九年级数学黄金分割

合集下载

九年级数学上册《黄金分割》教案、教学设计

九年级数学上册《黄金分割》教案、教学设计
九年级数学上册《黄金分割》教案、教学设计
一、教学目标
(一)知识与技能
1.理解黄金分割的定义,掌握黄金分割点的概念,能够运用黄金分割的概念解决实际问题。
2.学会运用黄金分割比计算线段、图形的黄金分割点,并能运用黄金分割的性质分析解决实际问题。
3.掌握黄金分割与相似三角形、三角形面积的关系,能够运用相关知识解决综合问题。
3.教学方法:小组合作法、讨论法。
(四)课堂练习
1.教学内容:设计具有针对性的练习题,检验学生对黄金分割知识的掌握程度。
2.教学过程:首先,设计一些基础题,让学生巩固黄金分割点的计算方法。然后,设计一些综合题,让学生运用黄金分割知识解决实际问题。
3.教学方法:练习法、指导法。
(五)总结归纳
1.教学内容:总结本节课的学习内容,强调黄金分割的重要性,激发学生对数学美的追求。
学生在这个阶段,正处于形象思维向抽象思维过渡的关键时期,他们对新鲜事物充满兴趣,但同时也可能在学习过程中遇到一些困难和挑战。因此,在教学过程中,教师应关注学生的个体差异,充分调动他们的积极性,引导他们通过观察、思考、实践等途径,逐步理解并掌握黄金分割的知识。
此外,学生在小组合作学习中,需要提高沟通与协作能力。教师应关注学生在合作过程中的表现,适时给予指导和鼓励,帮助他们建立自信,培养团队精神。在此基础上,教师还应关注学生的情感态度,激发他们对数学美的追求,使他们在学习过程中体验到数学的魅力和价值。
4.通过课堂练习、课后作业、阶段测试等形式,巩固学生对黄金分割的理解和应用,提高学生的解题技巧。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生对数学美的感知和欣赏能力。
2.培养学生的创新意识,使学生认识到数学在现实生活中的重要作用,增强学生的应用意识。

初三数学黄金分割率的应用题

初三数学黄金分割率的应用题

初三数学黄金分割率的应用题初三数学黄金分割率的应用题问题一:某广场的长和宽之比为黄金分割率(约为),广场的长为45米,请计算广场的宽是多少米?解析: 1. 黄金分割率可以表示为(1+√5)/2≈。

2. 根据题意,广场的长和宽之比为黄金分割率,即长/宽=。

3. 已知广场的长为45米,代入比例关系得到45/宽=。

4. 通过求解方程,可以得到宽≈45/≈米。

问题二:一个长方形的宽和高之比为黄金分割率,已知宽为32米,请计算该长方形的高是多少米?解析: 1. 黄金分割率可以表示为(1+√5)/2≈。

2. 根据题意,长方形的宽和高之比为黄金分割率,即宽/高=。

3. 已知宽为32米,代入比例关系得到32/高=。

4. 通过求解方程,可以得到高≈32/≈米。

问题三:小明的身高与他的父母身高之比为黄金分割率,已知他的父亲身高为180厘米,母亲身高为165厘米,请计算小明的身高是多少厘米?解析: 1. 黄金分割率可以表示为(1+√5)/2≈。

2. 根据题意,小明的身高与他的父母身高之比为黄金分割率,即小明身高/父亲身高=、小明身高/母亲身高=。

3. 已知父亲身高为180厘米,代入比例关系得到小明身高/180=;已知母亲身高为165厘米,代入比例关系得到小明身高/165=。

4. 通过求解方程,可以得到小明的身高≈180≈厘米,或者小明的身高≈165≈厘米。

以上是初三数学黄金分割率的应用题,希望对你有帮助!问题四:某物体的长度与宽度之比为黄金分割率,已知宽度为8cm,请计算该物体的长度是多少cm?解析: 1. 黄金分割率可以表示为(1+√5)/2≈。

2. 根据题意,物体的长度与宽度之比为黄金分割率,即长度/宽度=。

3. 已知宽度为8cm,代入比例关系得到长度/8=。

4. 通过求解方程,可以得到长度≈8*≈cm。

问题五:一个线段被分成两部分,较长部分与整个线段的比例等于整个线段与较短部分的比例。

已知较长部分为24cm,请计算整个线段的长度是多少cm?解析: 1. 根据题意,整个线段的较长部分与整个线段的比例等于整个线段与较短部分的比例,即24/整个线段=整个线段/较短部分。

