用样本估计总体-初中数学习题集含答案

合集下载

用样本估计总体(平均数、中位数、众数)练习

用样本估计总体(平均数、中位数、众数)练习

用样本估计总体(平均数、中位数、众数)练习1、某厂10名工人在一个小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a,中位数为b,众数为c,则有( )A.a>b>c B.b>c>a C.c>a>b D.c>b>a2、如图所示的茎叶图记录了一组数据,关于这组数据,其中说法正确的序号是________.①众数是9;②平均数是10;③中位数是9或10;④标准差是3.4.3、某次测量中A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A 样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( ) A.众数 B.平均数 C.中位数 D.标准差4、已知一组数据的频率分布直方图如图所示.求众数、中位数、平均数.5、如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数)分别是( )A.12.5、12.5 B.12.5 、13C.13、12.5 D.13、136、从下列频率分布直方图中估计所有中位数与众数之和为元。

7.一个样本a,3,5,7的平均数是b,且a、b是方程x2-5x+4=0的两根,则这个样本的方差是( )A.3 B.4 C.5 D.68.关于统计数据的分析,有以下几个结论:①一组数不可能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③调查剧院中观众观看感受时,从50排(每排人数相同)中任意抽取一排的人进行调查,属于分层抽样;④一组数据的方差一定是正数;⑤如右图是随机抽取的200辆汽车通过某一段公路时的时速分布直方图,根据这个直方图,可以得到时速在[50,60)的汽车大约是60辆.则这5种说法中错误的个数是( )A.2 B.3 C.4 D.59、某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成、绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分及众数.(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.10、如图是某市有关部门根据该市干部的月收入情况,画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息解答下列问题.(1)求样本中月收入在[2 500,3 500)的人数;(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本中按月收入用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这组中应抽多少人?(3)试估计样本数据的中位数.答案:1、D 2、①② 3、D 4、众数:65,中位数:65,平均数:67 5、B 6、7400 7、C 8、B 9、(1)0.005(2)73(3)10人 10、(1)2000(2)20人(3)1750元。

(完整版)用样本估计总体检测题(附答案)

(完整版)用样本估计总体检测题(附答案)

The shortest way to do many things is
实用精品文献资料分享
个样本数据的平均数、众数和中位数; (II)根据样本数据,估计 该小区 200 户家庭中日均用电量不超过 7 千瓦时的约有多少户. 16.为了解“节约用水”活动开展一个月来的成效,某单位随机调 查了 20 名职工家庭一个月来的节约用水情况,如下表所示: 节约 水量(吨) 0.5 1 1.5 2 职工数(人) 10 5 4 1 请你根据上表提 供的信息估计该单位 100 位职工的家庭一个月大约能节约用水多少 吨? 17.为增强学生体质,各校要求学生每天在校参加体育锻炼的时间 不少于 1 小时.我区为了解初三学生参加体育锻炼的情况,对部分 初三学生进行了抽样调查,并将调查统计图表绘制如下.请你根据 图表中信息解答下列问题: 时间(h) 0.5 1.0 1.5 2.0 人数 60 a 40 b 估计我区 4000 名初三学生体育锻炼时间达标的约有多少人?
18.在对全市初中生进行的体质健康测试中,青少年体质研究中心 随机抽取的 10 名学生的坐位体前屈的成绩(单位:厘米)如下: 11.2,10.5,11.4,10.2,11.4,11.4,11.2,9.5,12.0,10.2 (1)通过计算,样本数据(10 名学生的成绩)的平均数是 10.9, 中位数是 _________ ,众数是 _________ ; (2)一个学生 的成绩是 11.3 厘米,你认为他的成绩如何?说明理由; (3)研究 中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被 评定为“优秀”等级,如果全市有一半左右的学生能够达到“优秀” 等级,你认为标准成绩定为多少?说明理由. 19.某学校抽查了某班级某月 10 天的用电量,数据如下表(单位: 度); 度数 8 9 10 13 14 15 天数 1 1 2 3 1 2 (1)这 10 天用 电量的众数是 _________ ,中位数是 _________ ,极差是 _________ ; (2)求这个班级平均每天的用电量; (3)已知该 校共有 20 个班级,该月共计 30 天,试估计该校该月总的用电量. 20.某中学要开运动会,决定从九年级全部的 300 名女生中挑选 30 人,组成一个彩旗方队(要求参加方队的女同学的身高尽可能接近), 现在抽测了 10 名女生的身高,结果如下(单位:厘米): 166 154 151 167 162 158 158 160 162 162 (Ⅰ)依据样本数据估计,九

用样本估计总体 第2节 华东师大版九年级数学下册同步练习(含答案)

用样本估计总体 第2节 华东师大版九年级数学下册同步练习(含答案)

28.2.2. 简单随机抽样调查可靠吗课堂练习一、单选题1.某学校需要了解全校学生眼睛近视的情况,下面抽取样本的方式比较合适的是()A.从全校每个班级中随机抽取10名学生作调查B.从九年级随机抽取一个班级的学生作调查C.从全校的女同学中随机抽取50名学生作调查D.在学校篮球场上随机抽取10名学生作调查2.在一次数学测试中,将某班50名学生的成绩分为5组,第一组到第四组的频率之和为0.8,则第5组的频数是()A.10B.9C.8D.73.在“We like maths.”这个句子的所有字母中,字母“e”出现的频数是()A.2B.3C.4D.54.在2008年的世界无烟日(5月31日),小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了1000个成年人,结果其中有150个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是()A.调查的方式是普查B.本地区约有15%的成年人吸烟C.样本是150个吸烟的成年人D.本地区只有850个成年人不吸烟5.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元6.下列说法:①两点之间,线段最短;②正数和负数统称为有理数;③多项式3x2-5x2y2-6y4-2是四次四项式;④一个容量为80的样本最大值是123,最小值是50,取组距为10,则可以分成7组;⑤一个锐角的补角与这个角的余角的差是直角,其中正确的有()A.2个B.3个C.4个D.5个7.下列调查中,适宜采用全面调查(普查)方式的是()A.了解“中国达人秀第六季”节目的收视率B.调查我校七年级某班学生喜欢上数学课的情况C.调查我国民众对“香港近期暴力”行为的看法D.调查我国目前“垃圾分类”推广情况8.要调查城区九年级8000名学生了解禁毒知识的情况,下列调查方式最合适的是()A.在某校九年级选取50名女生B.在某校九年级选取50名男生C.在某校九年级选取50名学生D.在城区8000名九年级学生中随机选取50名学生二、填空题9.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为. 10.在整数20200408中,数字“0”出现的频率是.11.某校为了解七年级同学的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则计该校一分钟仰卧起坐的次数不少于25次的有人.12.对1850个数据进行整理.在频数的统计表中,各组的频率之和等于. 13.如图是九(1)班45名同学每周课外阅读时间的频数分布直方图(每组含前一个边界值。

秋九年级数学上册 23.4 用样本估计总体作业 (新版)冀教版-(新版)冀教版初中九年级上册数学试题

秋九年级数学上册 23.4 用样本估计总体作业 (新版)冀教版-(新版)冀教版初中九年级上册数学试题

23.4用样本估计总体一、选择题1.%,请估计某某地区1000斤蚕豆种子中不能发芽的有( )A.971斤 B.129斤斤 D.29斤2.[2017·某某]为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有的2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生的人数约为( )A.70 B.720 C.1680 D.23703.[2017·某某期末]积极行动起来,共建节约型社会!我市某居民小区400户居民参加了节水行动,现统计了10户家庭一个月的节水情况,有关数据整理如下表:估计该小区400户家庭这个月节约用水的总量是( )A.360吨 B.400吨C.480吨 D.720吨4.从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是( ) A.样本容量越大,样本平均数就越大B.样本容量越大,样本的方差就越大C.样本容量越大,样本的中位数就越大D.样本容量越大,对总体的估计就越准确二、填空题5.如图6-K-1,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图.若该校共有学生700人,则据此估计步行的有________人.图6-K-16.国庆节期间,小李调查了“福美小区”10户家庭一周内使用环保袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.据此,估计该小区2000户家庭一周内使用环保袋的数量约为________只.7.某校在九年级的一次模拟考试中,随机抽取了40名学生的数学成绩进行分析,其中有10名学生的成绩达到108分及以上,据此估计该校九年级640名学生中这次模拟考试数学成绩达到108分及以上的有________名.8.某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A,B,C三个级别,其中A级30棵,B级60棵,C级10棵,然后从A,B,C三个级别的苹果树中分别随机抽取了3棵,6棵,1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是________千克.三、解答题9.某鱼塘放养鱼苗10万条,根据这几年的经验知道鱼苗成活率为95%,一段时间后打捞出售,第一次捞出40条,,第二次捞出25条,,第三次捞出35条,,请你估计鱼塘中的鱼总质量大约是多少千克.10.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制成如下统计图表:身高情况分组表(单位:cm)图6-K-2根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在________组,中位数在________组;(2)样本中,女生身高在E组的人数为________;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生有多少人.11甲、乙两名工人同时加工同一种零件,现根据两人7天的产品中每天出现的次品数情况绘制成如下不完整的统计图(如图6-K-3)和统计表,依据图表信息,解答下列问题:图6-K-3相关统计量表次品数量统计表(单位:件)(1)补全统计图、表;(2)判断谁出现次品的波动小;(3)估计乙加工该种零件30天出现次品多少件.1.D [解析] 由题意,%)=1000×=29(斤).故选D.2.C [解析] ∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数为100-30=70,∴全校持“赞成”意见的学生人数约为2400×70100=1680(名).故选C.3.C [解析] 根据10户家庭一个月的节水情况可得,平均每户节水:(0.5×2+1×3+1.5×4+2×1)÷(2+3+4+1)=1.2(吨),∴400户家庭这个月节约用水的总量是400×1.2=480(吨).故选C.4. D5.2806.14000 [解答] 110×(6+5+7+8+7+5+8+10+5+9)×2000=14000(只).7.1608.7600 [解析] 根据题意,得平均每一棵苹果树的产量为80×3+75×6+70×13+6+1=76(千克),所以该果园的苹果总产量为76×100=7600(千克).9.解:由题意,可得(40×2.5+25×2.2+35×)÷(40+25+35)=2.53(千克),故100000×95%×=240350(千克).答:鱼塘中的鱼总质量大约是240350千克.10.解:(1)∵B组的频数为12,是最多的,∴众数在B组.男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20,21个数据都在C组,∴中位数在C组.(2)女生身高在E 组的人数占总人数的百分比为%-37.5%-25%-15%=5%. ∵抽取的样本中,男生、女生的人数相同, ∴样本中女生身高在E 组的人数为40×5%=2.(3)400×10+840+380×(25%+15%)=180+152=332(人).答:该校身高在160≤x<170之间的学生约有332人.11 解:(1)从次品数量统计表可以看出甲工人每天的次品数中2件出现了3次,出现的次数最多,故众数是2件.把甲工人每天的次品数按从小到大的顺序排列为(单位:件)0,1,2,2,2,3,4,最中间的数是2件,故中位数是2件.由于乙每天的次品数的平均数是1,所以乙工人第7天出现的次品有1×7-1-0-2-1-1-0=2(件).填表和补图如下.相关统计量表次品数量统计表(单位:件)(2)∵s 甲2=107,s 乙2=47,∴s 甲2>s 乙2,∴乙出现次品的波动小. (3)∵乙的平均数是1件, ∴1×30=30(件).答:估计乙加工该种零件30天出现次品30件.。

