定积分在极限运算中的应用
定积分的定义在求无穷和式极限中的应用

度、操作技能的掌握程度、收集整理资料的能力以及观察 问题和分析解决问题的能力等,充分发挥学生的主观能动 性。 3 实施方案
(1)根据素质教育要求和教育部“关于进一步深化本 科教学改革全面提高教学质量的若干意见”,结合专业实 际在充分调研的基础上调整好食品质量与安全专业实践教 学体系。
(2)以学科与课程组为单位,编写实验教学大纲和实 习实践教学大纲,在修订实验大纲以及实验教材时,增加 综合性、设计性实验比重,并把学科发展的新成果充实到 教学内容中去。
(6)对已建立协议的教学实习基地要不断加强联系与 交流,建立牢固的长期合作关系,每学年邀请基地领导来 我院共同研究实习基地建设问题,并做好年度实习基地建 设工作总结。继续考察、遴选新的实习基地,加快建立满 足新专业要求的实习基地。
(7)积极开展第二课堂活动,推进导师制,言传身教 使学生在参加科技实践创新活动中,提高实践能力及创新 能力。
在高等数学的教学中,介绍了很多求函数极限的方
法。但是当我们遇到极限为“无穷多个无穷小之和”的形
式(以下简称无穷和式),就不能用这些常规的方法了。
通常是先求出无穷数列前n项的和,再求和式的极限。但当
数列的前n项的和不易求出时,我们就可以考虑用定积分的
定义来求它的极限了。
学过定积分的定义,我们知道定积分是积分和的极
参考文献: [1] 常 庚 哲 等 .数 学 分 析 教 程 (上 )[M].北 京 :高 等 教 育 出 版
社,2003:300~331. [2] 吉米多维奇.数学分析习题集题解(六)[M].济南:山东科学技术
出版社,2002:103~148. [3] 上海财经大学应用数学系.高等数学[M].上海:上海财经大学出
(3)出台相应的激励政策,鼓励教师参与实践教学的 改革,并通过实践教学活动和科研有机结合起来,产学研 相长,不断提高实践教学水平。
定积分定义求数列极限公式

定积分定义求数列极限公式
极限定义是数学中一个重要的概念,它是指当一个变量的值趋近于某一特定值时,函数的值也趋近于某一特定值。
极限定义可以用来求解数列的极限公式。
首先,我们需要确定数列的积分定义。
积分定义是指一个数列的极限公式,它可以用来描述数列的极限行为。
积分定义的一般形式为:
lim n→∞ an = ∑n=1∞ an
其中,an是数列中的第n项,∑n=1∞ an表示从n=1到无穷大的累加和。
接下来,我们可以使用积分定义来求解数列的极限公式。
首先,我们需要将积分定义中的累加和分解为有限项和无限项,即:
lim n→∞ an = ∑n=1N an + ∑n=N+1∞ an
其中,N是一个有限的正整数,∑n=1N an表示从n=1到N的累加和,∑n=N+1∞ an表示从n=N+1到无穷大的累加和。
接下来,我们可以使用数学归纳法来求解数列的极限公式。
首先,我们假设数列的前N项的和为Sn,即:
Sn = ∑n=1N an
然后,我们可以将Sn代入积分定义中,得到:
lim n→∞ an =Sn + ∑n=N+1∞ an
最后,我们可以将Sn和∑n=N+1∞ an分别求和,得到数列的极限公式:
lim n→∞ an = ∑n=1∞ an
以上就是使用积分定义求数列极限公式的过程。
积分定义是一个重要的概念,它可以用来求解数列的极限公式,从而帮助我们更好地理解数学中的概念。
8定积分应用(求极限,变上限求导,面积,体积,不等式)

y
o
x
4.设 y ax与 y x 2 围成图形的面积为s1 , 它们与x 1 围成图形的面积为s2 , 且 0 a 1 (1) 求 a , 使 s1 s2 最小
(2) 求此最小值对应的平面 图形绕 x 轴旋转而得的旋转 体体积. 解 (1) 0 a 1 时, s s1 s2
例
x sin( xt ) f ( x) . lim 2 ,其中 f ( x) 2 dt x x 0 x t
例 : 设f ( x )连续, 且f ( 0 ) 0
求 lim
x0
x
0
( x t ) f (t )dt
x 0
x f ( x t )dt
1 ( ) 2
例.
例
3
设隐函数y y( x )由
o
x
1 3 1 2 ( ) (1 y 2 y) dy ( y y y ) . 1 S 0 3 3 0 2 2 1 2 2 (2) V ( x) dx ( x 1) dx 0 1 6 2
1 2
1
(3)绕直线 x 2 旋转所得旋转体的体积.
例
.设f ( x)为奇函数,且当 0时,f ( x) 0 x
sin( xt ) f ( x) 0, 其中 f ( x) 2 dt,令 x t
x
F ( x) f ( xt)dt tf (t 2 x 2 )dt,
1 0
1
x
判别F (x)在 , 上的凹凸性
3 2 2
2 f ( ) f ( ) 0
(2).设f ( x)在2,4上可导, 且
f (2) ( x 1) f ( x)dx 。
定积分及其应用

积分上限
积分和
积分号
b a
f ( x)dx
I
n
lim 0 i1
f (i )xi
高 等 数
学
积分下限 被 积 函 数
积 分 [a,b] 积分区间 变 量
电 子 教 案
二、定积分的几何意义
当f (x) 0时,曲边梯形的面积
A
b
a
f
(x)dx
y y=f(x)
A
0a
当f (x) 0时,
高
近似代替 si v(i )ti1
等 数
部分路程值
某时刻的速度
学 电
n
n
子
求和 S Si v(i )ti
i 1
i 1
令 m1iaxn {ti}
教 案
n
取极限
S
lim
0
i 1
v(i )ti
思路:
把整段时间分割成若干小段,每小段 上速度看作不变,求出各小段的路程再相 加,便得到路程的近似值,最后通过对时 间的无限细分过程求得路程的精确值.
高 等
4.了解无穷积分收敛性概念,会计算简单
数
的无穷积分。
学
5.会用定积分计算简单的平面曲线围成图 形的面积(直角坐标系)和绕坐标轴旋转生成的 旋转体体积。
电 子 教 案
6.1 定积分的概念
一、两个例子
1.曲边梯形的面积的计算 y
y=f(x)
分割 xi xi xi1
A A1 A2 An
1
i1 n n
1 n3
n i 1
i2
1 n3
定积分的若干应用

和
我们知道求由
所围成的曲边梯形的面积 A 须经过以下四个步骤:
(2)近似代替:
(4)取极限:
(3)求和:
分成n个小区间,
(1)分割: 把
设第 i 个小曲边梯形的面积为
则:
定积分的元素法
3-5 定积分的若干应用
(2)A对于区间[a,b]具有可加性,即整个曲边梯形的面积等于 所有小曲边梯形面积的和。
其总质量为 所以整个曲线弧动惯量为 其中 是质点到固定轴的距离,所以 因此,整个弧对x 轴与y轴的转动惯量分别是
5.平面图形的面积
平面直角坐标下图形的面积
(1)由曲线
与直线
及 x 轴所围曲
边梯形面积为 A .
其中被积表达式f(x)dx就是直角坐标下的面积元素,它表示高为f(x)、底为dx的一个矩形面积.
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) : 因此所求弧长 曲线弧由极坐标方程给出:
平面极坐标系:
o
A
p
或
直角坐标系圆的方程:
极坐标系圆的方程:
(3) 曲线弧由极坐标方程给出:
01
03
02
04
例1 计算旋轮线
一拱 的弧长 . 解
例2 求椭圆周
的弧长. 解 上半椭圆周的方程为 弧微分为 则
曲线弧由极坐标方程
给出时, 旋转体的側面积 为
例4 计算圆周
x 轴旋转一周所得的球台的侧面积 S . 解 对曲线弧 应用公式得 当球台高 h=2R 时, 得球的表面积公式
4. 曲线弧的质心与转动惯量
若平面上的一条光滑曲线弧 ,其参数方程是 线密度为 , 弧 的质量近似为 这段弧关于 和 轴的静力矩分别是: 弧微分
考研数学:用定积分的定义求极限

f ( x)
在 区 间
[ a, b]
上 有 界 , 在 , 这 样
[ a, b]
内 任 意 插 入
n 1
个 分 点
a x0 x1 x2 ... x n 1 x n b [ xi 1 , xi ], (i 1, 2,..., n)
用 xi
[ a, b]
就 被 分 为 了
1i n
0
i 1
…………………………………………………………………………………………取极限
则作dx lim f (i )xi ,其中 f ( x) 称为被积函数, f ( x)dx 称为被积式, x 称
0
i 1
n
为积分变量, [a, b] 称为积分区间, b, a 分别称为积分上、下限。 我们从定积分的定义内容可知,定积分的本质其实就是和式的极限。因此,我们可以利用定积分 的定义来计算和式的极限。 2.利用定积分的定义求极限 基本公式: lim
i 1 i
n
i
f (1 )x1 f (2 )x2 f (n )xn …………………求和 f ( x)
在 区 间 [ a, b] 上 的 定 积 分 , 记 令
称
f ( x)
在 区 间 [ a, b] 上 可 积 , 该 极 限 称 之 为
n
max(xi ) ,如果有极限 lim f (i )xi 存在且与 [a, b] 的划分及 i 的选取无关
取自 xi 处,那么和式极限就可以表示为 lim
n
f nn
i 1
n
i 1
1
0
f ( x)dx
考研试题中的应用:我们 2017 年研究生考试数一、二、三中就出现了这种题型。 例题:求 lim
数列极限定积分求法