九年级数学 黄金分割

九年级数学      黄金分割

耐人寻味的0.618
Hale Waihona Puke ACB解:由AC BC 得:AC2 AB • BC AB AC
设AB 1,AC x,则BC 1 x,
x2 1 (1 x)
x2 x 1 0
解得:x1
1 2
5
1
,x2 2
5(不合题意,舍去)
所以:黄金比为 5 -1 2
0.618
能力源于运用
人体下半身(即脚底到肚脐的长度)与身高的比,越接近 0.618越给人美感,难怪芭蕾舞演员在翩翩起舞时掂起脚尖 , 而身材苗条的时装模特还要穿高跟鞋。
九年级上册第四章图形的相似
探索黄金分割
A
C
B
如图,点 C 把线段 AB 分成两条线段 AC 和 BC ,
如果
AC = BC AB AC
那么称线段AB被点C 黄金分割(golden section)
点C叫做线段AB的 黄金分割点
AC与AB的比叫做 黄金比
一条线段有2个黄金分割点
计算黄金比
如图:点 C是线段 AB 的黄金分割点,求黄金比。
文明古国埃及的金字塔,形似方锥,大 小各异。但这些金字塔底面的边长与高 这比都接近于0.618.
古希腊的一些神庙,在建筑时高和宽也 是按黄金比0.618来建立,他们认为这样 的长方形看来是较美观;其大理石柱廓 ,就是根据黄金分割律分割整个神庙的.
耐人寻味的0.618
著名画家达•芬奇的旷世名 作《蒙娜丽莎》的构图完美的体 现了黄金分割在油画艺术上的应 用.
如果某女士身高1.68米,下半身与身高的比为0.6,她应 该 选择多高的高跟鞋看起来会更美呢(结果精确到1cm)?
解:设要选择高xcm的高跟鞋
依题意得:1.680.6 x 0.618 1.68 x

九年级数学上册《黄金分割》优秀教学案例

九年级数学上册《黄金分割》优秀教学案例
2.布置开放性作业,如让学生收集生活中的黄金分割实例,进行分享和交流,培养学生的观察力和创新能力。
3.要求学生在课后进行自我反思,总结学习黄金分割的收获和不足,为下一步学习打下基础。
4.教师对作业进行及时批改和反馈,了解学生的学习情况,调整教学策略。
五、案例亮点
1.生活化的情境导入:本案例从学生熟悉的生活实例出发,如自然景观、艺术作品等,以多媒体手段呈现黄金分割的美,激发学生的好奇心和学习兴趣。这种导入方式使学生能够迅速进入学习状态,感受到数学与现实生活的紧密联系。
(二)过程与方法
1.通过观察和分析自然、艺术及建筑等领域的实例,引导学生发现黄金分割的普遍性和美观性,培养学生从生活中发现数学现象的习惯。
2.采用小组合作、讨论交流等形式,让学生在互动中探索黄金分割的性质和应用,提高学生的合作意识和解决问题的能力。
3.设计丰富的实践活动,如制作黄金分割比例的模型、绘制黄金分割图案等,让学生在实践中掌握黄金分割的方法,培养学生的动手操作能力和创新精神。
(二)问题导向
1.提出富有启发性的问题,如“为什么黄金分割被认为是最美、最和谐的比例?”“黄金分割在生活中的应用有哪些?”等,引导学生进行深入思考。
2.设计不同难度层次的问题,让学生在解决问题的过程中,逐步掌握黄金分割的知识点。
3.鼓励学生提出自己的疑问,引导学生通过查阅资料、讨论交流等方式,寻求解决问题的方法。
4.利用现代教育技术手段,如多媒体、网络等资源,拓展学生的知识视野,提高他们对黄金分割在科学、艺术等领域应用的了解。
(三)情感态度与价பைடு நூலகம்观
1.培养学生对数学美的感知和欣赏能力,激发他们对数学学科的兴趣和热爱。
2.通过探索黄金分割在各个领域的应用,让学生认识到数学知识在实际生活中的价值,增强他们的学习动力。

