湘教版数学九年级下册期末测试
湘教版九年级数学下册期末试卷及答案【完整版】

湘教版九年级数学下册期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩4.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .16.用配方法解方程2x 2x 10--=时,配方后所得的方程为( )A .2x 10+=()B .2x 10-=()C .2x 12+=()D .2x 12-=()7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.如图,⊙O 中,半径OC ⊥弦AB 于点D ,点E 在⊙O 上,∠E=22.5°,AB=4,则半径OB 等于( )A .2B .2C .22D .39.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣1 10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23a a ⋅=______________.2.分解因式:x 2﹣9x =________.3.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为(8,6),M 为BC 中点,反比例函数k y x=(k 是常数,k ≠0) 的图象经过点M ,交AC 于点N ,则MN 的长度是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:214111x x x ++=--2.已知关于x 的一元二次方程:x 2﹣2x ﹣k ﹣2=0有两个不相等的实数根.(1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.3.已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.4.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.5.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取学生进行调查,扇形统计图中的x .(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、D5、A6、D7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、a52、x(x-9)3、k<6且k≠34、85、706、5三、解答题(本大题共6小题,共72分)1、3x=-2、(1)k>﹣3;(2)取k=﹣2, x1=0,x2=2.3、(1)略;(2)结论:四边形ACDF是矩形.理由略.4、解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形.∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.∴∠ADB=90°.∴平行四边形AEBD是矩形.(2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.5、(1)200,15%;(2)统计图如图所示见解析;(3)36;(4)900.6、(1)4元或6元;(2)九折.。
湘教版九年级下册数学期末测试卷及含答案

湘教版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图仔细观察其中的两个尺规作图痕迹,两直线相交于点O,则下列说法中不正确的是()A.EF是△ABC的中位线B.∠BAC+∠EOF=180°C.O是△ABC的内心D.△AEF的面积等于△ABC的面积的2、如图,PA,PB分别切⊙O于点A,曰,PA=12,CD切⊙O于点E,交削,PB 于点C,D两点,则△PCD的周长是()A.12B.18C.24D.303、如图,扇形AOB中,∠AOB=150°,AC=AO=6,D为AC的中点,当弦AC沿扇形运动时,点D所经过的路程为()A.3 πB.C.D.4 π4、已知如图抛物线y=ax2+bx+c,下列式子正确的是()A.a+b+c<0B.b 2﹣4ac<0C.c<2bD.abc>05、对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( )A.y =-2x 2 + 8x +3B.y =-2x 2–8x +3C.y = -2x 2 + 8x –5 D.y =-2x 2–8x +26、某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A. B. C. D.7、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n的值为()A.2B.3C.4D.58、已知二次函数y=kx2-7x-7的图象和x轴有交点,则k的取值范围是()A.k>-B.k>- 且k≠0C.k≥-D.k≥- 且k≠09、如图,已知⊙O的直径AB⊥CD于点E,则下列结论一定错误的是()A.CE=DEB.AE=OEC.D.△OCE≌△ODE10、将抛物线y =(x-4)2+2向右平移1个单位,再向下平移3个单位,则平移后抛物线的表达式为()A.y =(x-3) 2+5B.y =(x-3) 2-1C.y =(x-5) 2+5D.y =(x-5) 2-111、下列事件中,必然事件是( )、A.打开电视,它正在播广告B.掷两枚质地均匀的正方体骰子,点数之和一定大于6C.早晨的太阳从东方升起D.没有水分,种子发芽12、抛物线y=ax2﹣2ax+4(a>0),下列判断正确的是( )A.当x>2时,y随x的增大而增大B.当x<2时,y随x的增大而增大 C.当x>1时,y随x的增大而增大 D.当x<1时,y随x的增大而增大13、下列说法中,正确的是()A.将一组数据中的每一个数据都加同一个正数,方差变大B.为了解全市同学对书法课的喜欢情况,调查了某校所有女生C.“任意画出一个矩形,它是轴对称图形”是必然事件D.为了审核书稿中的错别字,选择抽样调查14、如图为5×5的网格图,A,B,C,D,O均在格点上,则点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心15、如图,⊙O的直径CD⊥AB,∠AOC=50°,则∠CDB大小为()A.25°B.30°C.40°D.50°二、填空题(共10题,共计30分)16、如图,在⊙O中,弦AB、CD相交于点P,若AB=CD,∠APO=65°,则∠APC= ________度.17、如图,在⊙O中,圆心角∠AOB=120°,弦AB=2 cm,则⊙O的半径是________.18、把抛物线先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式为________19、如图,中,为的中点,以为圆心,长为半径画一弧交于点,若,,,则扇形的面积为________.20、在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球________个.21、如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为________ cm2.22、小李和小王在拼图游戏中,从如图三张纸片中任取两张,如拼成房子,则小李赢;否则,小王赢.你认为这个游戏公平吗?________(填“公平”或“不公平”)23、△ABC中,∠A=40°,若点O是△ABC的外心,则∠BOC=________°;若点I是△ABC的内心,则∠BIC=________°.24、对某批乒乓球的质量进行随机抽查,结果如下表所示:随机抽取的乒乓球数优等品数优等品率当越大时,优等品率趋近于概率________.(精确到)25、一个圆的半径为2,那么它的弦长d的取值范围________.三、解答题(共5题,共计25分)26、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。
(全优)湘教版九年级下册数学期末测试卷及含答案(适用考试)