数列极限定积分求法数列极限和定积分是微积分中的两个重要概念。
数列极限用于描述数列中的值趋向于某个常数的情况,而定积分用于计算函数在某个区间上的面积。
在某些情况下,我们可以使用定积分的方法来求解数列极限。
下面将讨论数列极限与定积分的关系以及具体的求解方法。
首先,我们来讨论数列极限和定积分的关系。
当我们需要求解一个数列的极限时,我们可以将其转化为一个定积分,并通过计算定积分来求解数列极限。
具体的方法是将数列中的项表示为一个函数,并将其转化为函数在某个区间上的定积分。
通过计算该定积分,我们可以得到数列的极限。
这个方法在一些特定的数列中尤为有效,例如几何数列、调和数列等。
接下来,我们来介绍几个具体的求解数列极限的例子。
1. 求解几何数列的极限考虑几何数列$a_n=a_0 \cdot r^n$,其中$a_0$为首项,$r$为公比。
我们想要求解当$n$趋向于无穷大时,数列$a_n$的极限。
我们可以将几何数列转化为一个函数$f(x) = a_0 \cdot r^x$,其中$x$为实数。
然后我们要计算函数$f(x)$在区间$[0, +\infty)$上的定积分$\int_0^{+\infty} a_0 \cdot r^x dx$。
当$r$的绝对值小于1时,我们可以通过计算定积分得到数列的极限为$\frac{a_0}{1-r}$。
2. 求解调和数列的极限考虑调和数列$a_n = \frac{1}{n}$。
我们想要求解当$n$趋向于无穷大时,数列$a_n$的极限。
我们可以将调和数列转化为一个函数$f(x) = \frac{1}{x}$,然后计算函数$f(x)$在区间$[1, +\infty)$上的定积分$\int_1^{+\infty} \frac{1}{x} dx$。
通过计算该定积分,我们可以得到数列的极限为0。
通过以上两个例子,我们可以看到数列极限与定积分之间的关系。
在一些特定的情况下,我们可以通过将数列转化为函数的定积分来求解数列的极限。
关于高等数学中求极限的方法小结