九年级数学上册《黄金分割数》教案、教学设计

九年级数学上册《黄金分割数》教案、教学设计
2.黄金分割的性质:介绍黄金分割的性质,如黄金分割点将线段分为两部分,这两部分的比例关系为1:0.618。
3.黄金分割的应用:讲解黄金分割在自然界、艺术、建筑等领域的应用,使学生感受数学与生活的紧密联系。
4.黄金分割的几何作图:教师示范如何利用尺规作图法找到线段的黄金分割点,并引导学生动手实践。
(三)学生小组讨论,500字
4.了解黄金分割在自然界、艺术、建筑等领域中的应用,培养学生对数学美的感知能力。
(二)过程与方法
在本章节的教学过程中,教师应注重引导学生通过以下方法掌握知识:
1.采用启发式教学法,激发学生的好奇心,引导学生自主探究黄金分割的性质和应用。
2.通过合作学习,培养学生团队协作、交流表达的能力,提高学生的综合素质。
3.运用多媒体教学手段,结合实际案例,使学生在直观感知中理解黄金分割的美学价值。
4.设计丰富的课堂练习和课后作业,巩固所学知识,提高学生解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学美的感知,激发学生学习数学的兴趣和热情。
2.培养学生勇于探索、积极思考的良好学习习惯,提高学生的自主学习能力。
c.结合多媒体教学手段,丰富教学形式,提高学生的学习兴趣。
d.创设轻松愉快的学习氛围,关注学生的情感态度,提高学生的学习积极性。
e.定期进行教学反思,根据学生的学习情况调整教学策略,提高教学质量。
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,教师首先通过多媒体展示一系列美丽的自然景观、世界著名建筑和艺术作品,如希腊神庙、埃及金字塔、达芬奇的《蒙娜丽莎》等。同时,引导学生观察这些图片中的共同特点,让他们猜测这些图片背后的数学原理。
三、教学重难点和教学设想

最新北师大版九年级数学上册《黄金分割》精品ppt教学课件

最新北师大版九年级数学上册《黄金分割》精品ppt教学课件

10.宽与长的比是
5-1
(
2
综合能力提升练
拓展探究突破练
约 0.618 )的矩形叫做黄金矩形,黄金矩形蕴
藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样
的方法画出黄金矩形:作正方形 ABCD,分别取 AD,BC 的中点 E,F,连
接 EF:以 F 为圆心,以 FD 为半径画弧,交 BC 的延长线于点 G;作 GH
拓展探究突破练
-9-
9.“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分割进行构图,使
画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小
狗,按照黄金分割的原则,应该使小狗置于图中的位( B )
A.①
B.②
C.③
D.④
第四章
第4课时 黄金分割
知识要点基础练
∴梯形 ABGH 与梯形 GCDH 的上、下底分别相等,高也相等,
1
∴S 梯形 ABGH=S 梯形 GCDH=2S 梯形 ABCD.
∴直线 GH 不是直角梯形 ABCD 的黄金分割线.
第四章
第4课时 黄金分割
归纳总结、拓展提升
知识要点基础练
综合能力提升练
通过这节课的学习,
你有哪些收获?
拓展探究突破练
扇子比较美观.若取黄金比为0.6,则α为( B )
A.216°B.135°
C.120° D.108°
第四章
第4课时 黄金分割
知识要点基础练
综合能力提升练
拓展探究突破练
-6-
6.自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,点P为AB的黄金分
割点( AP>PB ),如果AB的长度为10 cm,黄金比为0.618,那么PB的长度为 3.82 cm.( 结果

人教版-数学-九年级下册--素材:黄金分割

人教版-数学-九年级下册--素材:黄金分割

黄金分割的应用一、什么是黄金分割?1、点C 把线段AB 分成两条线段AC 和BC,如果 那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 如果把化为乘积式是 ,AC 叫做AB 和BC 的比例中项二、黄金分割的发现:黄金分割是古希腊哲学家毕达哥拉斯发现。