用样本估计总体练习题含答案

用样本估计总体练习题含答案

用样本估计总体练习题(1)1. 张先生去某城市参加学术会议,拟选择在会议中心附近的A、B两酒店中的一个人住.两酒店条件和价格相当,张先生在网上查看了最近入住两个酒店的客人对两酒店的综合评分,并将评分数据记录为如图的茎叶图.记A、B两酒店的宗合评分数据的均值为,,方差为S A2,S B2,若以此为依据,下述判断较合理的是()A.因为,S A2>S B2,应选择A酒店B.因为,S A2<S B2,应选择A酒店C.因为,S A2>S B2,应选择B酒店D.因为,S A2<S B2,应选择B酒店2. 根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关3. 某市为调查学生的学习负担,在某一所学校门口随机抽取一部分学生进行询问调查,这种抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.以上都不是4. (5分)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.5.(5分) 2020年,面对突如其来的新冠肺炎疫情冲击,在党中央领导下,各地区各部门统筹疫情防控和经济社会发展取得显著成效,商业模式创新发展,消费结构升级持续发展.某主打线上零售产品的企业随机抽取了50名销售员,统计了其2020年的月均销售额(单位:万元),将数据按照[12,14),[14,16),⋯,[22,24]分成6组,制成了如图所示的频率分布直方图.已知[14,16)组的频数比[12,14)组多4.(1)求频率分布直方图中a和b的值;(2)该企业为了挖掘销售员的工作潜力,对销售员实行冲刺目标管理,即给销售员确定一个具体的冲刺目标,完成这个冲刺目标,则给予额外的奖励.若公司希望恰有20%的销售人员能够获得额外奖励,求该企业应该制定的月销售冲刺目标值.参考答案与试题解析用样本估计总体练习题(1)一、选择题(本题共计 3 小题,每题 5 分,共计15分)1.【答案】B【考点】茎叶图【解析】此题暂无解析【解答】此题暂无解答2.【答案】D【考点】频率分布直方图【解析】此题暂无解析【解答】解:从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;2004−2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;从图中看出,2006年以来我国二氧化硫年排放量呈减少趋势,故C正确;2006年以来我国二氧化硫年排放量呈减少趋势,而不是与年份正相关,故D错误.故选D.3.【答案】D【考点】收集数据的方法【解析】利用排除法,本题既不是系统抽样,又不是分层抽样,它的形式类似于简单随机抽样,但它不符合简单随机抽样的两种形式抽签法和随机数表法,不属于三种抽样方法的任一种.【解答】解:由题意知,本题既不是系统抽样,也不是分层抽样,它的形式类似于简单随机抽样,但是它不符合简单随机抽样的两种形式,即抽签法和随机数表法;∴排除系统抽样,分层抽样和简单随机抽样三种方法.故选:D.二、填空题(本题共计 1 小题,共计5分)4.【答案】6.8【考点】茎叶图极差、方差与标准差【解析】根据茎叶图所给的数据,做出这组数据的平均数,把所给的数据和平均数代入求方差的个数,求出五个数据与平均数的差的平方的平均数就是这组数据的方差.【解答】∵ 根据茎叶图可知这组数据是8,9,10,13,15这组数据的平均数是8+9+10+13+155=11 ∴ 这组数据的方差是15[(8−11)2+(9−11)2+(10−11)2+(13−11)2+(15−11)2]=15[9+4+1+4+16]=6.8三、 解答题 (本题共计 1 小题 ,共计5分 )5.【答案】解:(1)由题意得{(a +b +0.12+0.14+0.10+0.04)×2=1,50×b ×2−50×a ×2=4,解得a =0.03,b =0.07.(2)设应该制定的月销售冲刺目标值为x 万元,则在频率分布直方图中x 右边的面积为1−0.8=0.2.最后一组的面积是0.04×2=0.08,最后两组的面积之和为0.10×2+0.04×2=0.28.因为0.08<0.2<0.28,所以x 位于倒数第二组,则(22−x )×0.10+0.08=0.2,解得x =20.8.所以该企业的月销售冲刺目标值应该定为20.8万元.【考点】频率分布直方图【解析】无无【解答】解:(1)由题意得{(a +b +0.12+0.14+0.10+0.04)×2=1,50×b ×2−50×a ×2=4,解得a =0.03,b =0.07.(2)设应该制定的月销售冲刺目标值为x 万元,则在频率分布直方图中x 右边的面积为1−0.8=0.2.最后一组的面积是0.04×2=0.08,最后两组的面积之和为0.10×2+0.04×2=0.28.因为0.08<0.2<0.28,所以x位于倒数第二组,则(22−x)×0.10+0.08=0.2,解得x=20.8.所以该企业的月销售冲刺目标值应该定为20.8万元.。

2021年七上数学同步练习-统计与概率_数据收集与处理_用样本估计总体-综合题专训及答案

2021年七上数学同步练习-统计与概率_数据收集与处理_用样本估计总体-综合题专训及答案

2021年七上数学同步练习-统计与概率_数据收集与处理_用样本估计总体-综合题专训及答案2021七上数学同步练习-统计与概率_数据收集与处理_用样本估计总体-综合题-专训1、(2016太原.七上期末) 某区环保部门为了提高宣传垃圾分类的实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,进行整理后,绘制了如下两幅不完整的统计图:根据统计图解答下列问题:(1)求抽样调查的生活垃圾的总吨数以及其中的有害垃圾的吨数;(2)求扇形统计图中,“D”部分所对应的圆心角的度数,并将条形统计图补充完整;(3)调查发现,在可回收物中废纸垃圾约占,每回收1吨废纸可再造0.85吨的再生纸,假设该城市每月生产的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可制成再生纸多少吨?2、(2019昌图.七上期末) 母亲节,是一个感谢母亲的节日,这个节日最早出现在古希腊;而现代的母亲节起源于美国,我国将母亲节定于每年5月的第二个星期日.今年为了在全校进行感恩母亲的宣传,某班通过问卷调查的形式,对2018年5月1 3日“母亲节”期间,本班全体学生对母亲表达感恩的方式进行调查统计,结果绘制如图:(1)这个班级共有多少名学生?(2)扇形统计图中,“帮母亲做家务”所在扇形的圆心角的度数是多少?(3)补全条形统计图;(4)若该校有学生1500人,估计该校有多少名学生通过“给母亲一个爱的拥抱”来表达感恩.3、(2018辽阳.七上期末) 某校为了了解本校七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调査(每人只选一种书籍).下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)这次活动一共调查了名学生;(2)在扇形统计图中,“其他”所在扇形的圆心角等于度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是.4、(2016萍乡.七上期末) 实验初中组织了“英语手抄报”征集活动,现从中随机抽取部分作品,按A、B、C、D四个等级进行评价,并根据统计结果绘制了如下两幅不完整的统计图.(1)抽取了份作品;(2)此次抽取的作品中等级为B的作品有份,并补全条形统计图;(3)若该校共征集到600份作品,请估计等级为A的作品约有多少份?5、(2016福鼎.七上期末) 为了解某中学男生的身高情况,随机抽取若干名男生进行身高测量,将所得到的数据整理后,画出频数分布直方图(如图),图中从左到右依次为第1,2,3,4,5组.(1)求抽取了多少名男生测量身高?(2)身高在哪个范围内的男生人数最多?(答出是第几小组即可)(3)若该中学有300名男生,请估计身高为170cm及170cm以上的人数.6、(2016新泰.七上期末) (2016七上·新泰期末) 某学校为了推动球类运动的普及,成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整).请你根据图中提供的信息,解答下列问题:(1)本次抽样调查,共调查了名学生;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生1800人,根据以上数据分析,试估计选择排球运动的同学约有多少人?7、(2016牡丹.七上期末) 保护环境,让我们从垃圾分类做起.某区环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况(如图1),进行整理后,绘制了如下两幅尚不完整的统计图:根据图表解答下列问题:(1)请将图2﹣条形统计图补充完整;(2)在图3﹣扇形统计图中,求出“D”部分所对应的圆心角等于度;(3)在抽样数据中,产生的有害垃圾共有吨;(4)调查发现,在可回收物中废纸垃圾约占,若每回收1吨废纸可再造好纸0.85吨.假设该城市每月产生的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可再造好纸多少吨?8、(2019平顶山.七上期末) 为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?9、(2018南山.七上期末) 随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生?(2)将图1补充完整;(3)求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.10、(2018罗湖.七上期末) 为了了解某校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况,并将所得数据进行了统计,结果如图所示.(1)在这次调查中,一共抽查了多少名学生?(2)求出扇形统计图中参加“音乐”活动项目所对应的扇形的圆心角度数;(3)若该校有2400名学生,请估计该校参加“美术”活动项目的人数.11、(2016龙岗.七上期末) 为了丰富校园文化生活,某校计划在早间校园广播台播放“百家讲坛”的部分内容,为了了解学生的喜好,随机抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)抽取的学生数为名;(2)该校有3000名学生,估计喜欢收听易中天《品三国》的学生有名;(3)估计该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的 %.12、(2017.七上期末) 某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,并根据这组数据绘制下面两幅不完整的统计图:根据以上信息,解答下列问题:(1)本次调查中的样本容量是.(2)请把折线统计图补充完整.(3)若该中学有学生1000人,请估计该中学最喜欢“教师”职业的人数.13、(2017灵武.七上期末) 为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.14、(2020天桥.七上期末) “垃圾分类”越来越受到人们的关注,我市某中学对部分学生就“垃圾分类”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有人,条形统计图中m的值为;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为;(3)若该校学生总数为1200人,试估计该校学生中对垃圾分类知识达到“非常了解”和“基本了解”程度的总人数.15、(2020莲湖.七上期末) 某校为了组织一次球类对抗赛,在本校随机抽取了若干名学生,对他们每个人最喜欢的一项球类运动进行了统计,将调查结果整理后绘制成如图所示的不完整的统计图,请你依据图中的信息回答下列问题:(1)求本次被调查的学生人数。

