➢ 变介电常数式电容传感器的两极板间假设存在导电 物质,还应该在极板外表涂上绝缘层,防止极板短 路,如涂上聚四氟乙烯薄膜。
➢ 电桥的输出电压为:
2.2 变压器电桥电路
电容式传感器接入变压器电桥测量电路如下图,它可 分为单臂接法和差动接法两种。
〔a〕单臂接法
〔b〕差动接法
〔1〕单臂接法
图4-8(a)所示为单臂接法的变压器桥式测量电路,高 频电源经变压器接到电容桥的一个对角线上,电容 构成电桥的四个臂,其中 为电容传感器。
〔a〕电容器的边缘效应
〔b〕带有等位环的平板式电容器
图4-14 等位环消除电容边缘效应原理图
〔2〕保证绝缘材料的绝缘性能 ① 温度、湿度等环境的变化是影响传感器中绝缘材料
性能的主要因素。 ②传感器的电极外表不便清洗,应加以密封,可防尘、
防潮。 ③ 尽量采用空气、云母等介电常数的温度系数几乎为
零的电介质作为电容式传感器的电介质。 ④ 传感器内所有的零件应先进行清洗、烘干后再装配。

电容式传感器资料课件

电容式传感器资料课件

软件校准
通过修改传感器的软件算 法,如补偿算法、滤波算 法等,来提高传感器的测 量精度。
综合校准
结合硬件和软件两种方式 ,对传感器进行全面校准 。
电容式传感器的标定实验及数据处理
实验设计
根据传感器的工作原理和实际应用场景,设 计标定实验方案。
数据采集
在实验过程中,采集传感器在不同条件下的 输出数据。
电容式传感器在温度测量中的应用
总结词
高精度、快速响应、稳定性好
详细描述
电容式传感器可将温度变化转化为电容量的变化,从而实现 对温度的精确测量。具有高精度、快速响应、稳定性好等优 点,适用于各种需要温度测量的场合,如环境监测、医疗设 备、工业生产等。
05
电容式传感器的校准与标 定
电容式传感器的误差来源及影响分析
展望电容式传感器的未来发展方向
高性能化 随着科技的不断进步,电容式传 感器的性能将不断提高,测量精 度和灵敏度将得到进一步提升。
微型化 随着微纳制造技术的发展,未来 的电容式传感器将更加微型化, 能够应用于更小的空间和更复杂 的场景。
智能化 未来的电容式传感器将更加智能 化,具备自校准、自补偿、自诊 断等功能,能够更好地适应复杂 环境下的测量需求。
电容式传感器所面临的挑战与对策
温度影响
电容式传感器的电容值会随温度变化而变化,给测量带来误差。为了减小温度影响,需要 采用温度补偿技术、选用具有良好温度特性的材料以及优化传感器结构设计等措施。
交叉灵敏
交叉灵敏是指电容式传感器对不同方向的干扰敏感,导致测量误差。为了减小交叉灵敏影 响,需要优化传感器结构设计、选用具有良好方向特性的材料以及采用信号处理技术等措 施。
电极材料
根据应用场景和敏感材料 选择电极材料,如金、银 、不锈钢等。

电容式传感器 课件

电容式传感器 课件
Cx是传感器电容 C是固定电容 u0是输出电压信号
uC
u0


S
d
式中“负号”表示输出电压的 相位与电源电压反相。
上式说明 u 0与d成线性关系
脉冲宽度调制电路
脉冲宽度调制电路(PWM)是利用传感器的电容充放 电使电路输出脉冲的占空比随电容式传感器的电容量 变化而变化,然后通过低通滤波器得到对应于被测量 变化的直流信号。
变,导致两极板间的电容量发生变化
当 0 时
C0

A0
d
当 0 时
C


A0
(1



)
d

C0 (1
)