一天,毕达哥拉斯从一家铁匠铺路过,被铺子中那有节奏的叮叮当当的打铁声所吸引,便站在那里仔细聆听,似乎这声音中隐匿着什么秘密。

他走进作坊,拿出一把尺量了一下铁锤和铁砧的尺寸,发现它们之间存在着一种十分和谐的关系。

回到家里,毕达哥拉斯拿出一根线,想将它分为两段。

怎样分才最好呢?经过反复比较,他最后确定1:0.618的比例截断最优美。

后来,德国的美学家泽辛把这一比例称为黄金分割律。

这个规律的意思是,整体与较大部分这比等于较大部分与较小部分之比。

无论什么物体、图形,只要它各部分的关系都与这种分割法相符,这类物体、图形就能给人最悦目、最美的印象。

三、黄金分割的应用:1、古埃及胡夫金字塔:文明古国埃及的金字塔,形似方锥,大小各异。

但这些金字塔底面的边长与高这比都接近于0.618.2、蒙娜丽莎的微笑:著名画家达•芬奇的蒙娜丽莎构图就完美的体现了黄金分割在油画艺术上的应用。

通过下面两幅图片可以看出来,蒙娜丽莎的头和两肩在整幅画面中都处于完美的体现了黄金分割,使得这幅油画看起来是那么的和谐和完美.3、据有关测定,当气温处于人体正常体温(36 ℃ ~37℃)的黄金比值时,人体感到最舒适。

因此夏天使用空调时室内温度调到22.3 ℃~22.8℃最适合。

4、伟大的数学家华罗庚曾致力于推广“0.618优选法”,把黄金分割原理应用于生产、生活实际以及科学实验中,为国家节约了大量的人力和能源。

ACBC AB AC =AC BCAB AC =BC AB AC •=2C5、如图是古希腊时期的巴台农神庙, 如果把图中虚线表示的矩形画成下图中的ABCD ,以矩形ABCD 的宽为边在其内部作正方形AEFD,那么我们可以惊奇的发现 点E 是AB 的黄金分割点,矩形ABCD 的宽与长的比是黄金比。

九年级数学上册PPT课件《黄金分割》

九年级数学上册PPT课件《黄金分割》
3.在AB上截取AC=AE.
A
D E
CB
思考:点C是线段AB的黄金分割点吗?
BD 1 ; AD
12


1
2


5 , AC AE
51
2
2 2
22
5 1, BC 1 AC 1 5 1 3 5 ;
2
2
2
5 1
3 5
AC 2 5 1, BC 2 3 5 2
美神维纳斯,她身体的各个 部位都暗藏比例0.618,虽然 雕像残缺,却能仍让人叹服她 不可言喻的美.
黄金分割的魅力
Apple logo苹果中小叶子的高度和缺口的高度比是0.6, 而缺口的位置也和黄金分割有着千丝万缕的关系。也许这里 面还有更多黄金的分割的密码,这里就要同学们自己去发现。
当堂练习
1.已知线段AB,点P是它的黄金分割点,AP>BP,设 以AP为边的正方形的面积为S1,以PB、AB为边的矩 形面积为S2,则S1与S2的关系是( C ) A.S1>S2 B.S1<S2 C.S1=S2 D.S1≥S2
B C A
在人的面部,五官的分布越符合黄金分割,看起 来就越美.
设计与黄金分割
文明古国埃及的金字塔,形似方锥,大小各异.但 这些金字塔底面的边长与高的比都接近于0.618.
东方明珠塔,塔高 468米.设计师在263米处 设计了一个球体,使平直 单调的塔身变得丰富多彩, 非常协调、美观.
人的俊美,体现在头部及躯 干是否符合黄金分割.
【解析】本题考查黄金分割的有关知识,由题
意知 AC2 B≈6.2 cm.
3.如图所示,乐器上的一根弦AB=80 cm,两个端 点A、B固定在乐器板面上,支撑点C是靠近点B的 黄金分割点,支撑点D是靠近点A的黄金分割点, 则AC=______cm,DC=_______cm.

九年级数学下册《黄金分割》教案、教学设计

九年级数学下册《黄金分割》教案、教学设计
3.鼓励同学们相互讨论、交流,共同提高,但请务必独立完成作业,切勿抄袭。
(三)学生小组讨论
在学生掌握黄金分割的基本概念和性质后,我会组织学生进行小组讨论。将学生分成若干小组,每组挑选一个生活中的黄金分割实例进行分析,讨论以下问题:
1.实例中黄金分割的具体应用和作用是什么?
2.黄金分割是如何在这个实例中体现美感的?
3.你们还能想到其他黄金分割的应用实例吗?
(四)课堂练习
为了巩固所学知识,我会设计以下几道课堂练习题:
1.充分调动学生的已有知识经验,引导他们通过观察、思考、实践,逐步发现黄金分割的规律和性质。
2.注重培养学生的空间想象能力,通过实际操作和实例分析,帮助学生形象地理解黄金分割的概念。
3.针对学生在认知上的差异,采取分层教学,关注每一个学生的学习需求,让每一个学生都能在课堂上获得成功的体验。
4.激发学生的好奇心和探究欲,创设有趣的教学情境,引导学生主动参与课堂讨论,提高学生的学习兴趣。
2.黄金分割在生活中的应用实例。
3.黄金分割的美学价值。
五、作业布置
为了巩固学生对黄金分割知识点的掌握,提高学生的应用能力和创新意识,我设计了以下几项作业:
1.基础作业:
-请同学们完成教材中的练习题,巩固黄金分割的定义、性质和计算方法。
-结合实际生活中的实例,举例说明黄金分割的应用,并简要分析其美感来源。
3.作业设计:
-设计富有挑战性的课后作业,让学生运用黄金分割知识解决实际问题,提高学生的应用能力。
-布置开放性作业,鼓励学生发现生活中的黄金分割现象,培养学生的观察力和创新意识。
4.教学评价:
-采用形成性评价,关注学生在课堂上的表现,及时给予反馈,指导学生改进学习方法。