高等数学中求极限的方法小结2.求极限的常用方法2.1 利用等价无穷小求极限这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小.(2)有界函数与无穷小的乘积是无穷小.(3)非零无穷小与无穷大互为倒数.(4)等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价无穷小代替).[3]设αα'~、~ββ'且lim lim ββαα'=;则:β与α是等价无穷小的充分必要条件为:0()βαα=+.常用等价无穷小:当变量0x →时, 21sin ~,tan ~,arcsin ~,arctan ~,1~,ln(1)~,1cos ~,2x x x x x x x x x e x x x x x -+-11~,(1)1~x x x x x αα+--+-.例1 求01cos limarctan x xx x→-.解210,1cos ~,arctan ~2x x x x x →-时, 故,原式220112lim 2x xx →==例2 求1230(1)1limcos 1x x x →+--.解12223110,(1)1~,1cos ~32x x x x x →+--时,因此: 原式202123lim 132x xx→==-.例3 求 3131limtan x x→+-.解 0,x →时3111~,tan ~3x x x x +-,故:原式=0113lim3x xx →=. 例4 求()21lim2ln(1)x x e x x →-+.解 0,1~,ln(1)~xx e x x x →-+时,故:原式2201lim 22x x x →==.例5 试确定常数a 与n ,使得当0x →时,nax 与33ln(1)x x -+为等价无穷小.解 330ln(1)lim 1n x x x ax →-+= 而左边225311003331lim lim n n x x x x x x nax nax--→→-+--=, 故 15n -=即6n = 0331lim 11662x a a a →--∴=∴=∴=-.2.2 利用洛必达法则求极限利用这一法则的前提是:函数的导数要存在;为0比0型或者∞∞型等未定式类型. 洛必达法则分为3种情况:(1)0比0,无穷比无穷的时候直接用.(2)0乘以无穷,无穷减去无穷(无穷大与无穷小成倒数关系时)通常无穷大都写成无穷小的倒数形式,通项之后,就能变成(1)中形式了.(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数,幂函数)形式的方法主要是取指数的方法,这样就能把幂函数指数位置的函数移下来了,就是写成0与无穷的形式了.洛必达法则中还有一个定理:当x a →时,函数()f x 及()F x 都趋于0;在点a 的某去心邻域内,()f x ﹑()F x 的导数都存在且()F x 的导数不等于0;()lim()x af x F x →''存在,那么()()lim lim ()()x a x a f x f x F x F x →→'=' .[1]求极限有很多种方法如洛必达法则,夹逼定理求极限的秘诀是:强行代入,先定型后定法.[3]例6 求22201cos lim()sin x xx x→-. 分析 秘诀强行代入,先定型后定法.22224431100(00)(00)0000000000-+--+-===(此为强行代入以定型). ()00-可能是比()00+高阶的无穷小,倘若不这样,或422(00)(00)0000000+--+= 或43(00)(00)0000000+-+-=.解 2222222240001cos sin cos (sin cos )(sin cos )lim()lim lim sin sin x x x x x x x x x x x x x x x x x x →→→--+-==3300sin cos sin cos sin cos limlim 2lim x x x x x x x x x x x xx x x →→→-+-==,由洛必达法则的22222001cos sin 4sin 42,2lim lim 333x x x x x x x →→-+==有:上式=. 例7 求201lim x x e x x→--.解 22000(1)1lim lim 1lim 1()21x x x x x x e e e x x x x x→→→'--==-∴=-'--- . 例8 求332132lim 1x x x x x x →-+--+.解 原式22113363lim lim 321622x x x x x x x →→-===---.(二次使用洛必达法则). 例9 求02lim sin x x x e e xx x-→---.解 原式0002limlim lim 21cos sin cos x x x x x xx x x e e e e e e x x x ---→→→----====-. 例10 求22143lim 21x x x x x →-+-+.解 原式1112422limlimlim02211x x x x x x x x x →→→---===∴---原式=∞. 例11 求0tan lim sin arcsin x x xx x x→-.解 原式222222220000111(1cos)tan 1cos 1cos 2lim lim lim lim33cos 3cos 3x x x x x x x x x xxx x x x x x →→→→-+--=====. 例12 求0cot lim ln x xx+→.解 原式22200sin cos 1lim lim sin 2sin cos x x x x x x x x ++→→---===-∞. 例13 求22201cos lim()sin x xx x →-. 解 原式22222400sin cos (sin cos )(sin cos )lim lim sin x x x x x x x x x x x xx x →→--+==“0⨯∞”型:例14 求lim (arctan )2x x x π→+∞-. 解 原式2221arctan 112lim lim lim 11111x x x x x xx xπ→+∞→+∞→+∞-+====+. “∞-∞”型:例15 求 ()2lim sec tan x x x π→-.解1sin 1sin sec tan cos cos cos x xx x x x x--=-=, 故原式221sin cos limlim 0cos sin x x x x x x ππ→→--===-.“00”型:例16 求0lim xx x +→. 解 原式ln 0lim ln ln 0lim lim 1x xxx e x x xx x e e e +→++→→====.“1∞”型:例17 求lim 1xx e x →∞⎛⎫+ ⎪⎝⎭.解 原式lim 1x e ee x e e x →∞⎛⎫=+= ⎪⎝⎭.“0∞”型:例18 求tan 01lim ()xx x+→. 解 原式tan ln tan 01lim ln()tan ln 0lim lim x xxx e x xxx x e e e -+→++-→→===,而tan ~0lim(tan ln )lim(ln )0x x x x x x x x ++→→-−−−→-=,因此:原式=1. 2.3 泰勒公式(含有e 的x 次方的时候,尤其是含有正、余弦的加减的时候要特别注意)泰勒中值定理定理:如果函数()f x 在含有n 的某个开区间(,)a b 内具有直到(1)n + 阶的导数,则对任一(,)x a b -∈,有()f x =0()f x +0()f x '(x -0x )+0()2!f x ''(x -0x )2+……+()0()!n f x n (x -0x )n+n R (x ) 其中()()()(1)10()1!n n n f R x x x n ξ++=-+,这里ξ是x 与0x 之间的某个值. [1]例19 利用带有佩亚诺型余项的麦克劳林公式,求极限30sin cos limsin x x x xx→-. 解 由于公式的分母33sin ~(0)x x x →,我们只需将分子中的3333sin 0(),cos 0()3!2!x x x x x x x x x =-+=-+代入计算,于是 3333331sin cos 0()0()0()3!2!3x x x x x x x x x x x -=-+-++=+,对上式做运算时,把两个3x 高阶的无穷小的代数和还是记作30()x .例20 323322314334lim lim 3211211x x x x x x x x x x x x →∞→∞++++==++++++, 2222111lim lim 121(1)1x x n n n n n→∞→∞++==--+, ()121(2)313limlim (2)332233nn nn n n x x ++→∞→∞⎛⎫-+ ⎪-+⎝⎭==-+⎛⎫--+ ⎪⎝⎭. 2.4 无穷小与有界函数的处理方法面对复杂函数,尤其是正、余弦的复杂函数与其它函数相乘的时候,一定要注意这个方法.[3]例21 求 sin lim x x xx→∞+.解 原式sin 1lim(1)lim(1sin )1x x x x x x→∞→∞=+=+=. 2.5 夹逼定理主要介绍的是如何用之求数列极限,这个主要是看见极限中的通项是方式和的形式,对之放缩或扩大.[1]例22 求2sin sin sin lim ...1112n n n n n n n πππ→∞⎛⎫ ⎪+++ ⎪+ ⎪++⎝⎭. 解 111sin sin sin 11n n ni i i i i i n n n n n o n iπππ===≤≤+++∑∑∑, 1011sin 12lim lim sin nn n n i i i i n n x dx n o n nππππ→∞→∞====⋅=+∑∑⎰,1011sin 112lim lim 1sin 11nn n n i i i i n x dx n n n n ππππ→∞→∞==⎫⎛=⋅=⋅⋅= ⎪++⎝⎭∑∑⎰, 根据夹逼定理 1sin2lim1nx i i n n iππ→∞==+∑. 2.6 等比等差数列公式(δ的绝对值要小于1) [1]例23 设1||<δ,证等比数列1,δ,2δ1n δ-,…的极限为0.证 任取01δ<<,为使n x a ε-<,而n n x a δ-=,使nδε<,即ln ln ln ,ln n n εδεδ<>,当ln ln N εδ⎡⎤=⎢⎥⎣⎦,当n N >时,即ln ln 11ln ln n N εεδδ⎡⎤≥+=+>⎢⎥⎣⎦, ln ln nn δεδε<⇒<即n x a ε-<,由定义知()lim 10nδδ<=()()22......lim ...11n n n δδδδδδδδδ→∞++=++=<-.因此,很显然有:()0.99...lim 0.99...1n n→∞==.2.7 各项以拆分相加[3]将待求的和式子的各项拆分相加来消除中间的大多数,主要应用于数列极限,可以使用待定系数来拆分简化函数.例24 求()111lim 1...2*33*41n n n →∞⎛⎫++++ ⎪ ⎪+⎝⎭. 解 原式111111lim 1...23341n n n →∞⎛⎫=+-+-++- ⎪+⎝⎭=32. 2.8 求左右极限的方式例25 求函数⎪⎩⎪⎨⎧>+=<-=0,10,00,1)(x x x x x x f ,求0x →时,()f x 的极限.解 ()()0lim lim 11x x f x x --→→=-=-,()()0lim lim 11x x f x x ++→→=+=, 因为()()00lim lim x x f x f x ++→→≠,所以,当0→x 时,)(x f 的极限不存在. 例26 ()0lim0x x x xαα→>.解 0)(lim )(lim 00=-=---→→ααx x x x x x ,0lim lim 00==++→→ααx x x x x x , 因为0lim )(lim 00==-+-→→xxx x x x x x αα,所以,原式=0. 2.9 应用两个重要极限1sin lim 0=→x x x ,1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭ 例27 求xe x x 1lim 0-→.解 记()ln1x t =+ 1x e t -=,则原式=1001limlim 111ln 1t t ttt t →→==+⎛⎫+ ⎪⎝⎭ ()1lim 1x x x e →∞⎛⎫+= ⎪⎝⎭因为. 例28 求1lim 11nn n →∞⎛⎫+ ⎪+⎝⎭.解 原式=()111lim 11n n n +-→∞⎛⎫+ ⎪+⎝⎭=e .例29 求1lim 1-1nn n →∞⎛⎫+ ⎪⎝⎭. 解 原式=()111lim 1-1n n n -+→∞⎛⎫+ ⎪⎝⎭=e .2.10 根据增长速度 )(ln ∞→<<x ex x xnλ例30 求()lim 0nx x x n e λλ→∞>为正整数,.解 原式=1lim n x x nx e λ-→∞=()221!limlim0n xn xx x n n x n e e λλλλ-→∞→∞-==.例31 求()ln lim0nx xn x →∞>.解 01limlim ln lim 11===∞→-∞→∞→nx n x x n x nx nx x x . 同函数趋近于无穷的速度是不一样的,x 的x 次方快于!x (x 的阶乘)快于指数函数,快于幂函数,快于对数函数.所以增长速度: )(ln ∞→<<x ex x xnλ.故以后上述结论可直接在极限计算中运用. 2.11 换元法例321lim (1)x x x→-∞+. 解 令x t =-,则原式=1lim 1t t t -→+∞⎛⎫- ⎪⎝⎭1lim t t t t -→+∞-⎛⎫= ⎪⎝⎭111lim 1111t t t t -→+∞⎛⎫⎛⎫=+⋅+ ⎪ ⎪--⎝⎭⎝⎭=e 2.12 利用极限的运算法则[1]利用如下的极限运算法则来求极限: (1) 如果()()lim,lim ,f x A g x B ==那么B A x g x f x g x f ±=±=±)(lim )(lim )]()(lim[若又有0≠B ,则BAx g x f x g x f ==)(lim )(lim )()(lim(2)如果)(lim x f 存在,而c 为常数,则)(lim )](lim[x f c x cf = (3)如果)(lim x f 存在,而n 为正整数,则nnx f x f )]([lim )](lim [= (4)如果)()(x x ϕδ≥,而b x a x ==)(lim ,)(lim ϕδ,则b a ≥(5)设有数列{}n x 和{}n y ,如果()lim ;nn n x y A B →∞+=+那么,()lim ;nn n x y A B →∞+=+lim n n n x y A B →∞=⋅当()01,2,...n y n ≠=且0b ≠时,limn n n x A y B→∞= 2.13 求数列极限的时候可以将其转化为定积分[1]例33 已知()21f x x =- ,在区间[]0,1上求()01lim ni i i f x λξ→=∆∑(其中将[]0,1分为n 个小区间[]1,i i x x -,1i i i x x ξ-≤≤,λ为i x ∆中的最大值).解 由已知得: ()()11limni i i f x f x dx λξ→=∆=∑⎰4π=.(注释:由已知可以清楚的知道,该极限的求解可以转化为定积分,求函数()f x 在区间[]0,1上的面积).在有的极限的计算中,需要利用到如下的一些结论、概念和方法: (1)定积分中值定理:如果函数()f x 在积分区间[],a b 上连续,则在[],a b 上至少有一个点,使下列公式成立:()()()baf x dx x b a ϕ=-⎰ ()a b ϕ≤≤;(2)设函数()f x 在区间[],a +∞上连续,取t a >,如果极限 ()lim tat f x dx →+∞⎰存在,则称此极限为函数()f x 在无穷区间[],a +∞上的反常积分,记作⎰∞+0)(dx x f ,即⎰⎰+∞→∞+=tat adx x f dx x f )(lim)(;设()f x 在区间[],a b 上连续且()0f x ≥,求以曲线()y f x =为曲线,底为[],a b 的曲边梯形的面积A ,把这个面积A 表示为定积分:()b=a A f x dx ⎰ 的步骤是:首先,用任意一组的点把区间[],a b 分成长度为(1,2,...)i x i n ∆=的n 个小区间,相应地把曲线梯形分成n 个窄曲边梯形,第i 个窄曲边梯形的面积设为i A ∆,于是有1nii A A ==∆∑;其次,计算i A ∆的近似值 ()()1ii i i i i A f x x x ϕϕ-∆≈∆≤≤;然后,求和,得A 的近似值 ()1ni i i A f x ϕ=≈∆∑;最后,求极限,得⎰∑=∆==→bai ni i dx x f x f A )()(lim1ϕλ.例34 设函数()f x 连续,且()00f ≠,求极限 ()()()[]2lim .xx x x t f t dt x f x t dt→--⎰⎰.解 ()()()00limxxx x t f t dtx f x t dt→--⎰⎰ =()()()0lim,xxxx xf t dt tf t dtx f u du→-⎰⎰⎰()()()()()0+limx x x f t dt xf x xf x f u du xf x →-+⎰⎰由洛必达得:,()()()()()()001lim002x f f f f x f f ϕϕ→===++.例35 计算反常积分: 21dx x +∞-∞+⎰.解21dx x +∞-∞+⎰ =[]arctan x +∞-∞=-lim arctan lim arctan x x x x →+∞→∞-=()22πππ--=. 2.14 利用函数有界原理证明极限的存在性,利用数列的逆推求极限(1)单调有界数列必有极限;(2)单调递增且有上界的数列必有极限,单调递减且有下界的数列必有极限.[3]例36 数列{}n x :2,12n x -+,222++,…….极限存在吗?解 由已知可得{}n x 单调递增且有界,由单调有界原理,知lim n n x →∞存在. 又12nn x x -=+,1lim lim 2n n n n x x -→∞→∞=+记lim =t,2n n x t t →∞=-则,即可证2n x <,得到 2=t .2.15 直接使用求导的定义求极限当题目中告诉你0)0(=F 时,)(x F 的导数等于0的时候,就是暗示你一定要用导数定义:(1)设函数()y f x =在点0x 的某个领域内有定义,当自变量x 在0x 处取得增量x ∆(点0x x ∆+仍在该领域内)时,相应的函数取得增量()()00y f x x f x ∆=∆+-;如果y ∆与x ∆之比0x ∆→时的极限存在,则称函数()y f x =在点0x 处可导,并称这个极限为函数()y f x =在点0x 处可导,并称这个极限为函数()y f x =在点0x 处的导数,记作()0f x ',即()()()00000limlim x x f x x f x y f x x x ∆→∆→∆+-∆'==∆∆; (2)在某点处可导的充分必要条件是左右导数都存在且相等.例36 ()()()()1f x x x e x π=---,求()'f π.解 ()'f π ()()()()()()=lim lim 11x x f x f x x e x x e x ππππ→→-=--=---. 例37 若函数()f x 有连续二阶导数且()0=0f ,()'0=1f ,()''0=-2f ,则 ()()20lim x f x x x →-=.A:不存在 B :0 C :-1 D :-2解 ()20lim x f x x x →-=()()()'''00101lim lim 220x x f x f x f x x →→--=-()''1012f ==-. 所以,答案为D.例38 若()(1)(2).....(2010)f x x x x x =++++,求(0)f '.解 0()(0)(0)lim x f x f f x→-'= 2010!=.2.16 利用连续性求极限[1]例39 设()f x 在1x =处有连续的一阶导数,且(1)2f '=,求1lim (cos 1)x d x dx+→+-.解 原式11lim (cos 1)(sin 1)21x f x x x +→'=---- 1=-.2.17 数列极限转为函数极限求解数列极限中是n 趋近,而不是x 趋近.面对数列极限时,先要转化成求x 趋近情况下的极限,当然n 趋近是x 趋近的一种情况而已,是必要条件.(还有数列极限的n 当然是趋于正无穷的).[1]例40 求21lim (1sin )n n n n→∞-. 解 令1t n =,则原式2320001sin sin 1cos lim (1)lim lim 3t t t t t t t t t t t→→→--=-==, 所以在0t →时,1cos t -与212t 等价,因此,原式20212lim 13t t t →=16=.。
(完整版)专题1——利用定积分定义求极限(1)