推导过程
电容与角位移成线性关系。其灵敏度为
K dC A d d
变面积式电容传感器的输出是线性的,灵敏度K是一 常数。
3 变介电常数型电容式传感器
极距变化型电容传感器的灵敏度与极距的平方成正比, 极距越小灵敏度越高。但极距过小,容易引起电容器击 穿或短路。为此,极板间可采用高介电常数的材料(云 母、塑料膜等)作介质。
原理上的非线性 ,要修正。
2 变面积式电容传感器
面积变化式电容传感器在工作时的极距、介质等 保持不变,被测量的变化使其有效作用面积发生 改变。
特点:运算式电路的原理较为简单,灵敏度和精度最 高。但一般需用“驱动电缆”技术来消除电缆电容的 影响,电路较为复杂且调整困难
2020/1/17
28
C ~u
Cx
A
由运算放大器工作原理可知
u0

1 / ( jCx ) 1 / ( jC)
u


C Cx

电容式传感器PPT课件

电容式传感器PPT课件
20
CA0CCB0C0 r R2r2a
0
CAC 0 CBC 0 R 0rlrra
A B C
21
5.1.3变介质型电容传感器
这种电容传感器有较多的结构型式,可以用来测量纸 张、绝缘薄膜等的厚度,也可用来测量粮食、纺织品、 木材或煤等非导电固体物质的湿度。
图中两平行极板固定不动,极距为 0 ,相对介电常数
现以变极距型为例,设定极板厚度为 g 0 ,绝缘件厚
度 b 0 ,动极板至绝缘底部的壳体长为a 0 ,各零件材料的
线膨胀系数分别为aa、ab、ag。当温度由t0 变化 Δt 后,极
间隙将由δ0=a0-b0-g0变为δt由此一起的温度误差为
35
e t0 t t0 a 0 a a a 0 a a b 0 a b b 0 a bg 0 a g g 0 a gt t
对变化量为 1 = 0 - , 2 = 0 +
16
C C 0 C 1C 0 C 22 0 1 0 2 0 4
略去高次项,可得近似得线性关系
C 2
C0
0
相对非线性误差
e
f

ef2 2 //00310% 0/0210% 0
上式与前几式比较可知,差动式比单级式灵敏 度提高一倍,且误差大大减小。
29
5.2.3静电引力
电容式传感器两极板间因存在静电场,而作用 有静电引力或力矩。静电引力的大小与极板间 的工作电压、介电常数、极间距离有关。通常 这种静电引力很小,但在采用推动力很小的弹 性敏感元件情况下,须考虑因静电引力造成的 测量误差。查阅相关手册得到各种电容传 感 器静电引力的计算公式。
由此可见,消除温度误差的条件为: a0aab0abg0ag0
或者满足条件

传感器与检测技术基础电容式传感器ppt课件

传感器与检测技术基础电容式传感器ppt课件

C0 C0
x l
1 1 2
d1 1
(3 18)
d2 2
该式表明:电容量C与位移x成线性关系。
圆筒式液位传感器
2r2
2r1
C1
C2
C
hx
h
图3-8 液位传感器的等效电路 (c) 液位传感器
C
2 0 h
lnr2 / r1
2 0 hx lnr2 / r1
A Khx
(3 19)
其中
K
2 lnr2
T1、T2 —分别为C1和C2的充电时间;
U1—触发器输出的高电位。
C1、C2的充电时间T1、T2为:
T1
R1C1
ln U1 U1 Ur
T2
R2C2
ln U1 U1 Ur
V
235.6L
图5-5 变面积型电容传感器原理图
3.2 电容式传感器的测量电路
3.2.1 电容传感器的等效电路
R
L
RP
C
C
(a)
(b)
图3-9 电容传感器等效电路
3.2.2 电容传感器的测量电路 1. 电桥电路
Cr1
C
USC
R
R
U (a)
Cr1 Cr2
R USC
R
U (b)
图3-10 电容传感器构成的交流电桥
2 0 hx lnr2 / r1
A Khx
所以
Cmin
2 0h
ln r2
2
( 8.85pF / m )1.2m ln 40
41.46 pF
r1
8
同理,当被测液位高度最大,即hx= h =1.2m时传感器的电容量最大。
C max

电容式传感器教学课件

电容式传感器教学课件

THANKS
感谢观看
电容式传感器在物联网领域的应用前景
01
02
03
智能家居
用于监测家庭环境参数, 如温度、湿度、空气质量 等,实现智能家居的自动 化控制。
医疗健康
用于监测人体生理参数, 如心率、血压、呼吸等, 为医疗诊断和治疗提供数 据支持。
工业自动化
用于监测工业设备的运行 状态和工作参数,提高设 备的可靠性和安全性。