北师大版九年级(上)数学第四章图形的相似讲义---黄金分割

北师大版九年级(上)数学第四章图形的相似讲义---黄金分割

第四章图形的相似1.黄金分割:(1).定义:一般地,点C 把线段AB 分成两条线段AC 和BC 两段,如果AC BC AB AC =,那么线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.要点诠释:AC AB =≈0.618AB(0.618是黄金分割的准确值).(2).作一条线段的黄金分割点:如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD=21AB . (2)连接AD ,在DA 上截取DE =DB .(3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点.要点诠释:一条线段的黄金分割点有两个.注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形【例1】美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高165cm ,下半身长与身高l 的比值是0.60,为了尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ).A.4cmB.6cmC.8cmD.10cm【例2的三角形是黄金三角形),若△ABC 、△BDC 、△DEC 都是黄金三角形,已知AB=4,则DE=__________.【例3】如图,已知点P 是线段AB 的黄金分割点,且PA >PB ,若S 1表示以PA 为边的正方形的面积,S 2表示长为AB ,宽为PB 的矩形的面积,则( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法确定S 1和S 2的大小x【例4】如图所示,矩形ABCD 是黄金矩形(即=≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?【例5】以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图所示,(1)求AM ,DM 的长,(2)试说明AM 2=AD ·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【例6】宽与长的比是5-12的矩形叫做黄金矩形.现将折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD ;第二步:分别取AD ,BC 的中点M ,N ,连接MN ;第三步:以点N 为圆心,ND 长为半径画弧,交BC 的延长线于点E ;第四步:过点E 作EF⊥AD,交AD 的延长线于点F.请你根据以上作法,证明矩形DCEF 为黄金矩形.BC AB 215【例7】三角形中,顶角等于36°的等腰三角形称为黄金三角形.如图①,在△ABC 中,已知AB=AC,∠A=36°.(1)在图①中,用尺规作AB的垂直平分线交AC于点D,并连接BD(保留作图痕迹,不写作法).(2)△BCD是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由.(3)设BCAC=k,试求k的值.【例8】如图①,点C将线段AB分成两部分,如果ACAB=BCAC,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图②),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)三角形的中线是该三角形的黄金分割线吗?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图③),则直线EF也是△ABC的黄金分割线,请你说明理由;(4)如图④,点E是▱ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC 于点F,显然直线EF是▱ABCD的黄金分割线.请你画一条▱ABCD的黄金分割线,使它不经过▱ABCD各边的黄金分割点.。