九年级数学用样本估计总体含答案

九年级数学用样本估计总体含答案

用样本预计整体一.选择题要认识一批灯泡的使用寿命,从中抽取60只灯泡进行试验,在这个问题中,样本是().这一批灯泡B.抽取的60只灯泡C.这一批灯泡的使用寿命D.抽取的这60只灯泡的使用寿命.假如一组数据x,x,x x,x,的均匀数是x,那么另一组数据x+1,x+2,x+3,x+4,x+5的1241235均匀数是()A.x.B.x2C.3.D.x15.为了考察某地域初中毕业生的数学毕业会考状况,从中抽查了200名考生的数学成绩,在这个问题中,下边说法错误的选项是()A.整体是被抽查的200名考生B.个体是每一个考生的数学成绩C.样本是200名考生的数学成绩D.样本容量是200.某学校生物兴趣小组11人到校外收集植物标本,此中2人每人收集到6件,4人每人收集到3件,5人每人收集到4件,那么这个兴趣小组均匀每人收集到的标本是()A.3件件C.5件件二.填空题:样本1,0,2,1,3,5,的均匀数是________.2.某地举行了一次数学比赛,为了预计均匀成绩,在抽取的局部试卷中,有1人得10分,3人得9分,8人得8分,12人得7分,9人得6分,7人得5分,那么样本容量是___,样本均匀数是_________.3 .某班共有学生50人,均匀身高为168cm,此中30名男生均匀身高为170cm,那么20名女生的均匀身高为___________.三.解答题:1 .大连是一个严重缺水的城市,为鼓舞市民珍惜每一滴水,某居民委员会表彰了100个节俭用水典范户,5月份这100户节俭用水状况以下表所示,求5月份这100户居民的均匀节俭用水量.每户节俭用水量(吨)1节水户数(户)523018(1)某甲鱼养殖专业户共养甲鱼200只,为了与客户签署购销合同,对自已所养甲鱼的总重量进行预计,任意捞了5只,称得重量分别为 1.5,1.4,1.6,2,1.8,( 单位:千克).依据样本均匀数预计甲鱼的总重量约是多少千克?假如甲鱼的市场价为每千克150元,那么该专业户卖出所有甲鱼的收入约为多少元?在北京市危旧房改造中,小强一家搬进了回龙观小区,这个小区冬天用家庭燃气炉取暖,为了估量冬天取暖第一月使用燃气的开销状况 ,从11月15日起,小强连续8天每日夜晚记录了天然气表显示的读数(单住:m3)日期15日16日17日18日19日20日21日22日天然气表显示的读数220 229 241 249 259 270 279 290小强妈妈于11月15日买了一张面值600元的天然气卡,每立方米天然气元,请你估量这张卡够小强家用一个月(按30天计算)吗?为何?综合创新训练四.学科内综合题:1.某出租汽车企业在“五一〞长假时期均匀每日的营业额为5万元,由此推测五月份的总营业额约为5×31=155(万元),依据所学的统计知识,你以为这样的推理适合吗?(1)某田户承包荒山种了44棵苹果树,现已进入第三年收获期,收获时,先任意摘了5棵树上的苹果,称得每棵树摘得的苹果重量以下(单位:千克):35,35,34,39,37.假定市场上苹果售价为每千克5元,那么这年该田户苹果收入将抵达多少元?该田户第一年卖苹果收入为5500元,依据以上估量,试求第二年,第三年卖苹果收入的年均匀增加率.中考题回想五.中考题:1.(2003. 天津)某食品店购进2000箱苹果,从中任取10箱,称得重量分别(单位:千克):为16,16.5,14.5,13.5,15,16.5,15.5,14,14,14.5,假定每千克苹果售价为元,那么利用样本均匀数预计这批苹果的销售额是_________元.2.(2003. 青岛)某林业部门为对辖区内面积为1200公倾的山林进行林业资源检查 ,工作人员在山林中精选了一块面积为 1亩的样当地,经实地盘点,该样当地的树木数目为196棵,预计该山林的树林总量约为________________棵(用科学记数法表示 ,1公倾=15亩).答案:更多资料请接见。