电容式传感器的制造工艺流程
绝缘层制作
阐述如何制备电容传感器的绝 缘层,包括材料选择、涂覆工 艺和加工方法。
敏感层制作
阐述如何制备电容传感器的敏 感层,包括材料选择、涂覆工 艺和热处理方法。
制造工艺流程概述
介绍电容式传感器的制造工艺 流程及各环节的主要内容。
电极制作
介绍如何制备电容传感器的电 极,包括材料选择、加工方法 和焊接工艺。
电容式传感器教学课件
目录
• 电容式传感器概述 • 电容式传感器的设计与制造 • 电容式传感器的性能测试与校准 • 电容式传感器的应用实例 • 电容式传感器的未来发展与挑战
01
电容式传感器概述
电容式传感器的定义与工作原理
定义
电容式传感器是一种利用电容原 理检测物理量变化的传感器。
工作原理
通过改变电容器极板间距、面积 或介电常数等参数,使得电容值 发生变化,从而检测被测量物体 的变化。
阶跃响应
测量电容式传感器在阶跃输入下的输出响应 ,以评估其动态响应速度和稳定性。
动态范围
测量电容式传感器在不同动态范围内的输出 响应,以评估其动态测量范围。
电容式传感器的校准方法与步骤
校准前的准备工作
检查电容式传感器的 外观、连接线路和电 源等是否正常。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图4.16 差动脉冲宽度调制电路
.
11
(a)C1 = C2
(b)C1 > C2 图4.17 电路各点的充放电波形
当电阻R1 = R2 = R 时,则有
Uo
C1 C1
C2 C2
UH
由此可知,差动脉冲宽度调制型电路,其输出电压与电容变化成线性关系。
.
12
4.2.3 调频电路
1.载波频率改变的调幅调频式
S
d02
图4.6 基本的变间隙式电容传感器
差动式电容的相对变化量和灵敏度
分别为 C 2 d
C0
d0
KC2C0 2S
d d0 d02
与基本结构间隙式传感器相比,
差动式传感器的非线性误差减少了一个 图4.7 差动结构的变间隙电容传感器 数量级,而且提高了测量灵敏度,所以
在实际应用中被较多采用。 .
3.寄生电容的影响 (1)减小引线长度。
图4.19 极板周边加装同心圆环示意图
(2)屏蔽。
.
14
4.4 电容式传感器的应用
1.电容式位移传感器 采用了差动式结构。当测量杆随被测位移运动而带动活动电极位
移时,导致活动电极与两个固定电极间的覆盖面积发生变化,其 电容量也相应产生变化。
图4.20 变面积式位移传感器结构图
电容式传感器可用于测量压力、位移、振动、液 位、厚度。
.
2
4.1 电容式传感器工作原理
C=ε.S/d=ε0. εr.S/d ε=ε0. εr
C为电容 ε0=8.85×10-12F/m 对介电常数
εr为相
用S为极板相对覆盖面积m2 d为极板间距
电容式传感器分为变面积式、变间隙式、变介电
常数式三大类,其中变面积式可分为直线位移式 、角位移式;变介电常数式可分为平面介电常数 式、圆筒介电常数式。
第4章 电容式传感器
4.1 电容式传感器工作原理及分类 4.2 测量电路 4.3电容式传感器的应用 1F=106μF=109 nF=1012 pF
.
1
电容式传感器是将被测量的变化转换为电容量 变化的一种传感器,它具有结构简单、分辨率高 、抗过载能力大、动态特性好;且能在高温、辐 射和强烈振动等恶劣条件下工作。
1.温度影响
应尽量选择温度系数小且稳定的金属材料做电容器极板,如铁镍
合金;此外,应采用择绝缘性能良好的材料,如陶瓷、石英等高绝缘
电阻、低吸湿性材料。
2.电场的边缘效应
增加极板面积和减小极间距离可减 小边缘效应的影响;当检测精度要求很 高时,可考虑加装等位环,如图4.19所 示,即在极板周边外围的同一平面上加 装一个同心圆环,致使极板周边极间电 场分布均匀,以消除边缘效应的影响。
图4.13 变压器交流电桥电路
(2)差动接法变压器交流电桥电路
U & o( (C C 0 0 C C) ) ( (C C 0 0 C C) )U & s C C 0U & s
.
9
2.运算放大器式测量电路
理想运算放大器输出电压与输入电压之间的关系为
uo
ui
C0 Cx
采用基本运算放大器的最大特点是电路输出电压与电容传感器的
常数x。因此,可将此传感器用作介 电常数x测量仪。
图4.8 平面式测位移传感器 图4.9 测厚仪
.
7
2.圆柱式 电介质电容器大多采用圆柱式。其基
本结构如图4.10所示,内外筒为两个 同心圆筒,分别作为电容的两个极。
C 2π h ln R r
如图4.11所示为一种电容式液面计的
原理图。在介电常数为x的被测液体中
,放入该圆柱式电容器,液体上面气体
的介电常数为,液体浸没电极的高度
就是被测量x。
CC 1C 2abx
液面计的输出电容C与液面高度x成线 性关系。
.
图4.10 圆柱式电容器结构图
图4.11 电容式液面计 8
4.2 测量电路
4.2.1 调幅型电路
1.交流电桥电路 (1)单臂桥式电路
图4.12 单臂接法交流电桥电路
极距成正比,使基本变间隙式电容传感器的输出特性具有线性特性