专题1——利用定积分定义求极限对于满足如下条件的极限,可以考虑采用利用定积分定义求极限的方法:① 是n →∞时的极限② 极限运算中含有连加符号1n i =∑在定积分的定义中,我们把区间[,]a b 平均分成n 个小区间(定积分的定义中是任意分割区间[,]a b ,我们当然可以平均分割),那么每个小区间的长度为b a n-(即定义中的i x ∆),这n 个小区间分别为[,]b a a a n -+,[,2]b a b a a a n n --++,[2,3]b a b a a a n n--++,……,[(2),(1)]b a b a a n a n n n --+-+-,[(1),]b a a n b n-+-,在定义中每个小区间上任意取的i ξ我们一致取为每个小区间的右端点i b a a i n ξ-=+(也可以取左端点(1)i b a a i n ξ-=+-),那么定义中的1()n i ii f x ξ=∆∑就变为1()n i b a b a f a i n n =--+∑,那么1lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑⎰。
(取左端点时1lim((1))()n b a n i b a b a f a i f x dx n n →∞=--+-=∑⎰)注意:定积分的定义中0λ→表示的意思是把区间分割为无线个小区间(n →∞也表示把区间分割成无数个小区间,但是在任意分割的前提下,不能用n →∞来表示把区间分割成无数个小区间,这里的原因我是理解的,但是不好表述,你清楚结论就行了),当分割方式为均等分割时,n →∞就表示把区间分割成无数个小区间,所以这里是1lim()()n b a n i b a b a f a i f x dx n n→∞=--+=∑⎰,而不是01lim ()()n b a i b a b a f a i f x dx n nλ→=--+=∑⎰。
定积分的定义在求无穷和式极限中的应用

极 限可 以 通 过 定 积 分 的 定 义 来 计 算 。下 面 举 例 说 明 含 有 三 角 函 数 数 列 的 n 之 和 的极 限 的求 法 。 项
例: 极 ,pns+ s n 。 5求 限i (In -j - m s+ 一n ) i i 十 2
喜 』 …a ;。 忐 1扣 叫 =
例: 极 [I+ +击) 4求n - 。 限 - +
分 析 : 此 题 所 研 究 的 极 限 为 n 和 的形 式 ,可 看 成 函数 项 ,x= ( )
解:
f
、
限,也是无穷和式的极限,即 I ( ,
l i m
) 。故对
积分 。
解:
n+ nI 。 - 2 - n] n -
原式=i ) = l me, ’ 』 ,
例3 求极限 l 一 : i ( m +
分 析 :此 题 所 研 究 的是 三 角 函数 的n 和 的形 式 ,可 看 项 成 函 数 s n 在 区 间 [, ] 的 一 个 积 分 和 式 ,又 由 于 sn 是 ix 0 1上 ix
[, ] a b ,构 成 t , 的 形 式 ,则 可 化 为 定 积 分 去 求 值 。 R)
某 些 无 穷 和 式 的 极 限 ,只 要 能 将 此 和 式 写 成 某 个 函 数 在 某 个 区 间 上 的 积 分 和 的 形 式 , 其 关 键 是 函 数 fX 和 区 间 () [, ] ab 的确 定 ,这 样 就 可 以利 用 定 积 分 求 此 极 限 。 下 面 就 通 过若干实例来进行说 明。 例1 :求 极 限 1 ( + - .+ )。 i +- m 2 ’
8定积分应用(积分中值定理,求极限,变上限解析

例
设f ( x )是连续函数,f ( 1 ) 1
ab a
若对的a , b有 f ( t )dt与a无关,求f ( x )
例.
例
.设f ( x )在0,1上连续,在0,1上可导
且f ( 0 ) 0 ,
1
0 f ( x ) 1
2
1 求证 : f ( x )dx f 3 ( x )dx 0 0
a a
结论3
设f ( x )是 a, a 内的连续函数,
证明若f ( x )为奇(偶)函数 ,
则0 f (t )dt 偶(奇)函数
x
例: 当f ( x )是以2为周期的连续函数时,
证明:函数 G( x) 20 f (t )dt- x 0 f (t )dt
也是以 2为周期的周期函数 08研
2 3
4
证明 2,4,使2 f ( ) (1 ) f ( )
变上限积分问题
1.变上限积分问题
( x) f (t ) d t
a
a
x
( x) ( f (t ) d t ) f ( x)
(被积函数中不含自变量x)
x
d ( x) f (t ) d t a dx
例.
d x2 2 求 1 t dt dx 0
例.
d x3 1 求 dt 2 dx x 1 t 4
d cos x 2 求 1 t dt dx sinx
例.
例. 求
0 0
例.
确定常数 a , b , c 的值, 使
例.
lim
x 0
x
1
cos x
t ln tdt
定积分的计算及应用

定积分的计算及应用定积分是微积分中的重要内容,主要用于计算曲线下的面积、求函数的平均值和求解各种几何问题。
本文将介绍定积分的计算方法和应用。
一、定积分的计算方法1.函数的不定积分和定积分在介绍定积分之前,先来了解一下不定积分。
不定积分是求函数的原函数,即给定一个函数f(x),求出它的一个原函数F(x),满足F'(x)=f(x)。
然后,定积分是不定积分的一个推广。
对于一个函数f(x),我们可以将其在[a,b]区间内的曲线下的面积分成无穷多个矩形小面积,然后将这些小面积相加,得到的极限值就是函数f(x)在[a,b]区间上的定积分。
2.基本积分法则计算定积分常用的方法是基本积分法则,它是通过一些基本的积分公式来计算积分。
下面是一些常见的基本积分公式:- 常数函数积分:∫k dx = kx + C,其中k为常数,C为常数;- 幂函数积分:∫x^n dx = (x^(n+1))/ (n+1) + C,其中n≠-1,C 为常数;- 指数函数积分:∫e^x dx = e^x + C,C为常数;- 三角函数积分:∫sin(x) dx = -cos(x) + C, ∫cos(x) dx = sin(x) + C,C为常数。
3.定积分的计算方法对于函数f(x)在[a,b]区间上的定积分,有以下计算方法:-用基本积分法则计算不定积分F(x);-确定积分上下限,将F(x)在a和b处的值代入,得到F(b)-F(a);-F(b)-F(a)即为函数f(x)在[a,b]区间上的定积分。
二、定积分的应用1.曲线下的面积定积分最常用的应用是计算曲线下的面积。
给定一个函数f(x),要计算它在[a,b]区间上曲线下的面积,可以通过定积分来实现。
具体步骤如下:-将[a,b]区间划分成n个小区间,每个小区间的宽度为Δx=(b-a)/n;- 在每个小区间上确定一个点xi,其中i=1,2,3,...,n;- 计算每个小区间上的矩形面积,即ΔS= f(xi) * Δx;-将n个小矩形的面积相加,即S≈Σ(ΔS);- 当n趋向于无穷大时,即Δx趋向于0,Σ(ΔS)趋向于定积分∫f(x)dx。
用定积分定义求极限的n次方

用定积分定义求极限的n次方在数学分析领域中是一个非常重要且常见的问题。
在研究这个问题之前,我们首先需要了解定积分的定义和性质。
定积分是微积分的一个重要概念,它描述了函数在一定区间上的面积或曲线下的面积。
而求极限则是计算函数在某一点或趋于某一点时的取值。
在本文中,我们将探讨如何利用定积分的定义求极限的n次方,并深入研究这个问题的数学原理和推导过程。
# 定积分的定义和性质定积分是微积分中的一个重要概念,它描述了函数在一定区间上的面积或曲线下的面积。
在数学上,定积分可以定义为函数在一个区间上的面积,它可以被用来描述曲线下的面积、求函数的平均值等。
定积分的定义如下所示:\int_{a}^{b}f(x)dx=\lim_{n→∞}\sum_{i=1}^{n}f(x_i^*)Δx其中,a和b是积分区间的上下限,f(x)是被积函数,dx表示积分变量,n 表示将区间分成的小区间的个数,x_i^*是每个小区间的取样点,Δx表示每个小区间的长度。
定积分具有一些重要的性质,如线性性、可加性等,这些性质在求解极限的n次方问题中发挥着重要作用。
# 求极限的n次方的定义求极限的n次方是一个常见且重要的数学问题,在实际问题中也经常遇到。
当我们要计算一个函数在某一点或趋于某一点时的取值时,就需要求该函数的极限。
求极限的n次方问题可以表示为:\lim_{x→a}(f(x))^n其中,f(x)是一个函数,n是一个正整数,a是函数的极限点。
当n为奇数时,求解这个极限问题比较简单,但当n为偶数时,就需要一些特殊的技巧和方法来求解。
在本文中,我们将重点讨论求极限的n次方问题中n为偶数的情况,并探讨如何利用定积分的定义来求解这个问题。
# 利用定积分定义求极限的n次方在求解极限的n次方问题中,当n为偶数时,我们可以利用定积分的定义来求解这个问题。
具体的推导过程如下:首先,我们将求解的问题转化为求解函数f(x)在区间[a,b]上的平均值的n 次方的极限。
极限的常用求法及技巧

极限的常用求法及技巧引言极限是描述数列和函数在无限过程中的变化趋势的重要概念。
极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。
极限如此重要,但是运算题目多,而且技巧性强,灵活多变。
极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结,我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x趋于正无穷,x趋于负无穷。
函数的极限等等。
本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通。
1数列极限的常用求法及技巧数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。
数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。
1.1利用定义求数列极限利用定义法即利用数列极限的定义 设{}n a 为数列。
若对任给的正数N ,使得n 大于N 时有ε<-a a n则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a na =∞→或)(,∞→∞→n a n读作当n 趋于无穷大时,{}n a 的极限等于a 或n a 趋于a 例证明2322n l i m -∞→n n解 由于)3n 93n 9323222≥≤-=--(nn n 因此,对于任给的ε>0,只要ε<n9,便有ε<--33322n n即当n ε9>时,(2)试成立。
高等数学求极限的17种常用方法(附例题和详解)