人教版七年级下知识点试题精选-用样本估计总体

人教版七年级下知识点试题精选-用样本估计总体

用样本估计总体一.选择题(共20小题)1.从一个大鱼池中捞取50条鱼,作好标记后放回,混匀后再捞取100条鱼,其中有标记的鱼有10条,从这些数据中我们可以估计这个鱼池中大约有鱼()A.100条B.500条C.1000条D.250条2.下表是某公司今年8月份一周的利润情况记录:根据上表,你估计该公司今年8月份(31天)的总利润是()A.2万元B.14万元C.60万元D.62万元3.某自然保护区为了估计区内金丝猴的数量,第一次捕捉了24只并在做了标记后全部放回.第二次捕捉了80只,发现有4只是上次做了标记的.根据以上的方法,估计该保护区金丝猴的总只数为()A.480 B.320 C.416 D.以上答案均错4.把养鸡场的一次质量抽查情况作为样本,样本数据落在1.5~2.0(单位:千克)之间的频率为0.28,于是可估计这个养鸡场的2 000只鸡中,质量在1.5~2.0千克之间的鸡有()只.A.56 B.560 C.80 D.1505.不透明的口袋中装有若干个完全相同的白球,为了估计它们的个数,现将两个黑球(除颜色外其他都与白球相同)放入口袋中,然后从口袋中随机摸出一个球,记下颜色后再放回口袋中,按此方法摸了100次,有20次摸到了黑球,则估计口袋中共有白球()A.7个 B.8个 C.9个 D.10个6.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只7.为了估计湖中有多少条鱼,先从湖中捕捞100条鱼都做上记号,然后放回湖中去,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现其中10条有标记,那么你估计湖中大约有()鱼.A.500条B.600条C.800条D.1000条8.某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,据此估计该学校希望举办文艺演出的学生人数为()A.1120 B.400 C.280 D.809.从鱼塘打捞草鱼300尾,从中任选10尾,称得每尾的质量分别是1.5,1.6,1.4,1.6,1.2,1.7,1.5,1.8,1.3,1.4(单位:kg),依此估计这300尾草鱼的总质量大约是()A.450kg B.150kg C.45kg D.15kg10.在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()A.2.5万人 B.2万人C.1.5万人 D.1万人11.水库中放养鲤鱼8000条,鲢鱼若干.在n次随机捕捞中,共抓到鲤鱼320条,抓到鲢鱼400条,估计塘中原来放养了鲢鱼()A.9000条B.9600条C.10000条D.12000条12.为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为()A.180 B.225 C.270 D.31513.去年某市有1530人参加中考,为了了解他们的数学成绩,从中抽取200名考生的数学成绩,其中有62名考生达到优秀,那么该市约有多少名考生达到优秀()A.500名B.475名C.450名D.400名14.在世界无烟日(5月31日),小华为了了解本地区大约有多少成年人在吸烟,随机调查了100个成年人,结果其中有18个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是()A.调查的方式是普查B.本地区只有82个成年人不吸烟C.本地区约有18%的成年人吸烟D.样本是18个吸烟的成年人15.某校九年级共有1100名学生参加“二诊”考试,随机抽取50名学生进行总成绩统计,其中有20名学生总成绩达到优秀,估计这次“二诊”考试总成绩达到优秀的人数大约为()A.400 B.420 C.440 D.46016.一个口袋中有3 个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中25次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.12 个B.15 个C.9 个D.10 个17.某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有()A.96人B.90人C.64人D.50人18.去年某校有1500人参加中考,为了了解他们的数学成绩,从中抽取了200名考生的数学成绩,其中有60名考生的数学成绩达到优秀,那么该校考生数学成绩达到优秀的约有()A.400名B.450名C.475名D.500名19.“共享单车”为人们提供了一种经济便捷、绿色低碳的共享服务,成为城市交通出行的新方式,小文对他所在小区居民当月使用“共享单车”的次数进行了抽样调查,并绘制成了如图所示的统计图,下面有四个推断:①小文一共抽样调查了20人②样本中当月使用“共享单车”30~40次的人数最多③样本中当月使用“共享单车”不足30次的人数有14人④若小文所在小区的居民约有740人,估计其中当月使用“共享单车”0~20次的人数约为120人其中合理的是()A.①②B.②③C.②④D.③④20.有一个不透明的袋子里装有若干个大小相同、质地均匀的白球,由于某种原因,不允许把球全部倒进来数,但可以从中每次摸出一个进行观察.为了估计袋中白球的个数,小明再放入8个同白球大小,质地均相同,只有颜色不同的红球,摇匀后从中随机摸出一个球并记下颜色,再把它放回袋中摇匀.这样不断重复摸球200次,其中有44次摸到红球,根据这个结果,估计袋中大约有白球()个.A.28 B.30 C.34 D.38二.填空题(共20小题)21.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚将其中6个涂上黑色后放入,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中300次摸到白球,则估计盒中大约有白球个.22.某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有只.23.某出租车公司在“五•一”黄金周期间,平均每天的营业额为5万元,由此推断5月份该公司的总营业额为5×31=155(万元),你认为是否合理?答:.24.刘强同学为了调查全市初中生人数,对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因.25.为了发展农业经济,致富奔小康,李伯伯家2006年养了4000条鲤鱼,现在准备打捞出售,为估计鱼塘中鲤鱼的总质量,从鱼塘中捕捞了三次进行统计,得到的数据如表所示;那么,估计鱼塘中鲤鱼的总质量为千克.26.鱼塘中养了1000条鱼,成活率为80%,现从中任意捕出40条,称得重量为135斤,那么估计鱼塘中约有鱼斤.27.为了了解某校1000名学生对办理“羊城通”具体事项是否知道,从中随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校这1000名学生中约有名学生“不知道”如何办理“羊城通”.28.某商场5月份随机抽查7天的营业额,结果如下(单位:万元):3.6,3.2,3.4,3.9,(3.0,3.1,3.6.试估计该商场5月份(31天)的营业额大约是万元.29.为了估计湖里有多少条鱼,先捕了100条鱼,做好记号,然后放回到湖里,过一段时间,待带有标记的鱼完全混合于鱼群后,再捕上200条鱼,发现带有记号的鱼只有2条,则湖里鱼的条数大约是条.30.某电动车厂在一次质量检验中,从3000辆电动车中抽查了100辆,有3辆超标准(不合格),则3000辆电动车中大约有辆超标准(不合格).31.某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不合格品约为件.32.某电视台为满足观众在北京奥运会期间收看不同比赛项目的要求,做了一个随机调查,结果如下表.如果你是电视台负责人,在现场直播时,将优先考虑转播比赛.33.藏羚羊是国家保护动物,某地区为估计该地区藏羚羊的只数,先捕捉20只给它们分别作上记号然后放还,带有标记的羚羊完全混合于羊群后,第二次捕捉40只,发现其中有2只有标记.从而估计这个地区有藏羚羊只.34.为了估计鱼塘里有多少条鱼,我们从鱼塘里捕上100条鱼做上标记,然后放回鱼塘里去,待带标记的鱼完全混合于鱼群后,再捕第二次样品鱼200条,其中百标记的鱼有25条,试估计鱼塘里约有鱼条.35.实验探究:从装同种豆子布袋中取出100拉,做上记号后放入袋子中充分搅匀,再取出100粒刚好有记号的4粒.从而估计布袋中有豆子粒.36.某校随机抽取50名同学进行“世博知识知多少”的调查问卷,通过调查发现其中45人对于“世博”知识了解的比较全面,由此可以估计全校的1500名同学中,对于“世博”知识了解的比较全面的约为人.37.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有人.38.为了了解某校312号宿舍的用电量是多少,电工李亮在6月初连续几天同一时刻观察312号宿舍的电表显示的度数,记录如下:请你估计312号宿舍6月份的总用电量为度.39.周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生云过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有个学生去过该景点.40.某养殖户在池塘中放养了鲤鱼1000条,鲢鱼若干,在一次随机捕捞中,共抓到鲤鱼200条,鲢鱼500条,估计池塘中原来放养了鲢鱼条.三.解答题(共10小题)41.调查员希望了解某水库中鱼的养殖情况.(1)怎样了解鱼的平均质量?(2)怎样了解鱼的总条数?42.某鱼塘共放养鱼苗5000尾,成活率为90%,成熟后,质量为1kg以上的鱼为优质鱼,若在一天中随机捕捞出100条鱼,分别称重后放回,其中45条鱼的质量在1kg以上,而优质鱼的利润为4元/尾,试估计这个鱼塘在优质鱼上可获利多少元?43.为了了解全年级学生英语作业的完成情况,帮助英语学习成绩差的学生尽快提高成绩,班主任和英语教师从全年级1000名学生中抽取100名进行调查.首先,老师检查了这些学生的作业本,记录下获得“优”“良”“中”“差”的人数比例情况;其次老师发给每人一张调查问卷,其中有一个调查问题是:“你的英语作业完成情况如何?”,给出五个选项:A.独立完成;B.辅导完成;C.有时抄袭完成;D.经常抄袭完成;E.经常不完成,供学生选择,英语教师发现选独立完成和辅导完成这两项的学生一共占65%,明显高于他平时观察到的比例,请回答下列问题:(1)英语教师所用的调查方式是;(2)指出问题中的总体,个体,样本,样本容量;(3)如果老师的英语作业检查只得“差”的同学有8名,那么估计全年级的英语作业中可能有多少同学得“差”;(4)通过问卷调查,老师得到的数据与事实不符,你能解释这个统计数字失真的原因吗.44.近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地沙化严重,洪涝灾害时有发生.沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为掌握这一防护林共约有多少棵树,从中选出10块(每块长1千米,宽0.5千米)进行统计,每块树木数量如下(单位:棵)65 100 63 200 64 600 64 700 67 30063 300 65 100 66 600 62 800 65 500请你根据以上数据计算这一防护林共约有多少棵树(结果保留3个有效数字)45.为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:(1)估计李明家六月份的总用电量是多少度;(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?46.为了估计养鱼池里有多少条鱼,养鱼者从池中捕上100条鱼做上标记,然后放回池中,经过一段时间,待带标记的鱼完全混合于鱼群后,再捕第二次样品鱼120条,其中带标记的鱼有15条,试估计鱼池中约有鱼多少条?47.某个体养鱼户为估计池塘养鱼的数量,从中打捞了100条鱼,分别作了记号,又放回鱼塘,等鱼混合均匀后,又捕捞了200条,其中有5条鱼有记号,请你估计该池塘共有多少条鱼?48.张老汉为了对自己的鱼塘中的鱼的总质量进行估计,第一次捞出100条鱼,称得质量约为184kg,并将每条鱼都做上记号,放回鱼塘中.当它们与鱼群混合均匀后,又捞出200条,称得质量为416kg,且有记号的鱼有20条.(1)请你估计一下,鱼塘中的鱼有多少条?(2)请你计算一下,鱼塘中鱼的总质量大约是多少kg?49.春节前夕,咸丰县四大家在家领导与县直各单位上千名干部职工走上街头和城乡结合部的主要公路沿线,对积存的垃圾进行彻底清理,在全县掀起“洁万家”工作的热潮.学校是我家,清洁靠大家.为了让我校学生养成良好的卫生习惯,我校50名学生在某一天调查了75户家庭丢弃塑料袋的情况,统计结果如表:根据上表回答下列问题:(1)这天,一个家庭一天最多丢弃个塑料袋.(2)这天,丢弃3个塑料袋的家庭户数占总户数的.(3)该校所在的居民区共有居民0.8万户,则该区一天丢弃的塑料袋有个.50.科学工作者为了考察某一地区的某种鸟的数目,一次捕获了这种鸟100只,并做上特殊记号后放回,以后每周再捕获这种鸟100只,连捕了6周发现每次做了记号的鸟分别占,,,,,,请你帮助这些科学工作者预测一下这个地区这种鸟的数目.用样本估计总体参考答案与试题解析一.选择题(共20小题)1.从一个大鱼池中捞取50条鱼,作好标记后放回,混匀后再捞取100条鱼,其中有标记的鱼有10条,从这些数据中我们可以估计这个鱼池中大约有鱼()A.100条B.500条C.1000条D.250条【分析】由于捞取100条鱼,其中有标记的鱼有10条,由此可以估计大鱼池中有标记的鱼所占的比例为10%,然后用50除以10%可得到这个鱼池中鱼的条数.【解答】解:∵捞取100条鱼,其中有标记的鱼有10条,∴可以估计大鱼池中有标记的鱼所占的比例为10%,∵大鱼池中有50条鱼有标记,∴可以估计这个鱼池中大约有50÷10%=500条鱼.故选B.【点评】本题考查了用样本估计总体:用样本估计总体是统计的基本思想.用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差).2.下表是某公司今年8月份一周的利润情况记录:根据上表,你估计该公司今年8月份(31天)的总利润是()A.2万元B.14万元C.60万元D.62万元【分析】先求出7天中平均每天的利润,然后用这个平均数乘以31天即可.【解答】解:7天中平均每天的利润=(2+1.7+2.3+2.1+1.9+1.8+2.2)÷7=2万元,∴该公司今年8月份(31天)的总利润是2×31=62万元.故选D.【点评】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.3.某自然保护区为了估计区内金丝猴的数量,第一次捕捉了24只并在做了标记后全部放回.第二次捕捉了80只,发现有4只是上次做了标记的.根据以上的方法,估计该保护区金丝猴的总只数为()A.480 B.320 C.416 D.以上答案均错【分析】设该地区有x只金丝猴,由于第一次捕捉了24只并在做了标记后全部放回.第二次捕捉了80只,发现有4只是上次做了标记的,因此可以列出方程x:24=80:4,解方程即可求解.【解答】解:设该地区有x只金丝猴,依题意得x:24=80:4,∴x=480.∴估计该地区有480只金丝猴.故选A.【点评】本题主要考查了利用样本估计总体的思想,解题时准确理解题意,然后根据题意列出方程即可解决问题.4.把养鸡场的一次质量抽查情况作为样本,样本数据落在1.5~2.0(单位:千克)之间的频率为0.28,于是可估计这个养鸡场的2 000只鸡中,质量在1.5~2.0千克之间的鸡有()只.A.56 B.560 C.80 D.150【分析】根据频数=频率×样本容量,进行计算即可.【解答】解:∵1.5~2.0(单位:千克)之间的频率为0.28,鸡的总数为2000,∴质量在1.5~2.0千克之间的鸡的数量=0.28×2000=560只.故选B.【点评】本题考查了用样本估计总体的知识,注意掌握每组的频率=该组的频数:样本容量.5.不透明的口袋中装有若干个完全相同的白球,为了估计它们的个数,现将两个黑球(除颜色外其他都与白球相同)放入口袋中,然后从口袋中随机摸出一个球,记下颜色后再放回口袋中,按此方法摸了100次,有20次摸到了黑球,则估计口袋中共有白球()A.7个 B.8个 C.9个 D.10个【分析】根据口袋中有2个黑球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.【解答】解:(1)∵实验总共摸了100次,其中有20次摸到了黑球,∵口袋中有2个黑球,假设有x个白球,∴,解得:x=8,∴口袋中有白球8个.故选B.【点评】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.6.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只【分析】根据先捕捉40只黄羊,发现其中2只有标志.说明有标记的占到,而有标记的共有20只,根据所占比例解得.【解答】解:20÷=400(只).故选B.【点评】此题考查了用样本估计总体;统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.7.为了估计湖中有多少条鱼,先从湖中捕捞100条鱼都做上记号,然后放回湖中去,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现其中10条有标记,那么你估计湖中大约有()鱼.A.500条B.600条C.800条D.1000条【分析】在样本中“捕捞100条鱼,发现其中10条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【解答】解:设湖中有x条鱼,则100:10=x:100,解得x=1 000(条).故选D.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.8.某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,据此估计该学校希望举办文艺演出的学生人数为()A.1120 B.400 C.280 D.80【分析】先求出在随机调查的280名学生中希望举办文艺演出的学生所占的百分比,再用全校的人数乘以这个百分比数即可得到答案.【解答】解:由题意知从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,∴希望举办文艺演出的学生所占的百分比为:80÷280=,∴该学校希望举办文艺演出的学生人数为:1400×=400人.故选B.【点评】本题考查了用样本估计总体的知识,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.9.从鱼塘打捞草鱼300尾,从中任选10尾,称得每尾的质量分别是1.5,1.6,1.4,1.6,1.2,1.7,1.5,1.8,1.3,1.4(单位:kg),依此估计这300尾草鱼的总质量大约是()A.450kg B.150kg C.45kg D.15kg【分析】首先根据已知条件求出任选10的尾鱼的平均质量,然后利用样本估计总体的思想即可求解.【解答】解:==1.50,∴300×1.50=450kg,∴估计这300尾草鱼的总质量大约是450kg.故选A.【点评】此题主要考查了利用样本估计总体的思想,首先求出任选10的尾鱼的平均质量,然后利用样本估计总体的思想即可解决问题.10.在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()A.2.5万人 B.2万人C.1.5万人 D.1万人【分析】求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.【解答】解:该镇看中央电视台早间新闻的约有15×=1.5万,故选:C.【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.11.水库中放养鲤鱼8000条,鲢鱼若干.在n次随机捕捞中,共抓到鲤鱼320条,抓到鲢鱼400条,估计塘中原来放养了鲢鱼()A.9000条B.9600条C.10000条D.12000条【分析】先计算出所抓到的鲤鱼占水库中放养鲤鱼的百分比,再根据抓到鲢鱼的条数估计出塘中原来放养了鲢鱼的数量.【解答】解:400÷×100%=10000(条),故选C.【点评】考查用样本估计总体的方法.12.为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为()A.180 B.225 C.270 D.315【分析】先求出6名同学家丢弃废电池的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.【解答】解:估计本周全班同学各家总共丢弃废电池的数量为:×45=270.故选C.【点评】此题主要考查了用样本估计总体,生产中遇到的估算产量问题,通常采用样本估计总体的方法.13.去年某市有1530人参加中考,为了了解他们的数学成绩,从中抽取200名考生的数学成绩,其中有62名考生达到优秀,那么该市约有多少名考生达到优秀()A.500名B.475名C.450名D.400名【分析】首先求得抽取的200名考生的优秀率,然后乘以参加中考的总人数即可.【解答】解:∵抽取200名考生的数学成绩,其中有62名考生达到优秀,∴优秀率为×100%=31%∴1530人参加中考的学生达到优秀的有1530×31%≈475名,故选B.【点评】本题考查了用样本估计总体,解题的关键是求得样本的优秀率.14.在世界无烟日(5月31日),小华为了了解本地区大约有多少成年人在吸烟,随机调查了100个成年人,结果其中有18个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是()A.调查的方式是普查B.本地区只有82个成年人不吸烟C.本地区约有18%的成年人吸烟D.样本是18个吸烟的成年人【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:根据题意,随机调查100个成年人,是属于抽样调查,这100个人中82人不吸烟不代表本地区只有82个成年人不吸烟,样本是100个成年人,所以本地区约有15%的成年人吸烟是对的.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.某校九年级共有1100名学生参加“二诊”考试,随机抽取50名学生进行总成绩统计,其中有20名学生总成绩达到优秀,估计这次“二诊”考试总成绩达到优秀的人数大约为()A.400 B.420 C.440 D.460【分析】随机抽取的50名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校九年级学生在这次测试中达到优秀的人数.【解答】解:随机抽取了50名学生的成绩进行统计,共有20名学生成绩达到优秀,∴样本优秀率为:20÷50=40%,又∵某校九年级共1100名学生参加“二诊”考试,∴该校这次“二诊”考试总成绩达到优秀的人数大约为:1100×40%=440人.故选C.【点评】本题考查了用样本估计总体,这是统计的基本思想,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.16.一个口袋中有3 个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中25次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()。

专题16 用样本估计总体、统计案例(核心素养练习)(解析版)

专题16 用样本估计总体、统计案例(核心素养练习)(解析版)