湘教版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是().A.从甲箱摸到黑球的概率较大B.从乙箱摸到黑球的概率较大C.从甲、乙两箱摸到黑球的概率相等D.无法比较从甲、乙两箱摸到黑球的概率2、在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.若横、纵坐标都是整数的点叫做整点,当抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,可得m的取值范围为()A. <m≤B. ≤m<C.0<m<D.0<m≤3、一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是A.3B.4C.5D.64、抛物线y=-2(x-3)2-4的顶点坐标是()A.(3,4)B.(-3,4)C.(3,-4)D.(2,4)5、将抛物线向左平移个单位,再向下平移个单位后所得抛物线的解析式为()A. B. C. D.6、抛掷一个质地均匀的正方体玩具(它的每个面上分别标有数字1,2,3,4,5,6),它落地时向上的数是3的概率是()A. B.1 C. D.7、抛物线经过点与,若,则b的最小值为()A.2B.C.4D.8、小张同学去展览馆看展览,该展览馆有2个验票口A、B(可进出),另外还有2个出口C、D(不许进).小张不从同一个验票口进出的概率是多少()A. B. C. D.9、下列说法中,正确的是()A.生活中,如果一个事件不是不可能事件,那么它就必然发生B.生活中,如果一个事件可能发生,那么它就是必然事件C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生D.生活中,如果一个事件不是必然事件,那么它就不可能发生10、图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB1路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到BD.无法确定11、如图,在等边三角形ABC中,点P是BC边上一动点(不与点B,C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A. B. C.D.12、如图,一张半径为1的圆形纸片在边长为的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A. B.4-π C.π D.13、有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()A.s=﹣3x 2+24xB.s=﹣2x 2﹣24xC.s=﹣3x 2﹣24x D.s=﹣2x 2+24x14、一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为()A.6厘米B.12厘米C. 厘米D. 厘米15、如图,二次函数的图象如图所示,下列结论:①;②;③一元二次方程有两个不相等的实数根;④当或时,.上述结论中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为________m.17、若⊙A的半径为5,圆心A的坐标为(3,4),点P的坐标是(5,8),则点P在⊙A________.18、已知抛物线y=x2﹣k的顶点为P,与x轴交于点A,B,且△ABP是正三角形,则k的值是________.19、已知△ABC的外心为O,内心为I,∠BOC=120°,∠BIC=________.20、如图,利用成直角的墙角(墙足够长),用10m长的栅栏围成一个矩形的小花园,花园的面积S(m2)与它一边长a(m)的函数关系式是________,面积S的最大值是________.21、AB是半圆O的直径,AB=8,点C为半圈上的一点将此半圆沿BC所在的直线折叠,若配给好过圆心O,则图中阴影部分的面积是________.22、如图是二次函数y=ax2+bx+c的部分图像,在下列四个结论中正确的是________.①不等式ax2+bx+c>0的解集是-1<x<5;②a-b+c>0;③b2-4ac>0;④4a+b <0.23、如图,AB是⊙O的直径,点C,D都在⊙O上,连接CA,CB,DC,DB.已知∠D=30°,BC=3,则AB的长是________.24、将二次函数化为的形式,则________.25、如图,AB为☉O的切线,切点为B,连接AO,AO与☉O交于点C,BD为☉O的直径,连接CD.若∠A=30°,☉O的半径为2,则图中阴影部分的面积为________.三、解答题(共5题,共计25分)26、篮球课上,朱老师向学生详细地讲解传球的要领时,叫甲、乙、丙、丁四位同学配合朱老师进行传球训练,朱老师把球传给甲同学后,让四位同学相互传球,其他人观看体会,当甲同学第一个传球时,求甲同学传给下一个同学后,这个同学再传给甲同学的概率27、如图,直线y= 与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P与y轴相切于点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,求横坐标为整数的点P的个数.28、”4.20芦山地震”发生后,各地积极展开抗震救援工作,一支救援车队经过如图1所示的一座拱桥,拱桥的轮廓是抛物线型,拱高6m,跨度20m,相邻两支柱间的距离均为5m,将抛物线放在所给的直角坐标系中(如图2所示),拱桥的拱顶在y轴上.(1)求拱桥所在抛物线的解析式;(2)求支柱MN的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2米的隔离带),其中的一条行车道能否并排行驶宽2m、高2.4m的三辆汽车(隔离带与内侧汽车的间隔、汽车间的间隔、外侧汽车与拱桥的间隔均为0.5m)?请说说你的理由.29、珍珍与环环两人一起做游戏,游戏规则如下:每人从1,2,3,4,5,6,7,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于她们各自选择的数,就再做一次上述游戏,直到决出胜负.若环环事先选择的数是5,用列表法或画树状图的方法,求她获胜的概率.30、已知二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象;(3)该函数的图像经过怎样的平移得到y=x2的图像?参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、C5、C6、D7、D8、D9、C10、C11、C12、B13、A14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
湘教版九年级下册数学期末测试卷及含答案

湘教版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.D.2、把抛物线y=x2+1向右平移3个单位,再向下平移2个单位,得到抛物线()A.y=(x+3)2﹣1B.y=(x+3)2+3C.y=(x﹣3)2﹣1D.y=(x﹣3)2+33、将抛物线向左平移个单位后,再向上平移个单位,得到新抛物线的解析式为()A. B. C. D.4、如图,四边形ABCD是⊙O的内接四边形,∠ABC=100°,则∠ADC=()A.70°B.80°C.90°D.100°5、如图,在平面直角坐标系中,抛物线y=a(x-m)²+1(a<0)与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C,顶点是D,且∠DAB=45°,点C绕O逆时针旋转90°得到点C',当-2≤m≤5时,BC'的长度范围是( )A.0≤BC'≤1B.0≤BC'≤18C.1≤BC'≤D.2≤BC'≤6、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n个.随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n的值为( )A.2B.3C.4D.57、如图所示是一个正方体展开图,图中六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”、六个字,将其围成一个正方体后,则与“奋”相对的字是()A.斗B.新C.时D.代8、如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2 D.89、如图,为的直径,弦,垂足为点,连接,若,,则的长度为()A.2B.1C.3D.410、在如图四个几何体中,主视图与俯视图都是圆的为()A. B. C. D.11、点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1, y2, y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y312、将抛物线y=(x﹣1)2+4先向右平移4个单位长度,再向下平移3个单位长度,得到的抛物线的顶点坐标为()A.(5,4)B.(1,4)C.(1,1)D.(5,1)13、若对任意实数x,二次函数的值总是非负数,则的取值范围是()A. B. C. D.14、图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x 2B.y=2x 2C.y=﹣x 2D.y= x 215、在二次函数的图像中,若随的增大而增大,则的取值范围是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,AB为⊙0的直径,点C、D在⊙0上,且∠ADC=52°,则∠BAC=________°.17、小明的卷子夹里放了大小相同的试卷共12页,其中语文6页、数学4页、英语2页,他随机地从卷子夹中抽出1页,抽出的试卷恰好是数学试卷的概率为________.18、如图,若,则________,19、如图是一个正方体的表面展开图,如果正方体相对的面上标注的值相等,那么x+2y=________.20、如图,点A,B,C都在⊙O上,若OB=3,∠ABC=30°,则劣弧AC的长为________.21、二次函数y=2x2+bx+3的图象的对称轴是直线x=1,则常数b的值为________.22、如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(-2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是________.23、如图,△ABC是定圆O的内接三角形,AD为△ABC的高线,AE平分∠BAC 交⊙O于E,交BC于G,连OE交BC于F,连OA,在下列结论中,①CE=2EF,②△ABG∽△AEC,③∠BAO=∠DAC,④为常量.其中正确的有________.24、将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点在第一象限内,且在正方形网格的格点上,若是钝角的外心,则的坐标为________.25、如图,抛物线y=x2﹣2x﹣3交x轴于A(﹣1,0)、B(3,0),交y轴于C(0,﹣3),M是抛物线的顶点,现将抛物线沿平行于y轴的方向向上平移三个单位,则曲线CMB在平移过程中扫过的面积为________(面积单位).三、解答题(共5题,共计25分)26、在四编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中机抽取一张.我们知道,满足的三个正整数a,b,c成为勾股数,请用“列表法”或“树状图法”求抽到的两张卡片上的数都是勾股数的概率(卡片用A,B,C,D表示).27、小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了多少条棱?(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.28、如图,在⊙O中,,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.29、如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O 到水面的距离为2.4m,求涵洞所在抛物线的解析式.30、在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 63 124 178 302 481 599 1803摸到白球的频率0.63 0.62 0.593 0.604 0.601 0.599 0.601(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近?;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(摸到白球)= ?;(3)试验估算这个不透明的盒子里黑球有多少只?参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、B5、B6、B7、C8、C9、A10、D11、D12、D13、C14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、29、30、。
湘教版九年级数学下册期末试卷及完整答案