4.4探索三角形相似的条件第4课时黄金分割(教案)2023-2024学年北师大版数学九年级上册

4.4探索三角形相似的条件第4课时黄金分割(教案)2023-2024学年北师大版数学九年级上册
4.4探索三角形相似的条件第4课时黄金分割(教案)2023-2024学年北师大版数学九年级上册
一、教学内容
本节课选自北师大版数学九年级上册第4章“相似三角形”中的4.4节“探索三角形相似的条件”,第4课时“黄金分割”。教学内容主要包括:1.黄金分割的定义及性质;2.黄金分割在生活中的应用;3.利用黄金分割解决实际问题。通过对黄金分割的学习,使学生掌握相似三角形在实际生活中的应用,培养他们的观察能力、动手能力和解决实际问题的能力。以下是具体的教学内容:
1.黄金分割的定义:介绍黄金分割的概念,即一条线段被分割成两部分,使其中一部分与全长之比等于另一部分与这部分之比。
2.黄金分割的性质:引导学生发现并证明黄金分割的性质,如:黄金分割点将线段分为两部分,这两部分的长度比是(1+√5)/2。
3.黄金分割的应用:通过实例介绍黄金分割在建筑、艺术、生物等领域中的应用,让学生感受数学与生活的紧密联系。
4.实践活动:设计一些实践活动,如测量物体长度、制作黄金分割图形等,让学生在实际操作中体会黄金分割的美学价值。
二、核心素养目标
本节课的核心素养目标主要包括以下几个方面:
1.培养学生的几何直观和空间观念,通过对黄金分割的学习,使他们在观察、操作和思考过程中形成对几何图形的直观认识,提高空间想象能力。
2.培养学生的逻辑推理和数学论证能力,通过探索黄金分割的性质,让学生学会运用逻辑思维和数学方法进行推理和证明。
3.重点难点解析:在讲授过程中,我会特别强调黄金分割的定义和性质这两个重点。对于难点部分,如黄金分割比例的推导,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与黄金分割相关的实际问题。

数学沪科版九年级(上册)22.1.4黄金分割(共32张PPT)

数学沪科版九年级(上册)22.1.4黄金分割(共32张PPT)

三、操作运用,巩固概念
试一试
东方明珠塔,塔高468米,在设计的最初,设计师将塔身设计为 直线形。后来为了使平直单调的塔身变得丰富多彩,更协调、美观, 设计师决定在靠近塔尖的黄金分割点处,设计一个球体,请你计算 这个球体距离地面的高度(精确到0.1m)。
468×0.618≈289.2(m)
三、操作运用,巩固概念
再计算:
CD ABC
0.6. 1(8精确到0.001)
黄金三角形
☆顶角为36°的等腰三角形 底边 与腰之比约为0.618;
E DD ☆点D是线段AC的黄金分割点.
B
C
黄金矩形:
如果矩形的长为a ,宽为b, 且满足条件:
b
b
5 1
a
2
a
那么此矩形称为黄金矩形。
课题:黄金分割
建 筑 中 的 神 秘 数 字
四、深化提高,继续探索
绘画艺术中的黄金分割
四、深化提高,继续探索
绘画艺术中的黄金分割
四、深化提高,继续探索
黄 金 分 割 在 摄 影 上 的 应 用
摄影中4条线的4个交点是人们视觉最敏感的地方。
四、深化提高,继续探索
找一找 你身边有黄金分割的实例吗?
四、深化提高,继续探索

N


D


E
G
六、课堂小结
归纳小结:
通过本节课的学习,你有什么收获?
1、概念:黄金分割、黄金分割点、黄金比、 黄金三角形、黄金矩形; 2、方法(1)判断黄金分割点的方法
(2)作线段黄金分割点的方法。 3、延伸:黄金分割在现实生活中的价值与意义。
六、课堂小结
通过本节课的学习,你有什么收获? 你认为数学就是一种美的学科吗?

浙教版数学九年级上册4.1.3 黄金分割课件

浙教版数学九年级上册4.1.3 黄金分割课件

新知讲解
【例5】如图,已知线段 AB= 5 1 ,点P是它的黄金分割点, 2
AP>PB. 分别求AP,BP的长.
解:因为点P是线段AB的黄金分割点,且AP AB, AP 5 1 , AB 2
AP
5 2
1
AB5 215 211
,
BP AB AP
5 2
1
1
5 1. 2
课堂练习
【知识技能类作业】
课堂练习
4.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分 割”(黄金比的近似值0.618).如图,P为AB的黄金分割点(AP>BP), 如果AB的长度为10 cm,那么较长线段AP的长度为__6__.1__8__cm.
课堂练习
【知识技能类作业】 选做题:
5.已知线段 a=6 cm,线段 b=8 cm,则线段 a,b 的比
2 2 18 12
∴b2=ac成立 a,b,b,c这四个数成比例吗?
新知讲解
a,b,b,c这四个数成比例吗?
a:b 2
2 :2
3
6 3
a:b=b:c
b:c2 3:
18
6 3
∴a,b,b,c这四个数成比例.
新知讲解
比例中项 一般地,如果三个数a,b,c满足比例式 a b (或a:b=b:c),
2
就接近于黄金矩形,小华想设计一张版面为黄金矩形的海报,已知海 报的宽为(20+2 5 )cm,则海报的长应设计为多少cm?
课堂练习
【综合实践类作业】
解:设海报的长应设计为 x cm,
由题意得,20 2 5 5 1 ,
x
2
解得x 15 11 5,
经检验,x 15 11 5是分式方程的解,