专题十六用样本估计总体、统计案例核心素养练习一、核心素养聚焦考点一数学抽象---其它统计图表与频率分布直方图的综合应用例题13.如图是根据某市3月1日至3月10日的最低气温(单位:℃)的情况绘制的折线统计图,试根据折线统计图反映的信息,绘制该市3月1日到10日最低气温(单位:℃)的扇形统计图.【解析】该城市3月1日至10日的最低气温(单位:℃)情况如下表:其中最低气温为-3 ℃的有1天,占10%,最低气温为-2 ℃的有1天,占10%,最低气温为-1℃的有2天,占20%,最低气温为0℃的有2天,占20%,最低气温为1℃的有1天,占10%,最低气温为2℃的有3天,占30%,扇形统计图如图所示.考点二数学运算--求百分位数例题14、以下数据为参加数学竞赛决赛的15人的成绩:78,70,72,86,88,79,80,81,94,84,56,98,83,90,91,则这15人成绩的第80百分位是()A.90B.90.5C.91D.91.5【答案】B【解析】把成绩按从小到大的顺序排列为:56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为15×80%=12,所以这15人成绩的第80百分位是90+912=90.5考点三 数据分析--数据的数字特征的综合应用例题15.在一次科技知识竞赛中,某学校的两组学生的成绩如下表:请根据你所学过的统计知识,判断这两个组在这次竞赛中的成绩谁优谁劣,并说明理由. 【解析】(1)甲组成绩的众数为90,乙组成绩的众数为70,从成绩的众数比较看,甲组成绩好些. (2)x 甲=12+5+10+13+14+6(50×2+60×5+70×10+80×13+90×14+100×6)=150×4 000=80,x 乙=14+4+16+2+12+12(50×4+60×4+70×16+80×2+90×12+100×12)=150×4 000=80.s 2甲=12+5+10+13+14+6[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172,s 2乙=14+4+16+2+12+12[4×(50-80)2+4×(60-80)2+16×(70-80)2+2×(80-80)2+12×(90-80)2+12×(100-80)2]=256.∵x 甲=x 乙,s 2甲<s 2乙,∴甲组成绩较乙组成绩稳定,故甲组好些.(3)甲、乙两组成绩的中位数、平均数都是80分.其中,甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人.从这一角度看,甲组的成绩较好.(4)从成绩统计表看,甲组成绩大于等于90分的有20人,乙组成绩大于等于90分的有24人,所以乙组成绩集中在高分段的人数多.同时,乙组得满分的人数比甲组得满分的人数多6人.从这一角度看,乙组的成绩较好.二、学业质量测评一、选择题1.在某次测量中得到的A 样本数据如下:22,23,25,26,31,30;若B 样本数据恰好是A 样本中每个数据都减去10后所得的数据,则A ,B 两样本的下列数字特征相同的是( ) A .方差 B .平均数C .众数D .中位数【答案】A【解析】方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变. 故选A .2.某射手在一次训练中五次射击的成绩分别为9.4,9.4,9.4,9.6,9.7,则该射手五次射击的成绩的方差是 ( ) A .0.127 B .0.016C .0.08D .0.216【答案】B 【解析】x =1515×(9.4+9.4+9.4+9.6+9.7)=9.5,所以s 2=15×[(9.4-9.5)2+(9.4-9.5)2+(9.4-9.5)2+(9.6-9.5)2 +(9.7-9.5)2] =0.016,故选B.3.如图:样本A 和B 分别取自两个不同的总体,他们的样本平均数分别为A x 和B x ,样本标准差分别为A s 和B s ,则( )A .,AB A B x x s s >> B .,A B A B x x s s <>C .,A B A B x x s s ><D .,A B A B x x s s << 【答案】B【解析】∵样本A 的数据均不大于10, 而样本B 的数据均不小于10,A B x x ∴<,由图可知A 中数据波动程度较大, B 中数据较稳定,A B s s ∴>.故选B.4.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56B.60C.140D.120【答案】C【解析】由题意得,自习时间不少于22.5小时的频率为(0.160.080.04) 2.50.7++⨯=,故自习时间不少于22.5小时的频率为0.7200140⨯=,故选C.5.某所学校在一个学期的开支分布的饼图如图1所示,在该学期的水、电、交通开支(单位:万元)如图2所示,则该学期的水电费开支占总开支的百分比为()A.12.25%B.16.25%C.11.25%D.9.25%【答案】B【解析】由图2知,水、电支出占水、电、交通支出的比例为20045013 20045015016+=++,由图1知,水、电、交通支出占学校一个学期总开支的比例为15,因此,该学期的水电费开支占总开支的百分比为1311316.25%16580⨯==,故选:B。

用样本估计总体练习试题

用样本估计总体练习试题

第二节用样本估计总体时间:45分钟分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·卷)如下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)的频率为( )A.0.2 B.0.4C.0.5 D.0.6解析由茎叶图可知数据落在区间[22,30)的频数为4,所以数据落在区间[22,30)的频率为410=0.4,故选B.答案 B2.(2013·卷)对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图. 根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35)上为三等品. 用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A.0.09 B.0.20C.0.25 D.0.45解析由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件为二等品的概率为0.45.答案 D3.(2013·卷)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )解析由茎叶图知,各组频数统计如下表:分组区间[0,5)[5,10)[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)频数统计1142433 2答案 A4.(2014·预测)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,下图是据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A.甲B.乙C.甲乙相等D.无法确定解析由茎叶图可知甲数据比较集中,所以甲地浓度的方差小,选A.答案 A5.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:最佳人选是( )A .甲B .乙C .丙D .丁解析 由题目表格中数据可知,丙平均环数最高,且方差最小,说明丙技术稳定,且成绩好,选C.答案 C6.样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…y m )的平均数z =αx +(1-α)y ,其中0<α<12,则n ,m 的大小关系为( ) A .n <mB .n >mC .n =mD .不能确定解析 依题意得x 1+x 2+…+x n =n x ,y 1+y 2+…+y m =m y , x 1+x 2+…+x n +y 1+y 2+…+y m =(m +n )z =(m +n )αx +(m +n )(1-α)y ,所以n x +m y =(m +n )αx +(m +n )(1-α)y .所以⎩⎪⎨⎪⎧n =(m +n )α,m =(m +n )(1-α). 于是有n -m =(m +n )[α-(1-α)]=(m+n)(2α-1).因为0<α<12,所以2α-1<0.所以n-m<0,即n<m.答案 A二、填空题(本大题共3小题,每小题5分,共15分)7.某校举行2014年元旦汇演,九位评委为某班的节目打出的分数(百分制)如茎叶统计图所示,去掉一个最高分和一个最低分后,所剩数据的中位数为________.解析根据茎叶图,去掉一个最高分和一个最低分后,得到的数据为七个,中位数为85.答案858.(2014·调研)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].则(1)图中的x =________;(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有________名学生可以申请住宿.解析 由频率分布直方图知20x =1-20×(0.025+0.006 5+0.003+0.003),解得x =0.012 5.上学时间不少于1小时的学生频率为0.12,因此估计有0.12×600=72人可以申请住宿.答案 0.012 5 729.(2014·联考)已知x 是1,2,3,x,5,6,7这七个数据的中位数,且1,3,x ,-y 这四个数据的平均数为1,则1x+y 的最小值为__________.解析 由已知得3≤x ≤5,1+3+x -y 4=1, ∴y =x ,∴1x +y =1x +x ,又函数y =1x+x 在[3,5]上单调递增,∴当x =3时取最小值103. 答案 103三、解答题(本大题共3小题,每小题10分,共30分)10.(2014·调研)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出的次品数分别是:分别计算两个样本的平均数与方差,从计算结果看,哪台机床10天生产中出次品的平均数较小?出次品的波动较小?解x甲=110×(0×3+1×2+2×3+3×1+4×1)=1.5,x乙=110×(0×2+1×5+2×2+3×1)=1.2,s2甲=110×[(0-1.5)2+(1-1.5)2+(0-1.5)2+…+(2-1.5)2+(4-1.5)2]=1.65,s22=110×[(2-1.2)2+(3-1.2)2+(1-1.2)2+…+(0-1.2)2+(1-1.2)2]=0.76.从结果看乙台机床10天生产中出次品的平均数较小,出次品的波动也较小.11.(2013·新课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度的市场需求量,T(单位:元)表示下一个销售季度经销该农产品的利润.(1)将T 表示为X 的函数; (2)根据直方图估计利润T 不少于57 000元的概率.解 (1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000.当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X <130,65 000,130≤X ≤150. (2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度的利润T 不少于57 000元的概率的估计值为0.7.12.(2013·卷)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1、x 2, 估计x 1-x 2的值.解 (1)设甲校高三年级学生总人数为n .由题意知,30n=0.05,即n =600. 样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56. (2)设甲、乙两校样本平均数分别为x ′1,x ′2.根据样本茎叶图可知,30(x ′1-x ′2)=30x ′1-30x ′2=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.因此x ′1-x ′2=0.5.故x 1-x 2的估计值为0.5分.。

用样本估计总体 第1节 华东师大版九年级数学下册同步练习(含答案)

用样本估计总体 第1节 华东师大版九年级数学下册同步练习(含答案)

28.2.1. 简单随机抽样练习一、单选题1.一次跳远比赛中,成绩在4.05米以上的有9人,频率为0.3,则参加比赛的共有()A.40人B.30人C.20人D.10人2.某校进行学生睡眠时间调查,将所得数据分成5组.已知第一组的频率是0.18,第二、三、四小组的频率和为0.62,故第五组的频率是()A.0.20B.0.09C.0.31D.不能确定3.某校七年级共有1000人,为了了解这些学生的视力情况,抽查了20名学生的视力,对所得数据进行整理.若数据在4.85~5.15这一小组的频率为0.3,则可估计该校七年级学生视力在4.85~5.15范围内的人数有()A.600人B.300人C.150人D.30人4.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为()A.6度B.7度C.8度D.9度5.下列说法正确的是()A.“品尝一勺汤,就知道一锅汤的味道“其蕴藏的数学知识是“通过样本可以估计总体”B.今年春节前4天(农历初一至初四)一位滴滴司机平均每天的纯收入为800元,则由此推算他2月份的月纯收人为56000元C.为掌握我市校外培训机构是否具备应有的资质可采用抽样调查的方式D.为了解我市市民对创建全国文明城市的知晓情况,适宜采用普查方式6.某样本容量是60,分组后,第2组的频率是0.15,那么第2组的频数是()A.9B.18C.60D.400 7.将一个有40个数据的样本统计分成6组,若某一组的频率为0.15,则该组的频数约是()A.1B.0.9C.6.67D.68.中学生骑电动车上学给交通安全带来隐患,为了解中学2 000名学生家长对“中学生骑电动车上学”的态度,从中随机调查400名家长,结果有360名家长持反对态度,则下列说法正确的是()A.调查方式是普查B.该校只有360名家长持反对态度C.样本是360名家长D.该校约有90%的家长持反对态度二、填空题9.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为人.10.为纪念辛亥革命100周年,某校八年级(1)班全体学生举行了“首义精神耀千秋”的知识竞赛.根据竞赛成绩(得分为整数,满分为100分)绘制了频数分布直方图(如图所示),若成绩不少于80分为优秀,且该班有3名学成绩为80分,则学生成绩的优秀率是.11.王老师对本班40个学生所穿校服尺码的数据统计如下:则该班学生所穿校服尺码为“L”的人数有个.12.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为. 13.已知在一个样本中,40个数据分别在4个组内,第一、二、四组数据的频数分别为5,12,8则第三组的频率为.14.某工厂生产了一批零件共2000件,从中任意抽取了100件进行检查,其中不合格产品2件,则可估计这批零件中约有件不合格.三、解答题15.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.16.小花最近买了三本课外书,分别是《汉语字典》用A表示,《流行杂志》用B表示和《故事大王》用C表示.班里的同学都很喜欢借阅,在五天内小花做了借书记录如下表:(1)在表中填写五天内每本书的借阅频数.(2)计算五天内《汉语字典》的借阅频率.17.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(每组含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)填空(直接把答案填到横线上)①“2﹣2.5小时”的部分对应的扇形圆心角为多少度;②课外阅读时间的中位数落在多少时间段内.(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?参考答案与试题解析1.B 2.A 3.B 4.D 5.A 6.A 7.D 8.D 9.1100 10.62% 11.8 12.56 13.3814.4015.解:(1)由表知被调查学生中“一般”档次的有13人,所占比例是26%,故被调查的学生数是13÷26%=50(人);(2)被调查的学生中“良好”档次的人数为50×60%=30(人), ∴x=30﹣(12+7)=11(人),y=50﹣(1+2+6+7+12+11+7+1)=3(人);(3)由样本数据可知:“优秀”档次所占的百分比为3+150×100%=8%,∴估计九年级400名学生中优秀档次的人数为:400×8%=32(人).16.解:(1)填表如下:(2)总数是14+15+11=40,则五天内《汉语字典》的借阅频率是:1440=720.17.解:(1)总人数=30÷25%=120人;(2)①a%=12120=10%,∴对应的扇形圆心角为360°×10%=36°;②总共120名学生,中位数为60、61,∴落在1~1.5内.(3)不少于1.5小时所占的比例=10%+20%=30%,∴人数=800×30%=240人.。