湘教版九年级数学下册期末试卷及完整答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)11的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 4.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.已知点A (m ,n )在第二象限,则点B (|m|,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.抛物线267y x x =++可由抛物线2y x 如何平移得到的( )A .先向左平移3个单位,再向下平移2个单位B .先向左平移6个单位,再向上平移7个单位C .先向上平移2个单位,再向左平移3个单位D .先回右平移3个单位,再向上平移2个单位7.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个8.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A. B.C. D.9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A .25394+B .25392+C .18253+D .253182+二、填空题(本大题共6小题,每小题3分,共18分)1.计算22111m m m ---的结果是__________. 2.分解因式:a 2﹣4b 2=_______.3.若代数式1x x -有意义,则x 的取值范围为__________. 4.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,在矩形ABCD 中,AB=4,AD=3,矩形内部有一动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点的距离之和PA+PB 的最小值为__________.6.在平面直角坐标系中,点A 的坐标为(a ,3),点B 的坐标是(4,b ),若点A 与点B 关于原点O 对称,则ab=__________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x -+=--2.已知二次函数y=﹣316x 2+bx+c 的图象经过A (0,3),B (﹣4,﹣92)两点.(1)求b ,c 的值.(2)二次函数y=﹣316x 2+bx+c 的图象与x 轴是否有公共点,求公共点的坐标;若没有,请说明情况.3.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.4.已知AB 是O 的直径,弦CD 与AB 相交,38BAC ∠=︒.(Ⅰ)如图①,若D 为AB 的中点,求ABC ∠和ABD ∠的大小;(Ⅱ)如图②,过点D 作O 的切线,与AB 的延长线交于点P ,若//DP AC ,求OCD ∠的大小.5.某校为了解初中学生每天在校体育活动的时间(单位:h ),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、A4、A5、D6、A7、A8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、11m -2、(a+2b )(a ﹣2b )3、 0x ≥且1x ≠.4、5、6、12三、解答题(本大题共6小题,共72分)1、1x =2、(1)983b c ⎧=⎪⎨⎪=⎩;(2)公共点的坐标是(﹣2,0)或(8,0)3、(1)略;(2)2.4、(1)52°,45°;(2)26°5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h的学生人数约为720.6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。
湘教版九年级下册数学期末测试卷【参考答案】

湘教版九年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,AB为⊙O的直径,点C在⊙O上,∠A=24°,则BC弧的度数为()A.66°B.48°C.33°D.24°2、一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A. B. C. D.3、如图,摆放的几何体的俯视图是()A. B. C. D.4、从下列四张卡片中任取一张,卡片上的图形是中心对称图形的概率为()A.0B.C.D.5、如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,则关于x的一元二次方程ax2+bx+c=0(a≠0)的解x1, x2的值分别是()A.﹣2,1B.﹣3,1C.﹣1,1D.不能确定6、下列命题正确的个数是()①平分弧的直径垂直平分弧所对的弦;②平分弦的直径平分弦所对的弧;③垂直于弦的直线必过圆心;④垂直于弦的直径平分弦所对的弧.A.1个B.2个C.3个D.4个7、下列函数中,不是二次函数的是()A.y=B.y=3﹣x+x 2C.y=﹣2x+3x 2D.y=(x﹣2)(x+2)﹣x 28、某一型号飞机着陆后滑行的距离S(单位:米)关于滑行的时间t(单位:秒)之间的函数解析式是S=﹣1.5t2+60t,则该型号飞机着陆后滑行()秒才能停下来.A.600B.300C.40D.209、给出下列4个命题:①相似三角形的周长之比等于其相似比;②方程x2-3x+5=0的两根之积为5;③在同一个圆中,同一条弦所对的圆周角都相等;④圆的内接四边形对角互补.其中,真命题为()A.①②④B.①③④C.①④D.①②③④10、如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则为A. B. C. D.11、如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是()A.y=(x+1)2-1B.y=(x+1)2+1C.y=(x-1)2+1 D.y=(x-1)2-112、如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为()A.-2B.6C.D.213、如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20°B.40°C.50°D.60°14、已知⊙O的半径为5,圆心O到直线AB的距离为6,则直线AB于⊙O的位置关系是()A.相交B.相切C.相离D.无法确定15、已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x …-1 0 1 2 3 …y …10 5 2 1 2则当y≥5时,x的取值范围是( )A.x≤0B.0≤x≤4C.x≥4D.x≤0或x≥ 4二、填空题(共10题,共计30分)16、若二次函数的图象与x轴有且只有一个公共点,则m=________.17、在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是________.18、如图,△AOB和△ACD均为正三角形,顶点B,D在双曲线y= (x>0)上,则=________.19、如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,D为边AB的中点,以点A为圆心,以AD的长为半径画弧与腰AC相交于点E,以点B为圆心,以BD的长为半径画弧与腰BC相交于点F,则图中的阴影部分图形的面积为________.(结果保留π).20、如图,两同心圆的圆心为O,大圆的弦AB切小圆于P,两圆的半径分别为2和1,若用阴影部分围成一个圆锥,则该圆锥的底面半径为________.21、如图,有一块直角三角形土地,它两条直边米,米,某单位要沿着斜边修一座底面是矩形的大楼,、分别在边、上,这个矩形的面积最大值是________.22、二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确的结论有________.23、若△ABC的三边长为3、4、5,则△ABC的外接圆半径R与内切圆半径r的差为________.24、已知函数y= (m+3)x2+2x+1的图象与x轴只有一个公共点,则m的值为________.25、如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:3,则k值为________.三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、已知,二次函数的表达式为y=4x2+8x.写出这个函数图象的对称轴和顶点坐标,并求图象与x轴的交点的坐标.28、如图,一块草地是长80 m,宽60 m的矩形,欲在中间修筑两条互相垂直的宽为xm的小路,这时草坪面积为y m2.求y与x的函数关系式,并写出自变量x的取值.29、如图,圆心角120°的扇形OMN,绕着正六边形ABCDEF的中心O旋转,OM 交AB于H,ON交CD于K,OM>OA.(1)证明:△AOH≌△COK;(2)若AB=2,求正六边形ABCDEF与扇形OMN重叠部分的面积.30、已知:如图,AB为⊙O的直径,OD∥AC.求证:点D平分.参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、D5、B6、B7、D8、D9、C10、D11、C12、B13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、。
【新】湘教版九年级下册数学期末测试卷及含答案