⾼等数学求极限的17种常⽤⽅法(附例题和详解)⾼等数学求极限的14种⽅法⼀、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ;(ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2.极限分为函数极限、数列极限,其中函数极限⼜分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:(i )数列{}的充要条件收敛于a n x 是它的所有⼦数列均收敛于a 。
常⽤的是其推论,即“⼀个数列收敛于a 的充要条件是其奇⼦列和偶⼦列都收敛于a ”(ii )A x x f x A x f x =+∞→=-∞→?=∞→limlimlim)()((iii)A x x x x A x f x x =→=→?=→+-lim lim lim 0)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理)(vi )柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件是:εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当⼆.解决极限的⽅法如下:1.等价⽆穷⼩代换。
只能在乘除..时候使⽤。
例题略。
2.洛必达(L’ho spital )法则(⼤题⽬有时候会有暗⽰要你使⽤这个⽅法)它的使⽤有严格的使⽤前提。
⾸先必须是X 趋近,⽽不是N 趋近,所以⾯对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正⽆穷的,不可能是负⽆穷。
其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接⽤洛必达法则。
另外,必须是“0⽐0”或“⽆穷⼤⽐⽆穷⼤”,并且注意导数分母不能为0。
专题利用定积分定义求极限

专题1——利用定积分定义求极限 对于满足如下条件的极限,可以考虑采用利用定积分定义求极限的方法:① 是n →∞时的极限② 极限运算中含有连加符号1n i =∑在定积分的定义中,我们把区间[,]a b 平均分成n 个小区间(定积分的定义中是任意分割区间[,]a b ,我们当然可以平均分割),那么每个小区间的长度为b a n-(即定义中的i x ∆),这n 个小区间分别为[,]b a a a n -+,[,2]b a b a a a n n --++,[2,3]b a b a a a n n--++,……,[(2),(1)]b a b a a n a n n n --+-+-,[(1),]b a a n b n-+-,在定义中每个小区间上任意取的i ξ我们一致取为每个小区间的右端点i b a a i n ξ-=+(也可以取左端点(1)i b a a i n ξ-=+-),那么定义中的1()n i ii f x ξ=∆∑就变为1()n i b a b a f a i n n =--+∑,那么1lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑⎰。
(取左端点时1lim ((1))()n b a n i b a b a f a i f x dx n n→∞=--+-=∑⎰) 注意:定积分的定义中0λ→表示的意思是把区间分割为无线个小区间(n →∞也表示把区间分割成无数个小区间,但是在任意分割的前提下,不能用n →∞来表示把区间分割成无数个小区间,这里的原因我是理解的,但是不好表述,你清楚结论就行了),当分割方式为均等分割时,n →∞就表示把区间分割成无数个小区间,所以这里是1lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑⎰,而不是01lim ()()n b a i b a b a f a i f x dx n n λ→=--+=∑⎰。
巧用定积分求极限(数学分析)