备考2023年中考数学二轮复习-统计与概率_数据收集与处理_用样本估计总体-单选题专训及答案

备考2023年中考数学二轮复习-统计与概率_数据收集与处理_用样本估计总体-单选题专训及答案

备考2023年中考数学二轮复习-统计与概率_数据收集与处理_用样本估计总体-单选题专训及答案用样本估计总体单选题专训1、(2015兴安盟.中考真卷) 某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A . 800B . 600C . 400D . 2002、(2012辽阳.中考真卷) 一段时间内,某商场销售某品牌的女装30件,各种尺码的销售量如下表:尺码(cm)155 160 165 170 175销售量(件) 2 10 12 4 2则这30件女装尺码的众数和中位数分别是()A . 175cm,165cmB . 165cm,165cmC . 165cm,175cmD . 165cm,170cm 3、(2012葫芦岛.中考真卷) 某校关注学生的用眼健康,从九年级500名学生中随机抽取了30名学生进行视力检查,发现有12名学生近视眼,据此估计这500名学生中,近视的学生人数约是()A . 150B . 200C . 350D . 4004、(2017苏州.中考真卷) 为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有名学生中随机征求了名学生的意见,其中持“反对”和“无所谓”意见的共有名学生,估计全校持“赞成”意见的学生人数约为()A .B .C .D .5、(2015镇江.中考真卷) 有4万个不小于70的两位数,从中随机抽取了3000个数据,统计如下:数据x 70<x<79 80<x<89 90<x<99个数800 1300 900平均数78.1 85 91.9请根据表格中的信息,估计这4万个数据的平均数约为()A . 92.16B . 85.23C . 84.73D . 77.976、(2019朝阳.中考模拟) 小宁同学根据全班同学的血型绘制了如图所示的扇形统计图,该班血型为A型的有20人,那么该班血型为AB型的人数为()A . 2人B . 5人C . 8人D . 10人7、(2016镇江.中考模拟) 我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A . 1365石B . 388石C . 169石D . 134石8、(2018嘉兴.中考模拟) 某科研小组为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼()A . 8000条B . 4000条C . 2000条D . 1000条9、(2017杭州.中考模拟) 为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()A . 9B . 10C . 12D . 1510、(2017乐清.中考模拟) 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A . 134石B . 169石C . 338石D . 1365石11、(2015舟山.中考真卷) 质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是()A . 5B . 100C . 500D . 1000012、(2012丽水.中考真卷) 为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A . 12B . 48C . 72D . 9613、(2017合肥.中考模拟) 为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼记上标记,然后放回池塘去,经过一段时间,待有标记的鱼完全混合后,第二次再捕捞200条鱼,发现有5条鱼有标记,那么你估计池塘里大约有()鱼.A . 1000条B . 4000条C . 3000条D . 2000条14、(2017全椒.中考模拟) 积极行动起来,共建节约型社会!我市某居民小区400户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整节水量(单位:吨)0.5 1 1.5 2家庭数(户) 2 3 4 1估计该小区400户家庭这个月节约用水的总量是()A . 360吨B . 400吨C . 480吨D . 720吨15、(2016龙岩.中考真卷) 在一个密闭不透明的袋子里有若干个白球.为估计白球个数,小何向其中投入8个黑球,搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复摸球400次,其中88次摸到黑球,则估计袋中大约有白球()A . 18个B . 28个C . 36个D . 42个16、(2017泰安.中考真卷) 为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A,B,C,D四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图,根据统计图中提供的信息,结论错误的是()A . 本次抽样测试的学生人数是40B . 在图1中,∠α的度数是126°C . 该校九年级有学生500名,估计D级的人数为80D . 从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为0.217、(2016日照.中考真卷) 积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整节水量(单位:0.5 1 1.5 2吨)家庭数(户) 2 3 4 1请你估计该200户家庭这个月节约用水的总量是()A . 240吨B . 360吨C . 180吨D . 200吨18、(2018毕节.中考模拟) 某家庭搬进新居后又添置了新的电冰箱、电热水器等家用电器,为了了解用电量的大小,该家庭在6月份初连续几天观察电表的度数,电表显示的度数如下表:日期1日2日3日4日5日6日7日8日电表显示度数(度) 115 118 122 127 133 136 140 143 估计这个家庭六月份用电度数为( )A . 105度B . 108.5度C . 120度D . 124度19、(2017天门.中考模拟) 质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是()A . 5B . 100C . 500D . 1000020、(2016安陆.中考模拟) 如图所示,反映的是九(1)班学生外出乘车、步行、骑车的人数直方图的一部分和圆形分布图,下列说法①①九(1)班外出步行有8人;②在圆形统计图中,步行人数所占的圆心角度数为82°;③九(1)班外出的学生共有40人;④若该校九年级外出的学生共有500人,那么估计全年级外出骑车的人约有150人,其中正确的结论是()A . ①②③B . ①③④C . ②③D . ②④21、(2017龙岗.中考模拟) 周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生去过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有()个学生去过该景点.A . 1000人B . 800人C . 720人D . 640人22、(2019广西壮族自治区.中考模拟) 某校对学生“一周课外阅读时间”的情况进行随机抽样调查,调查结果如统计图所示.若该校有2000名学生,则根据调查结果可估算该校学生一周阅读时间不足3小时的人数是第()A . 280人B . 400人C . 660人D . 680人23、(2012崇左.中考真卷) 崇左市江州区太平镇壶城社区调查居民双休日的学习状况,采取了下列调查方式;a:从崇左高中、太平镇中、太平小学三所学校中选取200名教师;b:从不同住宅楼(即江湾花园与万鹏住宅楼)中随机选取200名居民;c:选取所管辖区内学校的200名在校学生.并将最合理的调查方式得到的数据制成扇形统计图和部分数据的频数分布直方图.以下结论:①上述调查方式最合理的是b;②在这次调查的200名教师中,在家学习的有60人;③估计该社区2000名居民中双休日学习时间不少于4小时的人数是1180人;④小明的叔叔住在该社区,那么双休日他去叔叔家时,正好叔叔不学习的概率是0.1.其中正确的结论是()A . ①④B . ②④C . ①③④D . ①②③④24、(2013贺州.中考真卷) 为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况.随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有()A . 500名B . 600名C . 700名D . 800名25、(2018毕节.中考模拟) 为了解某市初中生视力情况,有关部门进行了一次抽样调查,数据如下表,若该市共有初中生15万人,则全市视力不良的初中生的人数大约是()A . 2160人B . 7.2万人C . 7.8万人D . 4500人26、(2017贵州.中考真卷) 为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A . 1250条B . 1750条C . 2500条D . 5000条27、(2015酒泉.中考真卷) 下列命题中,假命题是()A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x2=y2,则x=y28、(2020中.中考模拟) 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有()A . 1200名B . 450名C . 400名D . 300名29、(2021如皋.中考模拟) 某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A .B .C .D .30、某校950名七年级学生参加跳绳测试,随机抽取部分学生成绩并绘制频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,若校方规定次数达到130次(包括130次)的成绩为“优良”,则该校成绩“优良”的学生人数约为()A . 35B . 65C . 350D . 650用样本估计总体单选题答案1.答案:A2.答案:B3.答案:B4.答案:C5.答案:B6.答案:B7.答案:C8.答案:B9.答案:C10.答案:B11.答案:C12.答案:C13.答案:B14.答案:C15.答案:B16.答案:C17.答案:A18.答案:C19.答案:C20.答案:B21.答案:A22.答案:D23.答案:A24.答案:B25.答案:B26.答案:A27.答案:D28.答案:29.答案:30.答案:。