湘教版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有()A.1个B.2个C.3个D.4个2、二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1D.抛物线与x轴有两个交点3、如图,PA,PB分别切⊙O于A,B,,⊙O半径为2,则PA的长为()A.3B.4C.D.4、向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A.第8秒B.第10秒C.第12秒D.第15秒5、如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()A.(5,3)B.(3,5)C.(5,4)D.(4,5)6、下列函数中,不是二次函数的是()A.y=1﹣x 2B.y=2x 2+4C.y= (x﹣1)(x+4) D.y=(x﹣2)2﹣x 27、如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A. B. C. D.8、若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3 πB.4 πC.5 πD.6 π9、从不同方向看一只茶壶,你认为是俯视效果图的是()A. B. C. D.10、如图,三视图描述的实物形状是()A.棱柱B.棱锥C.圆柱D.圆锥11、下列命题:①垂直于弦的直径平分弦,并且平分弦所对的两条弧;②在同圆或等圆中相等的圆心角所对的弧相等;③在同圆或等圆中如果两条弦相等,那么它们所对的圆心角相等;④圆内接四边形的对角互补.其中正确的命题共有()A. 个B. 个C. 个D. 个12、如图,已知圆心是数轴原点,半径为1,,点P在数轴上运动,若过点P且与OA平行的直线与有公共点,设,则x的取值范围是A. B. C. D.13、如图,点A,B,C在⊙O上,∠AOB=72°,则∠ACB等于()A.36°B.54°C.18°D.28°14、下列四个图形中,是三棱柱的平面展开图的是()A. B. C. D.15、小红、小明在玩“剪子、包袱、锤子”游戏,小红给自己一个规定:一直不出“锤子”.小红、小明获胜的概率分别是P1, P2,则下列结论正确的是()A.P1=P2B.P1>P2C.P1<P2D.P1≤P2二、填空题(共10题,共计30分)16、数y=ax2+bx+c(a<0)图象与x轴的交点A.B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有________(请将结论正确的序号全部填上)17、如图,AB为⊙O的直径,CD为⊙O的弦,连接AC、AD,若∠BAC=27°,则∠ADC的度数为________度.18、如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为________.19、一个正方体的表面展开图如图所示,这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,则(yz)x的值为 ________。
湘教版九年级下册数学期末测试卷及含答案

湘教版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知抛物线y=-(x+3)2-5,则此抛物线的函数值有( )A.最小值-3B.最大值是-3C.最小值是-5D.最大值是-52、如图,△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,点E是线段AD上一点,以点E为圆心,r为半径作⊙E.若⊙E与边AB,AC相切,而与边BC相交,则半径r的取值范围是()A.r>B. <r≤4C. <r≤4D. <r≤3、已知二次函数y=ax2+bx+c+2的图象如图,顶点为(-1,0),下列结论:①abc<0;②b2-4ac=0;③a>2;④4a-2b+c>0.其中正确结论的个数是()A.1B.2C.3D.44、某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是()A.这组数据的众数是170B.这组数据的中位数是169C.这组数据的平均数是169D.若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为5、如图,在半径为的中,弦与交于点E,,,则CD的长是()A. B. C. D.6、如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么()A.a<0,b>0,c>0B.a>0,b<0,c>0C.a>0,b>0,c<0 D.a<0,b<0,c<07、如图,在平面直角坐标系中,已知抛物线的对称轴为,且经过点A(2,1),点是抛物线上的动点,的横坐标为,过点作轴,垂足为,交于点,点关于直线的对称点为,连接,,过点A作AE⊥x轴,垂足为E,则当()时,的周长最小.A.1B.1.5C.2D.2.58、如图,已知二次函数的部分图象与坐标轴交于A(3,0)和C(0,2)两点,对称轴为直线,当函数值>0时,自变量的取值范围是( )A. <3B.0≤<3C.-2<<3D.-1<<39、如图坐标平面上有一透明片,透明片上有一拋物线及一点P,且拋物线为二次函数y=x2的图形,P的坐标(2,4)。
湘教版九年级数学下册期末试卷及答案【完美版】