定积分在求极限中的应用1.常识预备微积分学在大学的数学进修中占领相当重要的地位.然而,求极限又是微积分学中经常要面对的问题.是以,积聚更多求极限的办法应是每位大学生必备的素养.“00”型的极限和“∞∞”型极限的.泰勒公式合适于解决求分式极限平分子或分母有加减运算的问题,经由过程泰勒展式后可以达到某些项抵消后果.但若细心不雅察这些办法,其特色不是表达较繁琐就是仅仅应用到微分学常识.事实上,微分学和积分学的关系正如中小学时期进修过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘使也能用到积分学常识来解决求极限的问题,那么求极限的办法才算完美.而应用定积分求极限正表现了这一理念. 1.2定积分的概念下面起首让我们回想一下定积分以及极限的界说:定积分:设函数()f x 在闭区间[],a b 上有界说,在闭区间[],a b 内随意率性拔出n-1个分点将[],a b 分成n个区间[,]x i i x x -,记(1,2,,i i i x x x i n ∆=-=),1[,]i i x x ξ-∀∈,作乘积()i i f x ξ∆(称为积分元),把这些乘积相加得到和式1()niii f xξ=∆∑(称为积分情势)设{}max :1i x i n λ=∆≤≤,若1lim ()ni ii f x λξ→=∆∑极限消失独一且该极限值与区是[],a b 的分法及分点i ξ的取法无关,则称这个独一的极限值为函数()f x 在[],a b 上的定积分,记作b a ()f x dx⎰,即1()lim ()nbai ii f x dx f x λξ→=⎰=∆∑.不然称()f x 在[],a b 上不成积.注1:由牛顿莱布尼兹公式知,盘算定积分与原函数有关,故这里借助了不定积分的符号.注2:若()b a f x dx⎰消失,区间[],a b 进行特别朋分,分点i ξ进行特别的取法得到的和式极限消失且与定积分的值相等,但反之不成立,这种思惟在考题中经常消失,请读者要真正懂得.注3:定积分是否消失或者值是若干只与被积函数式和积分区间有关与积分变量用什么字母暗示无关,即()()().b b ba a a f x dx f t dt f u du ⎰=⎰=⎰细心不雅察定积分的界说,我们必定会发明定积分的极限有以下两个特点.第一,定积分是无穷项和式的极限,轻易知道一般项在项数趋近于无穷大时极限值必定趋近于零,不然和式极限不消失.第二,定积分与某一持续函数有慎密的关系,它的一般项受到这一持续函数的束缚,它是持续函数在某个区间长进行了无穷的朋分,各小区间上随意率性的函数值与区间长度的乘积的累加.对于极限,大学重要进修了数列的极限和函数的极限.数列的极限是用于解决离散的天然数的相干极限,而函数的极限则重要用于解决持续函数的相干极限.那么就让我们先一一往返想它们吧! 极限的概念数列的极限设{}n a 为数列,a 为实数,若对任给的正数ε,总消失正整数N ,使得当n N >时有||n a a ε-<, 则称数列{}n a 收敛于a ,实数a 称为数列{}n a 的极限,并记作lim n n a a→∞=或()n a a n →→∞.(读作:当n 趋于无穷大时,n a 的极限等于a 或n a趋于a ).因为n 限于取正整数,所以在数列极限的记号中把n →+∞写成n →∞,即lim n n a a→∞=或()n a a n →→∞.若数列{}n a 没有极限,则称{}n a 不收敛,或称{}n a 为发散数列.注1:关于ε:①εε的感化在于权衡数列通项n a 与常数a 的接近程度,ε越小,暗示接近得越好;而正数ε可以随意率性小,解释n a 与常数a 可以接近到任何程度;②εε有其随意率性性,但一经给出,就临时地被肯定下来,以便依附它来求出N;③ε的多值性.ε既是随意率性小的正数,那么2,3,2εεε等等,同样也是随意率性小的正数,是以界说1中的不等式||n a a ε-<中的ε可用2,3,2εεε“||n a a ε-<”可用“||n a a ε-≤”代替;④正因为ε是随意率性小的正数,我们可以限制ε小于一个肯定的正数.注2:关于N :①响应性,一般地,N 随ε的变小而变大,是以常把N 界说作()N ε来强调,N 是依附于ε的;ε一经给定,就可以找到一个N ;②N 多值性N 的响应性其实不料味着N 是由ε独一肯定的,因为对给定的ε,若100N =时能使得当n N >时,有||n a a ε-<,则101N =N 不是独一的.事实上,在很多场合下,最重要的是N 的消失性,而不是它的值有多大.基于此,在实际应用中的N 也不必限于天然数,只如果N 正数即可;并且把“n N >”改为“n N >”也无妨.函数的极限设函数()f x 在点0x A ,对于随意率性给定的正数ε(不管它有何等小),总消失某正数δ,使得当x 知足不等式00x x δ<-<时,对应的函数值()f x 都知足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当0x x →时的极限,记为0lim ()()()x x f x A f x A x x →=→→或当.可以看出,数列极限与函数极限界说的思惟是一致的,都是响应的某个表达上的值无穷地接近某个常数值.不合的是数列是离散的,数列中的项在跳跃式地接近,而函数是持续的,函数值在逐渐地接近,但二者都能与响应的常数值以随意率性程度地接近. 2.定积分与极限定积分在求极限中应用概述不难看出,无论是数列的极限照样函数的极限,它们都与定积分的界说消失着千丝万缕的关系,那么就让我们来揭晓它们之间玄机与奥妙吧.事实上,定积分的界说中蕴含着一列数{()i i f x ξ∆}的和,并且只要ix ∆充分地小,和式1()niii f xξ=∆∑就可以随意率性地接近肯定的实数J=()b a f x dx⎰,这恰是极限思惟的消失,即1lim ()J ()nb i i a n i f x f x dxξ→∞=∆==⎰∑.这就为我们求极限供给了一种奇特而有力的办法——应用定积分求极限.因为在积分学中有大量的积分公式,所以我们应用之解决浩瀚类型的和式极限. 定积分求极限中应用思惟的形成先让我们看一个简略的例子: 例1.求极限111lim()122n J n n n →∞++=++….分析:此极限式的求解,不轻易直接用极限的界说解决,因为该法往往是用来一边盘算一边证实某个极限成果已经比较明显的问题,是以这里不合适;重要极限的结论显然也在这里没有效武之地,因为情势上根本不合;再斟酌洛必达轨则,它不是无穷比无穷型的极限也非零比零型的极限,也不成能用到此法;那么泰勒公式呢?泰勒公式往往是用来解决持续函数的极限问题,经由过程泰勒展式往往能把非多项式情势的表达式转化成多项式情势,以简化情势从而求解,看来这里也不实用.那是不是就没有什么合适的办法了呢?答案当然是否认的,事实上,它从情势上与定积分的界说照样有一些相像的,那么就让我们测验测验用定积分的办法来解决这个问题吧!解:把此极限式转化为某个积分情势,从而盘算定积分.为此做如下变形:111lim 1nn i J i n n →∞==+∑.不难看出,个中的和式是函数1()1f x x =+在区间[]0,1上的一个积分和(这里取得是等量朋分,11,[,],1,2,i i i i i x i nn n n n ξ-∆==∈=…).所以,J=11001ln(1=ln21dx x x =++⎰).从该例题的解法中可以看出,本题的症结是将极限和转化为积分和,从而应用了定积分将所求极限水到渠成.于是,我们可以总结出定积分在求极限中应用的一般办法步调:Sept1将和式极限1lim ()nn i g i →∞=∑经由变形,使其成为积分情势1lim ()ni in i f x ξ→∞=∆∑.这里常取11,[,],1,2,i i i i i x i nn n n n ξ-∆==∈=…;Sept2肯定积分函数的高低限. a=lim (i n i ξ→∞取第一个值)lim (i n b i ξ→∞=取最后一个值);Sept3用x 代换i ξ,写出定积分表达式()baf x dx⎰,并求出原极限的值.经由过程以上的一般办法步调,我们在面对无穷项和式的极限问题时就有方可依,有法可循了.如今让我们再来看一个例子,并从中细心领会以上办法步调. 例2.求极限222222111lim (12n n n n n n →∞+++++…+).解:Sept1 化和式极限为积分情势.原极限=22211111lim lim 1(nn n n i i i n i n n →∞→∞===++∑∑). 显然,这里1,(i i ix n nξ=∆=即是进行N 等分),被积函数可算作()21f x ,1,2,.1+i n x ==…Sept2 肯定积分函数高低限.Sept3 写出积分表达式并求出积分值.原极限=110201arctan 14dx x x π==+⎰.对于本题,我们是紧紧按照方才总结出的办法步调进行的,并顺遂地求出了原题的极限值.这是一个具体的例子,那么我们是否可以总结出更为一般性结论呢?答案天然是肯定的. 3.应用定积分求极限 一般性结论的综述及其应用至此,我们可以得出如下结论:结论1假如函数()f x 在区间[],a b 上持续,将区间[],a b 进行n 等分,1[(()],i i i i b a b a b a x n n n ξ--∈--∆=),,那么,1lim ()()nb i a n i b a f f x dx n ξ→∞=-=∑⎰.事实上,持续函数必定可积,而将区间[],a b 进行n 等分也是朋分T的一种特别情况.依据定积分的界说,上述结论成立.当然,其实不是所有的用到定积分求极限的问题中都要严厉用到上面总结出的三个步调,我们可视情况灵巧处理,比方无需用到某一步调或者还需用到其他求极限的思惟等.下面我们再看一组求极限的习题,以充分感触感染结论1的用处. 习题组11)sinsinsinlim[]1112n n n n n n n n πππ→∞+++++2n ….这组习题都是无穷项式子和的极限问题,都可以把定积分的思惟应用到求极限中去.如今就让我们用结论1来解决这些求极限的问题,并从不合习题中查找出异同,以加深对结论1的控制和熟习.解:(1) 分析 原极限显然可以算作()sin f x x π=在[]0,1上的定积分.故(2)分析 先经由过程恒等变形,原极限式=11lim nn i n →∞=,被积函数()f x =,积分区间是[]0,1,于是原极限值=11022(13)33dx x =+=⎰; (3)分析 原和式极限的通项是sin in i n n π+不成以算作是关于i n的某一个函数,但是留意到:应用结论1,上面不等式左端可以取极限,即111211lim (sin sin sin )lim sin [lim sin ][lim ]1+1+1nn n n n n i i n n i i n n n n n n n n n n n πππππ→∞→∞→∞→∞==+++=⋅⋅=⋅+∑∑…=12[sin ]1xdx ππ⋅=⎰,上面不等式右端可以取极限,即1011212lim (sin sin sin )lim sin sin n n n i n i xdx n n n n nn ππππππ→∞→∞=+++=⋅==∑⎰…. 于是,由极限的迫敛性可知原极限值=2π.这组题均典范地应用了定积分的盘算,从而求出了各极限.我们发明,只要找到某个持续函数()f x ,并能把这个和式极限1lim ()nn i g i →∞=∑转化成积分情势1limf ()n i n n→∞⋅,我们就只需盘算出f(x)在[0,1]上的积分值,从而肯定出原极限值.这三个习题中,例题1的式子无需再进行恒等变形,因为其情势上已经是limn →∞f(i n )1n ⋅了;习题2与习题3情势上直不雅上不是limn →∞f(i n )1n⋅的情势,因为式子n →∞与式子sinsinsinlim[]1112n n n n n n n n πππ→∞+++++2n …都不含i n的项.为此,我们须要对习题2以及习题3极限的式子进行恒等变形,经由过程提取公因式等手腕使其消失in ()f x ,例如习题3,我们可以用极限的一些性质,如极限的迫敛性,从而间接地求出原和式极限的极限值. 一般性结论的深化及推广接下来,我们对结论1进行恰当的推广,以得到更多情势的极限的求法.推论1假如函数(),(),()()f x g x f x g x ⋅均在[],a b 上可积, 证实:起首,(),(),()()f x g x f x g x ⋅均在[],a b 上可积. 又因为1,,i i i i n n ξη-⎡⎤∈⎢⎥⎣⎦,0(i x n ∆→→∞当),所以,lim lim .i i n n ξη→∞→∞=于是,1lim ()()ni i ii f g x λξη→=∆∑=1lim ()()ni i ii f g x λξξ→=∆∑=()()baf xg x dx⎰.例3.求极限:122lim [sin cos()sin cos()sin cos()]222n n n n n n n n n n n n n πππππππππ→∞-+-++-….解:由推论1可知,f(x)= 于是,原极限式=1210011sin cos sin 02x xdx x ππππ=⋅⋅=⎰.推论2设1ln ()ln ()0,1]lim.f x dx n f x e →∞⎰=在区间[上可积,则例4.试求:112lim()nn n n n n n n n →∞+++⋅⋅….推论3假如函数()f x 在区间[]0,1上可积,且()1()11121f x 0,lim[1+()][1+()][1+()]f x dx n nf f f e n n n n n n →∞⎰≥⋅⋅=则….证实:记A=11121lim[1+()][1+()][1+()]n nf f f n n n n n n→∞⋅⋅…,则11ln lim ln[1+()]nn i i A f n n →∞==∑10()()11()1011()1111lim ln[1+()]lim ln[1+()]11lim ln lim ()()A .n if i n nnf n nn n i i i nn f n n n i i f x dx i if f n n n nn n ie f f x dxn nn e ⋅→∞→∞==→∞→∞======⋅=⎰=∑∑∑∑⎰于是,例5.盘算22212lim(1)(1)(1)333n n n n n →∞+⋅++….解:本题也可以直接应用推论3,这三个推论是对结论1的须要填补与完美.情势上我们不但有无穷项式子和的极限,还衍生出了无穷项式子乘积的极限.它们都是顺着结论1的思绪持续进行摸索,从情势上丰硕了定积分在求极限中应用这一思惟,但从本质上讲,它们与结论1是一致的.它们都紧紧抓住了定积分概念的本质,意识到定积分是无穷项和的极限,应用数学的一些基赋性质,对各式子进行恒等变形,尽量把不合情势的极限向定积分界说中的和式上去挨近.最终经由过程简略清楚明了的定积分公式,求出定积分的值来,以肯定出原极限的值.由这三个推论来看,111111111lim (),lim ()(),,[,],lim [()],lim [1+()]n n nn ni i i i n n n n i i i i i i i i i f f g f f n n n n n n n n ξηξη→∞→∞→∞→∞====-⋅∈∑∑∏∏对于等情势的极限,我们都有方可循,用定积分的办法轻易求出其极限来.