uo
ui
C0
S
gd
图4.14 运算放大器式测量电路 .
图4.15 调零电路 10
4.2.2 差动脉冲宽度调制电路
电路的工作原理:利用传感器电容充放电,使电路输出脉冲的 占空比随电容传感器的电容量变化而变化,再通过低频滤波器得 到对应于被测量变化的直流信号。
6
4.1.3 变介电常数式电容传 感器
1.平面式
CCC0rd10ax
电 容 变 化 量 C 与 位 移 x 呈 线 性 关 系 。
CC C 11 C C 22xd(xS x)x
若被测介质的介电常数x已知,测
出输出电容C的值,可求出待测材料 的厚度x。若厚度x已知,测出输出电 容C的值,也可求出待测材料的介电
.
3
4.1 电容式传感器工作原理
4.1.1 变面积式电容传感器
变面积式电容传感器的两个极板中 ,一个是固定不动的,称为定极板 ,另一个是可移动的,称为动极板 。
1.直线位移式
图4.2 变面积型电容传感器原理图
(a x) ba b x b
电C 容 的相对d 变化量 和灵d敏 度d 为 C 0 C C b
C
x
所为示提的高结测构量形精式度,,以也减常少用动K如极图板x4与.3 d 定极板之间的相对极距可能变化而
C 0 a 引起的测量误差。
图4.3 中间极板移动变面积式电 容传感器原理图
.
4
4.1 电容式传感器工作原理
2.角位移式 当被测的变化量使动极板有一角位移q 时,两极板间互相
覆盖的面积被改变,从而改变两极板间的电容量C。

C π
S(1
)
d

图4.4 角位移式电容传感器原理图
在实际应用中,也采用差动结构,以提高灵 敏度。角位移测量用的差动式结构如图4.5所示。 图4.5 差动角位移式电
容传感器原理图
.
5
4.1.2 变间隙式电容传感 器
基本结构电容的相对变化量和灵 敏度分别为
C d C0 d0
K C d
C0 d0
.
15
2.电容式压力传感器 该压力传感器可用于测量微小压差。
图4.21 差动电容式压力传感器原理图
该测量电路把电容式传感器与一个电感元件配合,构成一个振荡 器谐振电路。当传感器工作时,电容量发生变化,导致振荡频率产生 相应的变化。再经过鉴频电路将频率的变化转换为振幅的变化,经放 大器放大后即可显示,这种方法称为调频法。
图4.18 调频-鉴频电路原理图
调频振荡器的振荡频率
f 1 2π LC
.
13
4.3 实际中存在的问题及其解决办法
相关文档
最新文档