湘教版九年级数学下册期末试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是( )A .13-B .13C .3-D .32.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=5.实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-36.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A.55°B.60°C.65°D.70°8.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,9.若关于x的一元二次方程2210x x kb-++=有两个不相等的实数根,则一次函数y kx b=+的图象可能是:()A. B.C. D.10.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A.12B.920C.25D.13二、填空题(本大题共6小题,每小题3分,共18分)1.64的算术平方根是__________.2.分解因式:2x 2﹣8=_______.3.若代数式1x x -有意义,则x 的取值范围为__________. 4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、D4、A5、B6、A7、D8、D9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2、2(x+2)(x ﹣2)3、0x ≥且1x ≠. 4、140°5、6、(6)三、解答题(本大题共6小题,共72分)1、x =52、(1)6m <且2m ≠;(2)12x =-,243x =-3、(1)略;(2)3. 4、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165. 5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
湘教版九年级下册数学期末测试卷(参考答案)

湘教版九年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,由个相同正方体组合而成的几何体,它的俯视图是()A. B. C. D.2、如图,E是△ABC的内心,若∠BEC=130°,则∠A的度数是()A.60°B.80°C.50°D.75°3、抛物线y=ax2+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2;③a >;④b<1.其中正确的结论是()A.①②B.②③C.②④D.③④4、如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140°B.70°C.60°D.40°5、如图,弦AB的长等于⊙O的半径,点C在弧AMB上,则∠C的度数是()A.30ºB.35ºC.25ºD.60º6、关于二次函数y=2x2+x-1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为-7、从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是( )A.①④B.①②C.②③④D.②③8、下列立体图形中,主视图是三角形的是()A. B. C. D.9、下面所给几何体的俯视图是()A. B. C. D.10、已知点A(),B(),C()在二次函数的图象上,则的大小关系为()A. B. C. D.11、如图,为半圆O的直径,且,射线交半圆O 的切线于点E,交于F,若,则的半径长为()A. B. C. D.12、点P到⊙O上各点的最大距离为5,最小距离为1,则⊙O的半径为()A.2B.4C.2或3D.4或613、已知二次函数的y与x的部分对应值如表:x −1 0 2 3 4y 5 0 −4 −3 0下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A( ,2),B( ,3)是抛物线上两点,则,其中正确的个数是()A.2B.3C.4D.514、如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A.25°B.30°C.35°D.40°15、如图,在平面直角坐标系xOy中,直线AB经过点A(-4,0)、B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A. B. C.2 D.3二、填空题(共10题,共计30分)16、如下图,已知AB是⊙O的直径,,∠BOC = 40°,那么∠AOE等于 ________ .17、在平面直角坐标系 xOy 中,函数 y = x2的图象经过点M (x1 , y1) ,N(x2 , y2) 两点,若- 4< x1< -2, 0< x2<2 ,则 y1________ y2. (用“ < ”,“=”或“>”号连接)18、将抛物线平移,使它的顶点移到点P(-2,3),平移后新抛物线的表达式为________.19、请写出一个开口向上,并且与x轴交于、的抛物线的解析式:________.20、如图,扇形的圆心角为,是上的一点,则________ .21、如图,内接于,若,则的半径长为________.22、如图,已知为四边形的外接圆,若,则度数为________.23、已知电路AB由如图所示的开关控制,闭合a,b,c,d,e五个开关中的任意两个,则使电路形成通路的概率是________.24、由几个小正方体搭成的几何体,其主视图、左视图相同,均如图所示,则搭成这个几何体最少需要________ 个小正方体.25、如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t (秒)之间的函数关系式为________三、解答题(共5题,共计25分)26、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。
湘教版九年级数学下册期末考试卷及答案【完整版】

湘教版九年级数学下册期末考试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 5.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定6.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12 B .12<x<32 C .x<32 D .0<x<327.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°9.如图,CB =CA ,∠ACB =90°,点D 在边BC 上(与B ,C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC =FG ;②S △FAB ∶S 四边形CBFG =1∶2;③∠ABC =∠ABF ;④AD 2=FQ ·AC ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:3816-+=_____.2.因式分解:_____________. 3.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.4.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.如图,点A 是反比例函数y=4x(x >0)图象上一点,直线y=kx+b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.已知:如图,四边形ABCD 中,AD ∥BC ,AD=CD ,E 是对角线BD 上一点,且EA=EC .(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.41.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、B6、B7、D8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、3、30°或150°.4、235、40°6、32.三、解答题(本大题共6小题,共72分)1、x=1223、(1)略;(2)略.4、(1)略;(2)35、(1)补图见解析;50°;(2)3 5 .6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
湘教版九年级下册数学期末测试卷【有解析】