对于任何一种数学办法,只要我们细心地不雅察与推究,都能将其结论或应用规模加以推广,就像结论1.如今让我们来看一组习题,以领会以上诸推论.如今,我们已经积聚了多种乞降式极限的办法,它们是往后应用定积分化决极限类问题的最佳模子与典范.那就再让我们来看一组习题,以熟习与巩固1111lim (),lim nnn n i i i f n n n →∞→∞==∑∑等情势的极限吧.下面这组习题分解用到了以上各结论与推论. 习题组2用定积分的办法盘算下列各极限.11111()(),,[,],lim [()],lim [1+()]n nn i i i in n i i i i i i f g f f n n n n n ξηξη→∞→∞==-⋅∈∏∏(1)222111lim [](1)(2)()n n n n n n →∞++++++…; (2)11111212111lim [()sin(+()sin(++()sin(]232323n n n n n n n n n n n n n n n n →∞------))…);(3)lim n →∞(4)111lim(1)(1)(1)12n n n n n →∞++++++….解:分析以上例题都轻易恒等变形,使其知足结论1或者推论1至推论3的前提.于是, (1)122222*********lim []();(1)(2)()(1)21n n i n dx i n n n n n x n →∞=+++===+++++∑⎰ (2)11111212111lim [()sin(+()sin(++()sin(]232323n n n n n n n n n n n n n n n n →∞------))…) =11sin ni i i n ξη=⋅∑,1,[,],1,2,1i i i i i n n n ξη-∈=-… =10sin sin1cos1;x xdx =-⎰(3)1011ln(1)21lim lim[(1)]2n x dx n n n i i e n ππ-+→∞→∞=⎰=+⋅=∏ 22(1)ln(1)1ππ=++-; (4)1011111111lim(1)(1)(1)(1)2121n dx x n i e i n n n n n n +→∞=⎰+++=+⋅==++++∏….定积分在求极限中应用思惟的转移至此,我们已经深深的领会到了各类情势的定积分在极限中应用的感化.仅仅于此,我们尚不克不及知足,我们可以把定积分在求极限中的应用思惟借鉴到其他方面.例如,应用这种思惟办法来证实一些不等式,或者用之解决一些庞杂一点的求极限问题.下面将举例解释.例 6.证实:若函数()f x 在[],a b 上持续,且对于[],x a b ∀∈,有()0f x >,则21()()()bb a a f x dx dx b a f x ≥-⎰⎰.证实:已知()f x 与()g x 在[],a b [],a b 进行N 等分,分点是01n a x x x b =<<=…<.在第K 个区间上取1,k k k k b a x x x n ξ--=-=.由算数平均不小于几何平均,有 121111(()1(()()n n k n nk k k k k k k f x f x b a b a f x b a n f x n n n ====--⋅⋅⋅=-⋅⋅≥∑∑∑∑))22(()b a b a -=-)21()()()b b a a n f x dx dx b a f x →∞≥-⎰⎰当时,有.领会:本例刚巧反过来,将积分和转化为极限和的情势,并应用了算术平均数不小于几何平均数这一结论,将问题化繁为简.较好地熟习与控制定积分与极限之间的关系是解决本问题的症结.该例题解释,我们应当充分熟习到定积分在极限中的感化,并能做到灵巧变通,恰当情况下,二者可以互相转化,将问题化难为易,从而达到解决问题的目标.例7.试求极限(21)!!lim[](2)!!n m m →∞-.分析:该问题似乎不克不及直接应用结论1或推论1至推论3来求极限.因为极限的表达式不轻易化成以上结论或者推论的情况.但是,该问题的解决就真用不到定积分了吗?答案是否认的.在解决该问题之前,照样先让我们看一下沃利斯公式的由来吧!沃利斯公式:2(2)!!1lim[](21)!!212m m m m π→∞⋅=-+.证实:令20sin ,1,2,n n J xdx n π==⎰…,则当2n ≥时用分部积分法轻易求得移项并整顿后可得递推公式:21, 2.n n n J J n n --=≥因为 220100,sin 1,2J dx J xdx πππ====⎰⎰反复应用上面的递推公式可得2212123122222()2222121213m m m m J m m m m J m m π+--⎫=⋅⋅⋅⎪⎪-**⎬-⎪=⋅⋅⋅⎪+-⎭……, 又因为2122-1222000sin sin sin m m m xdx xdx xdx πππ+<<⎰⎰⎰,再将**()式代入,即可以得到 22(2)!!1(2)!!1[][](21)!!212(21)!!2m m m m A B m m m m π=<<=-+-,因为2(2)!!110[]0()(21)!!2(21)22m m m B A m m m m m π<-=<⋅→→∞-+,依据极限的迫敛性可知lim()0m m m B A →∞-=.而02m m m A B A π<-<-,故得沃利斯公式2(2)!!1lim[](21)!!212m m m m π→∞⋅=-+.如今让我们来细心看看沃利斯公式毕竟与定积分有什么关系吧!事实上,在盘算定积分20sin ,1,2,n n J xdx n π==⎰…时,我们奇妙地应用了定积分的递推表达式,如许我们才正真地查找到懂得决极限问题的金钥匙,看来定积分的运算照样在个中施展了不成低估的感化.那么就让我们直接应用该公式来商量例8问题吧! 依据沃利斯公式2(2)!!1lim[](21)!!212m m m m π→∞⋅=-+,可知1(21)!!21lim lim 0(2)!!2m m m m m π→∞→∞-+==.从某种程度上讲,我们应用了定积分办法解决了例8中极限的问题.倘使我们采取其办法来求这个极限,生怕会走一些弯路.定积分在求极限中应用思惟的完美我们知道反常积分也是定积分在极限下界说出来的.以上的所有求极限问题都是将极限的表达式整体转化成积分情势,从而应用了定积分奇妙地求出了原极限的成果,那么能不克不及把定积分在求极限中局部应用呢?如今我们再来看一个有味的问题,以便解释此问题.例8.证实:1112lim 1ln n n n →∞++=…+.分析:这个例题不合于前面所有的例题,前面的例题,我们都能敏捷地将所求极限的表达式转化成1lim ()n i i n i f x ξ→∞=∆∑,而本例不成,但它情势上与我们评论辩论的定积分在求极限中应用的例子异常相像,因为式子中有无穷多项和11n i i =∑,所以我们就测验测验用定积分的办法来求它吧! 把这个极限式子的分子进行恰当变形11111n n i i i in n ===∑∑.假如依据前面的经验,我们知道101111lim n n i dx i n x n →∞==∑⎰的.可是如今我们对两个问题有所质疑.第一,我们并没有把原极限式直接转化成积分情势;第二,即使局部用到了定积分101dx x ⎰,但我们知道101dx x =∞⎰ 110001111111lim(ln )lim(ln )ln 2lim lim lim 1ln ln lim ln lim ln lim ln ln n i x x n n x x x x i n dx x x n n x x n n x x x x ++=→→→∞→∞→+∞→+∞→+∞→+∞++-======∑⎰…+(这里我们同一了分子分母中的变量,同一用变量x,这里已经暗示变量x 是慢慢趋近,由数学分析中归结道理”,这个手腕是不影响极限成果的).最后我们求得其成果,1112lim 1ln n n n →∞++=…+.由此可以看到,在求极限的问题中,定积分的思惟不但可以对表达式整体应用,也可以对其进行局部应用.总之,只要我们擅长思虑书本上的一些概念以及分析它们之间接洽,我们就往往可以或许游刃有余地把一种数学思惟用于解决其他数学问题上.最后,让我们再来总结一下,定积分在求极限中应用时所应当留意的几个问题.第一,极限必须是无穷项和的极限,并且这些和的极限经由恰当的恒等变形之后能转化为定积分的情势.第二,应用定积分求极限时,往往还须要用到其他的一些求极限的办法和手腕,例如极限的迫敛性,重要极限的结论,取对数手腕等.第三,求极限一类问题往往须要应用各类手腕,如许才干做到事半功倍.4.论文总结再熟习数学经由过程以上商量,我们从新熟习了数学.我们在进行推理与应用时,是有深切领会的.数学本身是一门严谨的天然科学,因为它是一种思维的对象,是一种思惟办法,它照样一种理性的艺术.,数学具抽象性.数学概念是以极端抽象的情势消失的.本文中评论辩论的定积分以及极限更是如斯.与此同时,数学的研讨办法也是抽象的,这就是说数学命题的真谛性不克不及树立在经验之上,而必须依附于严厉的证实.当数学应用于实际问题的研讨时,其症结在于能树立一个较好的数学模子.我们在应用定积分求极限时,就已经失去了较好的数学模子——函数模子.解决实际问题的表现.第二,数学付与科学常识以逻辑的周密性和结论的靠得住性,是使熟习从感性阶段成长到理性阶段,并使理性熟习进一步深化的重要手腕.在数学中,每一个公式,定理都要严厉地从逻辑上加以证实今后才干够确立.当我们发清楚明了“结论1”之后,接踵经由周密的推理与论证后才拓展到了“推论1”至“推论3”.第三,数学是一种帮助对象和表示方法.我们在解决数学问题本身时,还必须依附于数学中的其他相干办法思绪.别的数学反应的是一种庞杂而抽象事物内部关系,但是我们仍然有简明的数学符号与形象光鲜的图形等来暗示它.无论是定积分照样极限,个中都用到了丰硕的数学符号,分开这些数学符号,我们的表达似乎显得寸步难行.数学是一种思惟办法.数学是研讨量的科学.它研讨客不雅对象量的变更,关系等,并在提炼量的纪律性的基本上形成各类有关量的推导和演算的办法.数学的思惟办法表现着它作为一般办法论的特点和性质,是物资世界质与量的同一,内容与情势的同一的最有效的表示方法.无论是定积分照样极限都离不开盘算,这就意味着它们中都蕴含着量的变更.数学照样一种理性的艺术.一般我们认为,艺术与数学是两种作风与本质都有着明显不合的事物.它们一个处于高度理性化的峰顶,另一个则位于精力世界的枢纽地带;一个是天然科学的代表,另一个则是美学的佳构.但是,在各种概况上无关甚至完整不合的现象死后却隐蔽着艺术与数学相当一致的一般意义.我们进行学术研讨纯粹是我们朝长进步以及求知欲的使令.艺术与数学都是公认的地球说话.艺术与数学在描写万事万物的进程中,还同时完美了自身的表示情势,这种表示情势最根本的载体等于艺术与数学各自奇特的说话特点.其配合特色有(1)超文化性.艺术与数学所表达的是一种带有广泛意义的人类配合的心声,因而它们可以超出时光和地域界线,实现不合文化群体之间的广泛传播和交换.(2)整体性.艺术的整体性来自于其艺术表示的广泛性和广泛性;数学的整体性来自于数学同一的符号系统,各个分支之间的有力接洽,配合的逻辑轨则和既约的表达方法.(3)简明性.它起首表示为很高的抽象程度,其次是凝冻与浓缩.(4)代表代表性可以诱发某种强烈的情绪体验,唤起某种美的享受,而意义则在于把留意力转向思维,上升为理念,成为表示人类心坎意图的方法.(5)情势性.在艺术与数学各行其是的符号与信息的寄义交换中,其配合的特点就是达到了实体与情势的分别.我们研讨的定积分在求极限中的应用,那种思惟以及符号呈现方法可被世界人悦纳.艺术与数学具有配合的精力价值.接洽关系的;艺术的价值也是不克不及以人的意志而转移.艺术与数学的价值根本上是在自身框架内被辨别,鉴赏和评价的.(2)超出性.它们可以超出时空,彰显永恒.在艺术与数学的价值超出进程中,实际得以异于其他种类文化与科学的明显特点之一.(4)多样化,物资化与广泛化.在现代技巧与贸易化的推进下,艺术与数学的价值也开端产生升华,消失了各自价值在很多范畴内的散射,渗入渗出,应用,交叉等情况.定积分在求极限中的应用,不但仅进献于数学本身,它将逐渐在其他范畴也施展必定的感化.停止语我们已经见到了定积分在求极限问题中应用的各类情势.事实上,只要我们对学过的某些概念居心的领会,并加以深入的思虑,我们就可能将其精华应用到数学的其他范畴.正如我们这里把定积分与极限联合起来,并进行了恰当推广,得到了较为知足的结论和推论.本文重要给大家介绍了定积分在求极限中应用.一开端我们就回想了定积分以及极限等大学数学进修中的重要概念.然后分析它们之间的内涵接洽,进而查找到了一种奇特的求极限的办法——借助定积分求极限.当然,这种思惟也并不是空穴来风,它是源于教材中某些例题中具有创新性思惟办法或者一些奇特的步调.因为不是所有的数学概念之间经由思虑推理,互相之间就能树立起接洽来.是以,在日常平凡的数学进修中,我们务必对教材中的根本概念加深领会,尤其是要把互相之间或多或少消失着某种关系的概念加以比较与分析.然后对其进行大胆的假设,并进行必定的逻辑证实.假如我们的假设成立,那就是我们发明的新事物,这对于我们发散思维与创新思维都是大有裨益的;假设不成立,我们也可更好地控制不合概念之间差别,这对于我们懂得常识都是有利益的.所以,在我们日常平凡的进修进程中,我们要积极去思虑,并大胆地进行某些恰当的假设,以晋升我们创新思维才能.求极限的办法可能还有更多,值得大家去思虑与发掘.愿望本文能起到抛砖引玉的目标,能激发更多的数学快活爱好者携起手来摸索出更多实用与奇妙的求极限的办法来.迎接大家对本文进行批驳与斧正.参考文献[1]华东师范大学数学系.数学分析[M].高级教导出版社,2001.[2]刘玉琏,刘伟等.数学分析课本习题选解.北京,高级教导出版社,2002.[3]同济大学数学教研室.高级数学[M]北京, 高级教导出版社,1997.[4]王业.关于积分在求极限中的初探[R].全国专科院校数学会,1992.[5]刘树利.盘算机数学基本.北京.高级教导出版社,2001.[6]刘利茹,孙永华.高级黉舍经济数学系列教材.北京,高级教导出版社,2004.[7]陈吉象,戴英等.文科数学基本.北京高级教导出版社,2003.[8]天津大学数学比赛(人文学科及医学等类),2005.英文摘要Abstract:In solving limit problem, we often think of the ways including the definition of limit, important limits, L’Hospital’s rule an d Taylor’s formula etc. These methods have some limitations, however the definite integral is also limit form in essentially, it is also simple in。
关于利用定积分定义去解决数列极限问题总结(最新整理)