样本与总体练习题及答案

样本与总体练习题及答案

2006学年上学期学生测验评价参考资料九年级数学第25章(样本与总体)班级姓名学号一、选择题(共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.有四位同学从编号为1-50的总体中抽取8个个体组成一个样本,他们选取的样本中个体编号分别为:①5,10,15,20,25,30,35,40;②43,44,45,46,47,48,49,50;③1,3,5,7,9,11,13,15,17;④43,25,2,17,35,9,24,19.你认为样本( )较具有随机性.A.④B.③C.②D.①2.为了了解某校学生早餐就餐情况,四位同学做了不同的调查:小华向初一年级的三个班级的全体同学做了调查;小明向初二年级的三个班级的全体同学做了调查;小华向初三年级的全体同学做了调查;小珍分别向初一(1)班、初二(1)、初三(1)•班的全体同学做了调查,你认为( )同学的抽样调查较科学.A.小华B.小明C.小芳D.小珍3.要了解一批灯泡的使用寿命,从中抽取60只灯泡进行试验,在这个问题中,样本是( )A.这一批灯泡B. 抽取的60只灯泡C. 这一批灯泡的使用寿命D. 抽取的这60只灯泡的使用寿命4.为了考查某地区初中毕业生的数学毕业会考情况,从中抽查了200名考生的数学成绩,在这个问题中,下面说法错误的是( )A. 总体是被抽查的200名考生B. 个体是每一个考生的数学成绩C.样本是200名考生的数学成绩D. 样本容量是2005.某学校生物兴趣小组11人到校外采集植物标本,其中2人每人采集到6件,4人每人采集到3件,5人每人采集到4件,则这个兴趣小组平均每人采集到的标本是( )A. 3件B. 4件C. 5件D. 6件6.目前手机的号码都是11位数,某人的手机号码位于中间的数字是6的概率为( )A.15B.16C.18D.1107.在不透明的袋中装有大小一样的红球和黑球各一个,从中摸出一个球恰为红球的概率与一枚均匀硬币抛起后落地时正面朝上的概率( )A.摸出红球的概率大于硬币正面朝上的概率B. 相等C. 摸出红球的概率小于硬币正面朝上的概率D. 不能确定 8.袋中有5个白球,k 个红球,经过实验,从中任取一个恰为红球的概率是23,则k 值为( ) A.10 B.16 C.18 D.209.有四条线段,长度分别是2cm,3cm,4cm,5cm,从中任取三条,能构成三角形的概率是 ( ) A.25%; B.50%; C.75%; D.100%10.为了估计一次考试的成绩,某教师在求出38名考生分数的样本平均数后,因为疏忽而把这个样本平均数和38个分数混在了一起,然后求出这39个分数的样本平均数,则后一个样本平均数与正确的样本平均数的比是( ) A 1:1 B.38:39 C.39:38 D.2:1 二、填空题:(每小题4分,共20分)11.张伟为了知道汤的口味怎样,从锅中舀出一勺汤尝尝,这种抽样调查的方法是________的(填“合适”或“不合适”).12.小芳从编号为1-200的总体中随机抽取15•个个体组成一个样本,•依次编号为:21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,你认为她选取这个样本_____随机性(填“具有”或“不具有”)13.某地举行了一次数学竞赛,为了估计平均成绩,在抽取的部分试卷中,有1人得10分,3人得9分,8人得8分,12人得7分,9人得6分,7人得5分,则样本平均数是_________. 14.某班共有学生50人,平均身高为168cm,其中30名男生平均身高为170cm,则20名女生的平均身高为___________.15.一副没有大小王的扑克,共52张,抽出一张恰为“K ”的概率是__________.16.有6张卡片上分别写有0, 1, 2, 3, 4, 5, 将它们放入袋子中,摸出一张是数字小于5的概率是____________.17.转动如图1所示的转盘,指针停止后,指向红色区域的概率是_____.18.抛掷一枚质地均匀的正方体骰子,1点朝上的概率与6点朝上的概率的大小关系是_______.19.小红制作一个转盘,并将其等分成12个扇形,将其中的3块扇形涂上黑色,4块涂上红色,其余涂上白色,转动转盘上的指针,指针停止后,指向白色的概率为_________________.20.商场4月份随机抽查了6天的营业额,结果分别如大(单位:万元):2.8,3.2, 3.4, 3.7, 3.0, 3.1, 试估算该商场4月份的总营业额大约是_______万元. 三、解答题:(各题分值依次为6分、8分、8分、8分、10分,共40分)21.为了了解同学们对教师授课水平的满意程度,•校长召集了全校各班的学习委员开座谈会,了解他们的看法,你认为这样抽样调查合适吗?为什么?黑色红色12022 为了解某商场今年四月份的营业额,抽查了该商场在今年四月里5天的营业额,结果下(单位:万元):2.5, 2.8, 2.7, 2.4, 2.6,(1)在这个问题中,总体和样本分别指的是什么?(2)求样本的平均数;(3)根据样本平均数估计,这个商场四月份的平均日营业额约为多少万元?这个商场四月份的月营业额是多少万元?23.某甲鱼养殖专业户共养甲鱼200只,为了与客户签订购销合同,对自已所养甲鱼的总重量进行估计,随意捞了5只,称得重量分别为1.5, 1.4, 1.6, 2, 1.8,(单位:千克).(1)根据样本平均数估计甲鱼的总重量约是多少千克?(2)如果甲鱼的市场价为每千克150元,那么该专业户卖出全部甲鱼的收入约为多少元?24.有一个普通的骰子,6个面中的每个面都写有数字1,2,3之中的一个,通过100次掷骰子实验所得结果是:出现数字“1”的频率是33%;出现数字“2”的频率是16%;出现数字“3”的频率是51%.(1)请你判断下列说法是否正确.①这100次实验中,出现数字1,2,3的次数分别是33,66,51;②再做100次实验,出现数字1,2,3的次数也分别是33,66,51;③这枚骰子出现数字1,2,3的概率分别是33%,16%,51%;(2)请你估计一下,这枚骰子上写有数字1,2,3的面各有几个.25. 如图4所示的是聪聪从自已家到叔叔家,再到奶奶家的路线图.从图中可以看到聪聪家到叔叔家有4条路,从叔叔家到奶奶家有2条路,你能求出从聪聪家到奶奶家始终利用一种交通工具的路线概率吗?请用树状图表示.参考答案一、选择题:1、A2、D3、D4、A5、B6、D7、B8、A9、C 10、A二、填空题:11、合适12、不具有13、6.85 14、165cm15、1 1316、5617、2318、相等19、51220、96三、解答题:21、解:因为这样取样不是随机抽样,而是专门选取了学习较好的学生,没有兼顾中等生和差生,不具有代表性。

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_用样本估计总体-填空题专训及答案

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_用样本估计总体-填空题专训及答案

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_用样本估计总体-填空题专训及答案用样本估计总体填空题专训1、(2015北京.中考真卷) 北京市2009﹣2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约________ 万人次,你的预估理由是________ .2、(2013扬州.中考真卷) 为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.3、(2014苏州.中考真卷) 某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有________人.4、(2017顺义.中考模拟) 图1为北京城市女生从出生到15岁的平均身高统计图,图2是北京城市某女生从出生到12岁的身高统计图.请你根据以上信息预测该女生15岁时的身高约为________,你的预测理由是________.5、(2017奉贤.中考模拟) 为了解某区3600名九年级学生的体育训练情况,随机抽取了区内200名九年级学生进行了一次体育模拟测试,把测试结果分为四个等级:A级:优秀;良好;及格;不及格,并将测试结果绘成了如图所示的统计图,由此估计全区九年级体育测试成绩可以达到优秀的人数约为________人.6、(2017虎丘.中考模拟) 某校在“祖国好、家乡美”主题宣传周里推出五条A、B、C、D、E旅游线路.某校摄影社团随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图.全校2400名学生中,请你估计,选择“C”路线的人数约为________.7、(2017苏州.中考模拟) 在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间为8小时的人数是________.8、(2017瑞安.中考模拟) 为了解某校师生捐书情况,随机调查了部分师生,根据调查结果绘制了如图所示的统计图.若该校共有师生1000人,则捐文学类书籍的师生约有________人.9、(2018福清.中考模拟) 为了培养学生勤俭节约的意识,从小养成良好的生活习惯.某校随机抽查部分初中生对勤俭节约的态度(态度分为:赞成、无所谓、反对),并对抽查对象的态度绘制成了图1和图2两个统计图(统计图不完整),请根据图中的信息解答下列问题:(1)此次共抽查名学生;(2)持反对意见的学生人数占整体的%,无所谓意见的学生人数占整体的%;(3)估计该校1200名初中生中,大约有名学生持反对态度.10、(2017洛宁.中考模拟) 某商场4月份随机抽查了6天的营业额,结果分别如下(单位:万元):2.8、3.2、3.4、3.7、3.0、3.1.试估算该商场4月份的总营业额,大约是________万元.11、(2019河池.中考模拟) 某校抽查50名九年级学生对艾滋病三种主要传授途径的知晓情况,结果如表估计该校九年级600名学生中,三种传播途径都知道的有传播途径(种)0 1 2 3知晓人数(人)3 7 15 25(2011来宾.中考真卷) 某校八年级共240名学生参加某次数学测试,教师从中随机抽取了40名学生的成绩进行统计,共有12名学生成绩达到优秀等级,根据上述数据估算该校八年级学生在这次数学测试中达到优秀的人数大约有________人.13、(2014来宾.中考真卷) 某校在九年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生的成绩达108分以上,据此估计该校九年级640名学生中这次模拟考数学成绩达108分以上的约有________名学生.14、(2015贺州.中考真卷) 某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有________名.15、(2016重庆.中考真卷) 某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:参加本次调查有________名学生,根据调查数据分析,全校约有________名学生参加了音乐社团;请你补全条形统计图.16、(2014成都.中考真卷) 在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是________.17、(2021株洲.中考模拟) 为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为________.18、(2020常德.中考真卷) 4月23日是世界读书日,这天某校为了解学生课外阅读阅读时间(x小时)x≤3.5 3.5<x≤55<x≤6.5x>6.5人数12 8 6 4若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为________.19、(2020赤峰.中考真卷) 某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30 b合格9 15%不合格 3 5%合计60 60 100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为________人.20、(2021福建.中考真卷) 某校共有1000名学生.为了解学生的中长跑成绩分布情况,随机抽取100名学生的中长跑成绩,画出条形统计图,如图.根据所学的统计知识可估计该校中长跑成绩优秀的学生人数是.用样本估计总体填空题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:。