湘教版九年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=4,则弦BC的长为()A.2B.4C.3D.42、如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内上的一点,若,则的度数是A. B. C. D.3、下列命题是真命题的是()A.多边形的内角和为360°B.若2 a﹣b=1,则代数式6 a﹣3 b﹣3=0 C.二次函数y=(x﹣1)2+2的图象与y轴的交点的坐标为(0,2) D.矩形的对角线互相垂直平分4、图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB1路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到BD.无法确定5、抛物线y=-2(x-3)2-4的顶点坐标()A. B. C. D.6、下列关于二次函数y=x2﹣3的图象与性质的描述,错误的是( )A.该函数图象的开口向上B.函数值y随着自变量x的值的增大而增大 C.该函数图象关于y轴对称D.该函数图象可由函数y=x 2的图象平移得到7、图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线,桥拱与桥墩AC的交点C恰好在水面,有AC⊥ 轴。
若OA=10米,则桥面离水面的高度AC为()A. 米B. 米C. 米D. 米8、△ABC中,∠A=30°,∠B=60°,AC=6,则△ABC外接圆的半径为()A. B. C. D.39、如图所示几何体的左视图是()A. B. C. D.10、如图是某个几何体的三视图,则该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱11、如图所示的几何体是由一个大正方体切去一个小正方体形成的,它的主视图是( )A. B. C. D.12、如图,直径AB为3的半圆,绕A点逆时针旋转60°,此时点B到了点B′处,则图中阴影部分的面积是()A.3πB.C.6πD.24π13、如图,已知∠AOB是⊙O的圆心角,∠AOB=60°,则圆周角∠ACB的度数是( )A.50°B.25°C.100°D.30°14、如图,是的切线,点A为切点,交于点B,,点C在上,.则等于()A.20°B.25°C.30°D.50°15、下列四个命题中,正确的有()A.圆的对称轴是直径B.半径相等的两个半圆是等弧C.三角形的外心到三角形各边的距离相等D.经过三个点一定可以作圆二、填空题(共10题,共计30分)16、如图所示,一个矩形区域ABCD,点E、F分别是AB、DC的中点,求一只蝴蝶落在阴影部分的概率为________17、在半径为4cm的圆中,长为4cm的弦所对的圆周角的度数为________18、已知,当________时,函数值随x的增大而减小.19、如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=________.20、如图,在中,⑴作AB和BC的垂直平分线交于点O;⑵以点O为圆心,OA长为半径作圆;⑶⊙O分别与AB和BC的垂直平分线交于点M,N;⑷连接AM,AN,CM,其中AN与CM交于点P.根据以上作图过程及所作图形,下列四个结论中,① ;② ;③点O是的外心;④点P是的内心.所有正确结论的序号是________.21、如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为________.22、在Rt△ABC中,∠C=90°,AC=12,BC=5,以点A为圆心作⊙A,要使B、C 两点中的一点在圆外,另一点在圆内,那么⊙A的半径长r的取值范围为________23、⊙O的半径为1,弦AB= ,C是在异于A、B圆上的点,则∠ACB的度数为________.24、如图,在一个正方形围栏中均匀地散步者许多米粒,正方形内有一个圆(正方形的内切园),一只小鸡仔围栏内啄食,则“小鸡正在院内”啄食的概率为________.25、如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆On与直线l相切.设半圆O1,半圆O2,…,半圆On的半径分别是r1, r2,…,r n ,则当直线l与x轴所成锐角为30°,且r1=1时,r2018=________.三、解答题(共5题,共计25分)26、如图,AB、CD是⊙O的直径,弦CE∥AB,的度数为70°.求∠EOC的度数.27、如图,已知E为圆内两弦AB和CD的交点,直线EF∥CB,交AD的延长线于F,FG切圆于G.求证:EF=FG.28、抛物线y=ax2+2x+c与其对称轴相交于点A(1,4),与x轴正半轴交于点B.(1)求这条抛物线的函数关系式;(2)在抛物线对称轴上确定一点C,使△ABC是等腰三角形,求出所有点C的坐标.29、已知抛物线y=x2﹣4x+a﹣2的最小值为0,求a的值.30、已知抛物线与x轴相交于两点A(1,0),B(-3,0),与y轴相交于点C(0,3).(1)求此抛物线的函数表达式;(2)如果点D(,m)是抛物线上的一点,求△ABD的面积.参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、C5、C6、B7、B8、A9、B11、D12、B13、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、29、30、。
湘教版九年级数学下册期末考试题及答案【完整版】

湘教版九年级数学下册期末考试题及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 24.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值() A .0或2 B .-2或2 C .-2 D .25.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°9.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B +∠BDC=180°10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是__________.2.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_______.3.抛物线23(1)8y x =-+的顶点坐标为____________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=__________.5.如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为__________(结果保留根号和π).6.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =k x(k ≠0)的图象经过其中两点,则m 的值为__________. 三、解答题(本大题共6小题,共72分)1.解方程:11322x x x-=---2.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、A6、A7、A8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、(y﹣1)2(x﹣1)2.3、(1,8)415、﹣3π6、-1三、解答题(本大题共6小题,共72分)1、无解2、(1)证明见解析(2)1或23、(1)略(2)略4、(1)2(2)略5、(1)60,10;(2)96°;(3)1020;(4)2 36、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)70≤x≤90.。
湘教版九年级数学下册期末试卷(一套)精选全文完整版

可编辑修改精选全文完整版湘教版九年级数学下册期末试卷(一套) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是( )A .8B .13C .18D .92.若a ≠b ,且22410,410a a b b -+=-+=则221111a b +++的值为( ) A .14 B .1 C ..4 D .33.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=5.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 6.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°9.如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D ,若⊙P 的半径为5,点A 的坐标是(0,8),则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)10.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.因式分解:x3﹣4x=_______.3.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k 的值为__________.4.如图,△ABC中,∠BAC=90°,∠B=30°,BC边上有一点P(不与点B,C 重合),I为△APC的内心,若∠AIC的取值范围为m°<∠AIC<n°,则m+n=__________.5.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__________.6.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)三、解答题(本大题共6小题,共72分)1.解分式方程:33122xx x -+=--2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m=2+1.3.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、A5、A6、B7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、x (x+2)(x ﹣2)3、﹣34、255.5、136、23π三、解答题(本大题共6小题,共72分)1、x=12、11m m +-,原式=.3、(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m ,1,2.4、河宽为17米5、()117、20;()22次、2次;()372;()4120人.6、(1)120件;(2)150元.。
湘教版九年级数学下册期末试卷及答案【各版本】

湘教版九年级数学下册期末试卷及答案【各版本】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是( )A .±2B .2C .﹣2D .162.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-. 3.若式子2m 2(m 1)+-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠ 4.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④5.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定6.若2x y +=-,则222x y xy ++的值为( )A .2-B .2C .4-D .47.如图,抛物线2144y x =-与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是()A.3B.412C.72D.48.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A.180 B.182 C.184 D.1869.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)164__________.2.因式分解2242x x-+=_______.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.41.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°,则此圆锥高 OC 的长度是__________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)214111x x x +-=-- (2)1132422x x +=--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 23.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.5.为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、B6、D7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、22(1)x -.3、84、5、4π6、2三、解答题(本大题共6小题,共72分)1、(1)无解.(2)5x =-2、11m m +-,原式=.3、(1)相切,略;(2)4、(1)BF =10;(2)r=2.5、(1)120;(2)答案见解析;(3)90°;(4)16.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。
湘教版九年级下册数学期末测试卷及含答案完整版(精炼题)