n1
f
k 0
k
n
1 n
第一项是f
0
n
=f
0
, 第二项是f
n- 1
n
,
n- 1 n
0 n
n- 1 n
n
f
k 1
k
n
1 n
第一项是f
1 n
,
第二项是f
n n
,
n n
1 n
n- 1 n
n- 1 我们发现这两种方法选取的第一个点和最后的一个点自变量相减都是 ,
n
n
1
1
n
1
2
AAA
1 2n
=
1 n
n
n
1
n
n
2
AAA
n
2n
现在问题又来了,
1
感觉括号里面还是找不到对应的规律啊,因为要出来 f 0
n
x dx =l i m f n k 1
k 1
n
n
也就是说要出来 k ,说的更详细点也就是每一项要出现 0 , 1 , 2 , 3 之类的,
n
nnnn
分析:因为每一项xnk
1 k 1含有n, 所以想到定积分,但是每一项并没有 n2
出来
1 n
,
所以转化一下xnk
1 k n2
1=
1 n
n
1 k n2
1
下面我要让式子中出现 k 这个整体有关的东西,不然没法利用定积分去做 n
xnk
1 n
n
1 k n2
1
=
1 n
n
k n2
1 n n
n 1
2n
用极限算定积分的例子

用极限算定积分的例子
,
极限算定积分是近代数学的核心内容之一,它涉及到对定积分的不可积性的检
测和微积分的本质应用。
滴久洛夫使用极限技术证明了定积分未定义方程式和不可积分函数的存在及其变换关系。
极限算定积分主要是指在极限内用极限进行积分计算。
当函数中出现极限极值时,积分结果就不能得到计算,这种情况就需要使用极限算定积分。
极限算定积分有着广泛的应用,尤其是在互联网方面,有许多应用场景都需要
使用极限算定积分去解决问题。
例如,在处理电子商务网站的购物车时,极限算定积分可以有效的优化性能,并减少数据的冗余。
当用户离开购物车时,系统通过使用极限算定积分去识别出有效的信息,然后把它们添加到新的购物车中,这样可以节省大量的存储空间,并使系统运行更加高效。
此外,极限算定积分还被用于互联网推广方面,比如一些基于搜索引擎优化(SEO)的核心算法。
在SEO算法中,数据要求非常复杂,尤其是对大型网站,需
要通过极限算定积分来实现计算,以便让网站的内容和关键词更加吻合搜索引擎的要求,从而更好的推广网站。
以上就是极限算定积分在互联网方面的应用,比如网络商务、搜索引擎优化等,都可以使用极限算定积分来实现对功能优化和精确计算,让互联网应用变得更加灵活、高效、具有竞争力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分在极限运算中的应用
胡 涛
(武汉军械士官学校基础部数学教研室/助教)
摘要:极限和定积分是高等数学中最重要的内容之一,本文利用定积分的定义式来解决一些复杂的和式极限的问题,并希望藉此逆向应用,使学生加深对定积分概念的理解。
关键词:定积分 极限运算 和式极限
一 引言
极限和定积分是高等数学中最重要的内容之一,二者关系十分密切,其中定积分的概念由极限的思想引出,数学上具体表述如下:若函数()f x 在区间[,]a b 上连续,则()f x 在
[,]a b 上可积,从而()f x 在[,]a b 上的任意积分和均以()b
a f x dx ⎰为极限,数学表达式为
1
()lim
()n
b i i a
i f x dx f x λξ→==∆∑
⎰
,其中1[,](1,2,,)i i i x x x i n -∆== ,1max i i n
x λ≤≤=∆,i ξ为
区间1[,]i i x x -上的任意一点。
本文将利用定积分的定义式,通过一些巧妙的构造,去解决一些复杂的和式的极限问题,并希望藉此逆向应用,使学生加深对定积分概念的理解,增强学生的解题反思能力。
二 算例分析
下面我们通过两个例子来引入本文的观点:
例1、求极限1
1
lim
p n
p n i i n
+→+∞
=∑
,其中0p >为常数
解:首先将和式进行变形
1
1
1
1()
p n
n
p
p i i i
i
n
n n +===
∑∑
对于上述和式中的变量
(1,2,,)i i n n
= ,当n →+∞时,其取值范围为区间
[0,1]。
令i x n
=
,则上述和式可以看成是函数()p
f x x =在区间[0,1]上的一个
积分和,即
1
1
1
1
()p n
n
p i i i i
f n
n n
+===
∑
∑。
又因为()p
f x x =在区间[0,1]上可积,于是:
111
1
1lim
()1
p n
p
p n i i f x dx x dx n
p +→+∞
==
=
=
+∑
⎰
⎰
例2、求极限12lim
(sin
sin
sin )n n n
n
n
n
π
ππ→+∞
+++
解:首先将上述和式变形
1
121
(sin
sin
sin
)sin
n
i n i n n
n
n
n
n
π
πππ=+++=
∑
同上分析,显然上述和式是函数()sin f x x π=在区间[0,1]上的一个积分和,
即
1
1
11
sin
()n
n
i i i i f n
n
n n
π===
∑
∑
又因为()sin f x x π=在区间[0,1]上可积,于是:
10
1
12
lim
sin
sin n
n i i xdx n
n
πππ
→+∞
==
=
∑
⎰
这样,我们将两个复杂的和式极限问题转化成了两个简单的定积分问题。
通过上述两个例子,我们不难发现,在求某些和式极限的时候,我们首先要对和式结构进行分析,找出该和式是哪个函数的积分和,然后确定被积函数和积分区间,再借助定积分求出和式的极限。
由于定积分定义式中的i ξ是取自每一个小区间
1[,](1,2,,)i i x x i n -= 上的任意一点,且和式的极限值与定义区间[,]a b 的分割及i
ξ的取法均无关,因此为方便计算,我们可以将定积分的定义区间[,]a b 分割成n 等份,i ξ取每个小区间的右端点,得到下面这个式子:
1
()()lim
()
n
b a
n i i b a b a
f x dx f a n n
→+∞
=--=+
∑
⎰
(1) 对于(1)式,只需确定式中,a b 和()f x 的值,就可以直接计算出和式的极限值。
三 应用
下面再通过两个例子来进行说明(1)式的应用。
例3、求极限111lim (
)1
2
x n n n n
→+∞
+
++
+++
解:首先将求极限的式子进行变形
1
1
1111111
2
1n
n
i i i n n n n
n i
n
n
==+
++
=
=
+++++
∑
∑
对照公式(1),我们不难发现这里10,1,()1a b f x x
===
+. 于是:
110
1111lim (
)()ln 21
2
1x f x dx dx n n n n
x
→+∞
+
++
=
=
=++++⎰
⎰
例4
、求极限lim
n →+∞
解:首先将原式进行恒等变形:
原式=1
1
2
2
22lim
ln(2)
lim
ln (1)
lim
ln (2)(32)
n n n n n i i i n i n n n n n
n
n
n
e
e
e
--→+∞→+∞→+∞
==++
+-∑∑==
=1
22lim
ln(1)
n n i i n
n
e
-→+∞
=+
∑
显然这里0,2,()ln(1)a b f x x ===+,即
原式=2
0ln(1)x dx
e
+⎰=3ln 32
e
-=
2
27e
四 结语
和式极限的计算一直是极限运算中的难点问题。
本文利用极限和定积分的密切关系,提出了用定积分的定义来求和式极限的思想,并抓住i ξ取值的任意性和区间[,]a b 分割的任意性的特点,构造出一种利用定积分求和式极限的计算式子,方法简单,计算方便,为和式
极限的计算开辟了一条新的路子。