初中数学九年级上册黄金分割

初中数学九年级上册黄金分割
3.在AB上截取AC=AE.
A
D E
CB
思考:点C是线段AB的黄金分割点吗?
BD 1 ; AD
12


1
2


5 , AC AE
51
2
2 2
22
5 1, BC 1 AC 1 5 1 3 5 ;
2
2
2
5 1
3 5
AC 2 5 1, BC 2 3 5 2
【解析】本题考查黄金分割的有关知识,由题
意知 AC2 BCgAB,
∴AC2=(10-AC)×10,解得AC≈6.2 cm.
3.如图所示,乐器上的一根弦AB=80 cm,两个端 点A、B固定在乐器板面上,支撑点C是靠近点B的 黄金分割点,支撑点D是靠近点A的黄金分割点, 则AC=______cm,DC=_______cm.
D
因此 AH BH ,点H就是HB的黄金分割点. AB AH
G H
B
C
课堂小结
黄金 分割
定义
点C把线段AB分成两条线段AC和
BC,如果
AC AB

BC AC
, 那么称线段AB被
点C黄金分割.点C叫做线段AB的黄
金分割点,AC与AB的比称为黄金比.
一条线段有两个黄金分割点
黄金比:较长线段:原线段 = 5 1 :1
4. 如图:在△ABC中,AB=AC, ∠BAC=36°, BD平 分∠ABC交AC于点D, 求证:D是AC的黄金分割点. 证明:在等腰△ABC中,顶角∠A=36°, 所以∠ABC=∠C=72°, ∵BD为∠ABC的平分线, ∴∠ABD=∠DBC=36°, 在△ACB和△BCD中,∠BDC=72° ∵∠C=∠C,∠A=∠CBD=36°, ∴△ACB∽△BCD, ∴AC:BC=BC:DC;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4课时黄金分割
1.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm,则它的宽约为( A )
(A)12.36 cm (B)13.6 cm
(C)32.36 cm (D)7.64 cm
2.如图,已知点C是线段AB的黄金分割点,且BC>AC,若S1表示以BC 为边的正方形面积,S2表示长为AB,宽为AC的矩形面积,则S1与S2的大小关系为( B )
(A)S1>S2(B)S1=S2
(C)S1<S2(D)不能确定
3.如果三条线段的长a,b,c满足==,那么(a,b,c)叫做“黄金线段组”,黄金线段组中的三条线段( D )
(A)必构成锐角三角形(B)必构成直角三角形
(C)必构成钝角三角形(D)不能构成三角形
4.如图,在五角星中,AD=BC,且C,D两点都是AB的黄金分割点,CD=1,则AB的长是+2 .
5.一名主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20 m,这名主持人现在站在A处(如图所示),则她应再走几m才能到达最理想位置?
解:设黄金分割点为点P.
(1)当AP>BP时,因为AB=20 m,
所以AP=AB=×20=(10-10)(m).
(2)当AP<BP时,因为AB=20 m,
所以BP=AB=×20=(10-10)(m).
所以AP=AB-BP=20-(10-10)=(30-10)(m).
所以她应再走(10-10)m或(30-10)m才能到达最理想位置.
6.已知如图,△ABC中,AC=BC,在边AB上截取AD=AC,连接CD,若点D 恰好是线段AB的一个黄金分割点(AD>BD),则∠A的度数是( C )
(A)22.5°(B)30°(C)36°(D)45°
7.如图所示,以长为2 cm的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M落在AD上.
(1)试求AM,DM的长;
(2)点M是线段AD的黄金分割点吗?请说明理由.
解:(1)在Rt△APD中,AP=1 cm,AD=2 cm,
由勾股定理知PD===(cm),
所以AM=AF=PF-AP=PD-AP=(-1)( cm),
DM=AD-AM=(3-)( cm).
(2)因为AM2=(-1)2=6-2,
AD·DM=2×(3-)=6-2,
所以AM2=AD·DM,
所以点M是线段AD的黄金分割点.
8.(拓展探究题)如图一个矩形ABCD(AB<BC)中,=≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形吗?请说明你的结论的正确性.
解:矩形ABFE是黄金矩形.
证明:设BC=a,AB=b,则=. 所以==-1=-1=. 所以矩形ABFE是黄金矩形.。

相关文档
最新文档