湘教版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、一个扇形的圆心角是120°,面积为3πcm2,那么这个扇形的半径是()A. cmB.3cmC.6cmD.9cm2、如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体D.圆锥体3、如图,▱ABCD的顶点A,B,D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°4、如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A. B. C. D.5、有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是,则正面画有正三角形的卡片张数为()A.3B.5C.10D.156、欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以构酌油之,自钱孔入,而钱不湿”,如图,可见卖油的技艺之高超,若铜钱直径4cm,中间x有边长为1cm的正方形小孔,随机向铜色钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是()A. B. C. D.7、二次函数()的图象如图所示,下列结论:①;②;③;④;⑤,其中正确的个数是()A.2B.3C.4D.58、抛物线经变换后得到抛物线,则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移5个单位 D.向右平移5个单位9、如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字为6的面是底面,则朝上一面所标注的数字为()A.5B.4C.3D.210、二次函数的顶点坐标是()A.(1,-2)B.(1,2)C.(0,-2)D.(0,2)11、如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图不发生改变的是()A.主视图B.左视图C.俯视图D.主视图、左视图、俯视图都不改变12、二次函数的图象如图所示,则下列关于该函数说法中正确的是()A. B. C. D.13、用6个完全相同的小正方体组合成如图所示的立体图形,它的左视图为()A. B. C. D.14、如图,AD是△ABC的外角∠EAC的平分线,与△ABC的外接圆交于点D,则图中与∠EAD相等的角(不包括∠EAD)有()A.2个B.3个C.4个D.5个15、点A(1,),B(-2,)在函数的图像上,则下列结论正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y 随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有________.17、如图,AB是⊙O的直径,C,D是⊙O上的两点(不与A,B重合),若BC=2,tan∠BDC=,则AB=________ .18、已知点M(0,2),N(﹣3,6)到直线L的距离分别为1,4,则满足条件的直线L的条数是________.19、如图,正六边形的边长为2,则的周长为________.20、如果点A(-2,y1)和点B(2,y2)是抛物线y=(x+3)2上的两点,那么y 1________y2(填“>”“=”或“<”).21、函数y=2x2﹣8x+1,当x=________时,函数有最________值,是________.22、如图,小明从纸上剪下一个圆形和一个扇形纸片,用它们恰好能围成一个圆锥模型.若圆的半径为1,扇形的圆心角为120°,则此扇形的半径为________.23、如图,矩形,,的4个顶点都落在矩形边上,且有,设的面积为,矩形的面积为,则的最大值为________.24、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:移植总数(n)400 750 1500 3500 7000 9000 14000成活数(m)369 662 1335 3203 6335 8073 12628成活的频率0.923 0.883 0.890 0.915 0.905 0.897 0.902根据表中数据,估计这种幼树移植成活率的概率为________ (精确到0.1).25、把光盘、含 60°角的三角板和直尺如图摆放,AB=2,则光盘的直径是________.三、解答题(共5题,共计25分)26、如图,A、B、C、D均为⊙O上的点,其中A、B两点的连线经过圆心O,线段AB、CD的延长线交于点E,已知AB=2DE,∠E=18°,求∠AOC的度数.27、抛物线y=-x2+bx+c过点(0,-3)和(2,1),试确定抛物线的解析式,并求出抛物线与x轴的交点坐标.28、如图①,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=-x-与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE、⊙M的半径r、CH的长;(2)如图②,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图③,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN·MK=a,如果存在,请求出a的值;如果不存在,请说明理由.29、如图,点B是线段AC上的一点,分别以AB、BC、CA为直径作半圆,求证:半圆AB的长与半圆BC的长之和等于半圆AC的长.30、如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.参考答案一、单选题(共15题,共计45分)1、B2、A3、A4、C5、B6、C7、B8、E9、D10、D11、A12、C13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷期末测试(时间:90分钟满分:120分)一、选择题(每小题3分,共24分)1.下列各式中,y是x的二次函数的是( )A.y=3x-1 B.y=1x2C.y=3x2+x-1 D.y=2x2+1x2.下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3,5,9厘米的三条线段不能围成一个三角形.其中确定事件的个数是( )A.1 B.2 C.3 D.43.(岳阳中考)已知一个几何体的三视图如图所示,则该几何体是( )A.圆柱B.圆锥C.球D.棱柱4.如图,A ,B ,C 是⊙O 上的三点,且点A 是BAC ︵上与点B ,点C 不同的一点,若△BOC 是直角三角形,则△BAC 必是( )A .等腰三角形B .锐角三角形C .有一个角是30°的三角形D .有一个角是45°的三角形5.已知二次函数y =ax 2+bx +c 的部分图象如图所示,则关于x 的一元二次方程ax 2+bx +c =0的解为( )A .x 1=-3,x 2=0B .x 1=3,x 2=-1C .x =-3D .x 1=-3,x 2=16.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A.3个B.不足3个C.4个D.5个或5个以上7.如图,菱形ABCD的对角线BD,AC分别为2,23,以B点为圆心的弧与AD,DC相切,则阴影部分的面积是( )A.23-33πB.43-33πC.43-πD.23-π8.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有( )A.5个B.4个C.3个D.2个二、填空题(每小题3分,共24分)9.抛物线y=-12(x+3)2+2的顶点坐标为____________.10.身高相同的小明和小丽站在灯光下的不同位置,已知小明的投影比小丽的投影长,我们可以判定小明离灯较____________.11.已知扇形的半径为4 cm,圆心角为120°,则此扇形的弧长是____________cm. 12.已知a,b可以取-2,-1,1,2中的任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是____________.13.如图,AB是⊙O的直径,BC为⊙O的切线,∠ACB=40°,点P在边BC上,则∠PAB的度数可能为____________.(写出一个符合条件的度数即可)14.如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则阴影部分的面积是____________.15.如图是一个上下底密封且为正六棱柱的纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为____________cm2.(结果可保留根号)16.如图,在矩形ABCD中,AB=5,BC=4,以BC为直径在矩形内作半圆,自点A 作半圆的切线AE,则tan∠CBE=____________.三、解答题(共72分)17.(6分)在直径为1米的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB =0.6米,求油的最大深度.18.(6分)已知抛物线y=-3x2+12x-8.(1)用配方法求出它的对称轴和顶点坐标;(2)求出它与y轴的交点坐标和与x轴的交点坐标.19.(6分)如图,点A,B,C在直径为23的⊙O上,∠BAC=45°,求图中阴影部分的面积.(结果中保留π)20.(8分)(岳阳中考)已知不等式组⎩⎨⎧3x +4>x ,①43x ≤x +23.②(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.21.(8分)桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A,C,B三点的抛物线,以桥面的水平线为x轴,经过抛物线的顶点C且与x轴垂直的直线为y轴,建立直角坐标系,已知此桥垂直于桥面的相邻两柱之间距离为2米(图中用线段AD,CO,BE等表示桥柱),CO=1米,FG=2米.(1)求经过A,B,C三点的抛物线的表达式;(2)求柱子AD的高度.22.(12分)如图,AB,CD是⊙O的直径,点E在AB延长线上,FE⊥AB,BE=EF=2,FE的延长线交CD延长线于点G,DG=EG=3,连接FD.(1)求⊙O的半径;(2)求证:DF是⊙O的切线.23.(12分)如图,已知AB是⊙O的直径,弦CD⊥AB于点E,F是CE上的一点,且FC=FA,延长AF交⊙O于点G,连接CG.(1)试判断△ACG的形状(按边分类),并证明你的结论;(2)若⊙O的半径为5,OE=2,求CF·CD的值.24.(14分)(长沙中考)如图,抛物线y=ax2+bx+c(a≠0,a,b,c是常数)的对称轴为y轴,且经过(0,0),(a,116)(a>0)两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2).(1)求a,b,c的值;(2)求证:点P在运动过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P 的纵坐标.参考答案1.C 2.B 3.A 4.D 5.D 6.D 7.D 8.B 9.(-3,2)10.远 11.83π 12.16 13.30°(满足0°≤∠PAB ≤50°即可)14.2π 15.(753+360) 16.2517.连接OA ,过点O 作OD ⊥AB ,交AB 于点C ,交⊙O 于点D.由题意,得OA =OD =0.5米,AC =12AB =0.3米,∴OC 2=OA 2-AC 2.∴OC =OA 2-AC 2=0.52-0.32=0.4(米).∴CD =OD -OC =0.5-0.4=0.1(米).∴油的最大深度是0.1米.18.(1)y =-3x 2+12x -8=-3(x 2-4x)-8=-3(x -2)2+12-8=-3(x -2)2+4.∴函数y =-3x 2+12x -8的对称轴为直线x =2,顶点坐标为(2,4).(2)令x =0,则y =-8.∴函数y =-3x 2+12x -8与y 轴的交点坐标为(0,-8).令y=0,则-3x 2+12x -8=0,解得x 1=2+233,x 2=2-233.∴函数y =-3x 2+12x -8与x 轴的交点坐标分别为(2+233,0),(2-233,0).19.连接OB ,OC.∵∠BAC =45°,∴∠BOC =90°.∵⊙O 的直径为23,∴OB =OC = 3.∴S 扇形OBC =90×π×(3)2360=34π,S △OBC =12×3×3=32.∴S阴影=S 扇形OBC-S △OBC =34π-32. 20.(1)由①,得x >-2.由②,得x ≤2.∴不等式组的解集为-2<x ≤2.∴它的所有整数解为-1,0,1,2.(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为212=16.21.(1)由题意可知:点C 坐标为(0,1),点F 坐标为(-6,2),设抛物线表达式为y =ax 2+c(a ≠0),则有⎩⎪⎨⎪⎧c =1,36a +c =2.解得⎩⎨⎧a =136,c =1.∴抛物线表达式为y =136x 2+1. (2)∵点A 的横坐标为-8,当x =-8时,y =259,∴柱子AD 的高度为259米.22.(1)设⊙O 的半径为r.∵BE =2,DG =3,∴OE =2+r ,OG =3+r.又∵EF ⊥AB ,∴∠OEG =90°.在Rt △OEG 中,根据勾股定理,得OE 2+EG 2=OG 2.∴(2+r)2+32=(3+r)2.解得r =2,即⊙O 的半径为2.(2)证明:∵EF =2,EG =3,∴FG =EF +EG =5.∵DG =3,OD =2,∴OG =DG +OD =5.∴FG =OG .又∵DG =EG ,∠G =∠G ,∴△DFG ≌△EOG .∴∠FDG =∠OEG =90°.∴DF ⊥OD.∴DF 是⊙O 的切线.23.(1)△ACG 是等腰三角形.证明:∵CD ⊥AB ,∴AD ︵=AC ︵.∴∠G =∠ACD.∵FC =FA ,∴∠ACD =∠CAG .∴∠G =∠CAG .∴AC =CG ∴△ACG 是等腰三角形.(2)连接AD ,BC ,CO.由(1),知AC ︵=AD ︵,∴AC =AD.∴∠D =∠ACD.又∵∠G =∠ACD ,∴∠D =∠G =∠CAG .又∵∠ACF =∠DCA ,∴△ACF ∽△DCA.∴AC ∶CD =CF ∶AC ,即AC 2=CF·CD.∵CD ⊥AB ,∴AC 2=AE 2+CE 2=(5-2)2+(52-22)=30.∴CF·CD =30.24.(1)∵抛物线y =ax 2+bx +c 的对称轴为y 轴,且经过(0,0),(a ,116)(a>0)两点,∴⎩⎪⎨⎪⎧b =0,c =0,a 2=116.解得⎩⎪⎨⎪⎧a =14,b =0,c =0.∴二次函数的解析式为y =14x 2. (2)证明:设P(x ,y),⊙P 的半径r =x 2+(y -2)2.又∵y =14x 2,则r =x 2+(14x 2-2)2,化简得r =116x 4+4>14x 2=y ,∴点P 在运动过程中,⊙P 始终与x 轴相交.(3)设P(k ,14k 2).∵PA =116k 4+4,作PH ⊥MN 于点H ,连接PM ,PN ,PA ,则PM =PN =116k 4+4.又PH =14k 2,则MH =NH =116k 4+4-(14k 2)2=2.故MN =4.∴M(k -2,0),N(k +2,0).又∵A(0,2),∴AM =(k -2)2+4,AN =(k +2)2+4.当AM =AN 时,解得k =0;当AM =MN 时,(k -2)2+4=4,解得k =2±23,则14k 2=4±23;当AN =MN 时,(k +2)2+4=4,解得k =-2±23,则k 2=4±2 3.综上所述,P 的纵坐标为0或4+23或4-2 3.。