28_2 用样本估计总体(重点练)解析版

28_2 用样本估计总体(重点练)解析版

28.2用样本估计总体(重点练)一、单选题1.(2019·重庆市育才中学九年级期中)为了调查红旗小学六年级学生的兴趣爱好,以下样本最具代表性的是()A.该年级书法社团的学生B.该年级部分女学生C.该年级跑步较快的学生D.从每个班级中,抽取学号为10的整数倍的学生【答案】D【分析】抽样调查中具有代表性是指具有随机性、大众性.【详解】A.书法社团的学生的兴趣爱好大多数是书法,不具代表性,故错误;B.部分女生没有考虑到男生的兴趣爱好,故错误;C.跑步较快的学生兴趣爱好偏向与运动,故错误;D.抽取学号为10的整数倍,具有随机性,故正确.【点睛】此题主要考察抽样调查样本的代表性.2.(2019·湖南望城·九年级期末)为了解我县七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本;⑤500名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个【答案】B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【详解】这种调查方式是抽样调查;故①正确;总体是我市七年级6000名学生期中数学考试情况;故②错误;个体是每名学生的数学成绩;故③正确;样本是所抽取的500名学生的数学成绩,故④错误;样本容量是500,故⑤错误.故选B【点睛】本题考查了总体、个体与样本.总体、个体与样本的考查对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位,难度适中.3.(2020·山东烟台·二模)为了了解2018年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图.根据图中信息,下面3个推断中,合理的是______.①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中至少有一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的范围是60~120元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③【答案】D【分析】①根据图中信息可得月均花费超过80元的有500人,故①正确;②根据图中信息,可得大多数人乘坐地铁的月均花费在60-120之间,据此可得平均每人乘坐地铁的月均花费的范围;③该市1000人中,20%左右的人有200人,根据图形可得乘坐地铁的月均花费达到120元的人有200人可以享受折扣.【详解】解:①月均花费超过80元的有200+100+80+50+25+25+15+5=500人,小明乘坐地铁的月均花费是75元,∴所调查的1000人中至少有一半以上的人月均花费超过小明;故①正确;②根据图中信息,可得大多数人乘坐地铁的月均花费在60-120之间,估计平均每人乘坐地铁的月均花费的范围是60-120;故②正确;③∵1000×20%=200,而80+50+25+25+15+5=00,∴乘坐地铁的月均花费达到120元的人可享受折扣,③正确;故选D.【点睛】本题主要考查了频数分布直方图,抽样调查以及用样本估计总体等内容,准确识图并合理分析是解题的关键.二、填空题4.(2021·全国·九年级单元测试)为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅________只.【答案】200【分析】重新捕捉40只,数一数带有标记的天鹅有2只,说明在样本中,有标记的所占比例为240,而在总体中,有标记的共有10只,估计所占比例,即可解答.【详解】10240÷=200(只).故答案为200.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可.5.(2019·全国·九年级单元测试)小新家今年4月份头6天用米量如表:估计小新家4月份用米量为________kg.【分析】先计算出这6天一共用米的量,再算出平均每天用米的量,从而计算出小新家4月份用米的总量.【详解】解根据题意得:(0.6+0.8⨯2+0.9⨯2+1.0)÷6=56 (kg),则小新家4月份用米量为: 56⨯30=25(kg);故答案为:25.;【点睛】本题考查的是通过样本去估计总体,总体平均数约等于样本平均数. 6.(2020·北京·九年级专题练习)小明调查了他所在年级三个班学生的身高,并进行了统计,列出如下频数分布表:155cm”可能性最大.【答案】1班【分析】先计算出三个班中身高不低于155cm 的人数占总人数的比例,分别进行比较大小即可.【详解】解:1班中身高不低于155cm 的人数占总人数的比例为3940;2班中身高不低于155cm 的人数占总人数的比例为3040;3班中身高不低于155cm 的人数占总人数的比例为3540;通过比较大小可得,抽到1班的身高不低于155cm 可能性最大.故答案为1班. 【点睛】本题考查的可能性的大小.准确计算概率是解题的关键.7.(2020·广东·东莞市长安雅正学校九年级月考)田大伯从鱼塘捞出200条鱼做上标记再放入池塘,经过一段时间后又捞出300条,发现有标记的鱼有20条,田大伯的鱼塘里鱼的条数约是_____________. 【答案】3000【分析】设鱼塘中估计有鱼条,第一次捞出200条,并将每条鱼做上记号再放入水中,当做了记号完全混于鱼群中,又捞出300条,发现带有记号的鱼有20条,由此根据样本估计总体的思想可以列出方程300:20:200x ,解方程即可求解. 【详解】解:∵20÷300=115∴200÷115=3000.故答案为:3000【点睛】本题考查的是概率问题,利用样本估计总体的思想,理解题意找到相等关系是解题关键. 三、解答题8.(2021·全国·九年级课时练习)为了顾及鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n 条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a 条鱼,如果在这a 条中有b 条鱼是有记号的,那么估计鱼塘中鱼的条数为anb,你认为这种估计方法有道理吗?为什么? 【答案】有道理,理由见解析.【分析】首先求出有记号的b 条鱼在a 条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:∵打捞a 条鱼,发现其中带标记的鱼有b 条,∴有标记的鱼占b a. ∵共有n 条鱼做上标记,∴鱼塘中估计有n ÷b a=nab(条),∴这种说法有道理. 【点睛】本题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.9.(2021·河南省淮滨县第一中学九年级期末)一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?【答案】(1)小明可估计口袋中的白球的个数是6个.(2)需准备720个红球.试题分析:(1)用白球的个数:(白球的个数+红球的个数)=40:100,列方程求解;(2)用彩球的总数乘以10040100,即可得到红球的个数.试题解析:(1)解:设白球的个数为x个,根据题意得:解得:x=6小明可估计口袋中的白球的个数是6个.(2)1200×=720.答:需准备720个红球.点睛:本题主要考查了用样本估计总体,其本质是利用概率相等来解决问题,如口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,随机摸出一个,摸出白球的概率与重复100次摸到40次白球的概率相同,从而列方程求解.10.(2018·安徽·宣城市第六中学九年级月考)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.【答案】(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.【分析】(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;【详解】(1)由题意c=180.36=50,a=50×0.2=10,b=1450=0.28,c=50;故答案为a=10,b=0.28,c=50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).11.(2019·全国·九年级单元测试)小颖同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小颖同学共调查了多少名居民的年龄,扇形统计图中a,b各等于多少?(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有1500人,请估计年龄在15~59岁的居民的人数.【答案】(1)300,a=20%,b=12%;(2)答案见解析;(3)5100.【分析】(1)根据15——40岁的居民所占百分比求出总人数,再得各段的百分比,从而求出a,b 的值,(2)见下图,(3)根据年龄在0~14岁的居民所占比重求出总人数,乘以年龄在15~59岁的居民的占比即可.【详解】解:(1)根据题意得:144÷48%=300(名),a=60÷300×100%=20%,b=36÷300×100%=12%,(2)41~59岁的居民有300×20%=60(人),补图如下:(3)根据题意得:总人数:1500÷20%=7500(人),7500×(20%+48%)=5100(人).【点睛】本题考查了统计图的实际应用,用样本估计总体,中等难度,从统计图中得到有用信息是解题关键.12.(2019·山西·九年级专题练习)晋剧(山西梆子)是我国北方的一个重要戏剧剧种,也叫中路戏,是国家级非物质文化遗产.某校在传统文化活动周期间拟向同学们推介晋剧,并就“你想要听哪部晋剧曲目”调查了部分学生,选择曲目有:A.《打金枝》,B.《战宛城》,C.《杀宫》,D.《火焰驹》,E,《双锁山》,每个学生只能选择一部,根据统计结果绘制了如下不完整的统计图.请根据以上信息,解答下列问题:(1)请补全条形统计图;(2)在扇形统计图中,扇形A的圆心角是多少度?(3)若该校共有2000名学生,请你估计想听《战宛城》的学生有多少人?(4)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到想听《火焰驹》的学生的概率是多少?【答案】(1)补图见解析;(2)54°;(3)500人;(4)15【分析】(1)根据E 的特征,结合两种统计图求出总人数,进而求出B,D 组对应的人数即可; (2)先求出A 组所占的百分比,再乘以360°即可; (3)用2000乘以B 组所占百分比即可; (4)根据概率=D 组人数÷总人数即可解题. 【详解】解:(1)补全条形统计图如解图;调查学生的总人数为2430%80÷=(人),选择B 的人数为8025%20⨯=(人),选择D 的人数为80122082416----=(人),据此补全条形统计图. (2)选择A 的人数所占百分比为12100%15%80⨯=, ∴扇形A 所对应扇形的圆心角度数为3601554%︒︒⨯=.(3)200025%500⨯=(人),∴估计想听《战宛城》的学生有500人;(4)共有80人,其中想听《火焰驹》的有16人,P ∴(正好抽到想听《火焰驹》的学生)161805==, ∴随机抽取一人正好抽到想听《火焰驹》的学生的概率是15【点睛】本题考查了统计与概率,用样本信息估计总体信息,属于简单题,找到两种统计图之间的信息关联是解题关键,主要失分原因是: ①找不到扇形统计图和条形统计图中的对应关系;②补全条形统计时作图不规范;③在计算概率时发生错误.13.(2020·江苏吴江·一模)苏州市某初中学校对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图的一部分.(1)a=,b=;(2)补全频数分布直方图;(3)请估计该校1500名初中学生中,约有多少学生在1.5小时以内完成家庭作业.【答案】(1)12;0.2;(2)见解析;(3)975人【分析】(1)首先求得总人数,然后根据频率的定义求得a和b的值;(2)根据(1)即可直接补全直方图;(3)利用总人数乘以对应的频率即可求解.【详解】解:(1)调查的总人数是:4÷0.1=40(人),则a=40×0.3=12(人),b=8÷40=0.2,故答案是:12,0.2;(2)根据(1)求出的频数,补全统计图如下:(3)根据题意得:1500×(0.1+0.3+0.25)=975(人),答:该校1500名初中学生中,约有975名学生在1.5小时以内完成家庭作业.【点睛】此题考查了统计表及频数分布直方图,读懂统计图表.,会计算部分的数量,根据部分的百分比求总体的数量,从统计图中得到必要的信息是解决问题的关键. 14.(2021·山东巨野·一模)2012年6月5日是“世界环境日”,南宁市某校举行了“绿色家园”演讲比赛,赛后整理参赛同学的成绩,制作成直方图(如图).(1)分数段在-----范围的人数最多;(2)全校共有多少人参加比赛?(3)学校决定选派本次比赛成绩最好的3人参加南宁市中学生环保演讲决赛,并为参赛选手准备了红、蓝、白颜色的上衣各1件和2条白色、1条蓝色的裤子.请用“列表法”或“树形图法”表示上衣和裤子搭配的所有可能出现的结果,并求出上衣和能搭配成同一种颜色的概率.【答案】(1)85~90(2)24人(3)1/3【详解】解:(1)由条形图可知,分数段在85~90范围的人数最多为10人,故答案为85~90;(2)全校参加比赛的人数=5+10+6+3=24人;(3)上衣和裤子搭配的所有可能出现的结果如图所示,共有9总搭配方案,其中,上衣和裤子能搭配成同一种颜色的有3种,上衣和裤子能搭配成同一种颜色的概率为:31 93(1)由条形图可直接得出人数最多的分数段;(2)把各小组人数相加,得出全校参加比赛的人数;(3)利用“树形图法”,画出搭配方案,由此可求上衣和裤子能搭配成同一种颜色的概率15.(2020·北京市第十三中学九年级开学考试)某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x,y,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如下:注“●”表示患者,“▲”表示非患者.根据以上信息,回答下列问题:(1)在这40名被调查者中,①指标y低于0.4的有人;②将20名患者的指标x的平均数记作1x,方差记作21s,20名非患者的指标x的平均数记作2x,方差记作22s,则1x2x,21s22s(填“>”,“=”或“<”);(2)来该院就诊的500名未患这种疾病的人中,估计指标x低于0.3的大约有人;(3)若将“指标x低于0.3,且指标y低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率多少.【答案】(1)①9;②<,>;(2)100;(3)0.25【分析】(1)①直接统计指标y低于0.4的有人的个数即可;②通过观察图表估算出指标x、y的平均数,然后再进行比较即可确定平均数的大小;根据点的分散程度可以确定方差的大小关系.(2)先估算出样本中未患这种疾病的人中指标x低于0.3的概率,然后500乘以该概率即可;(3)通过观察统计图确定不在“指标x低于0.3,且指标y低于0.8”范围内且患病的人数,最后用概率公式求解即可.【详解】解:(1)①经统计指标y低于0.4的有9人,故答案为9;②观察统计图可以发现,1x大约在0.3左右,2x大约在0.6左右,故1x<2x;观察图表可以发现,x指标的离散程度大于y指标,故21s>22s;故答案为<、>;(2)由统计图可知:在20名未患病的样本中,指标x低于0.3的大约有4人,则概率为420;所以的500名未患这种疾病的人中,估计指标x低于0.3的大约有500×420=100人.故答案为100;(3)通过统计图可以发现有五名患病者没在“指标x低于0.3,且指标y低于0.8”,漏判;则被漏判的概率为520=0.25.答:被漏判的概率为0.25.【点睛】本题考查概率的求法,平均数、方差的估计等基础知识,从统计图中获取信息、估计平均数和方差是解答本题的关键.16.(2021·浙江湖州·九年级月考)感恩节即将来临,小王调查了初三年级部分同学在感恩节当天将以何种方式对帮助过自己的人表达感谢,他将调查结果分为如下四类:A类——当面表示感谢、B类——打电话表示感谢、C类——发短信表示感谢、D类——写书信表示感谢.他将调查结果绘制成了如图所示的扇形统计图和条形统计图.请你根据图中提供的信息完成下列各题:(1)补全条形统计图;(2)在A类的同学中,有4人来自同一班级,其中有2人主持过班会.现准备从他们4人中随机抽出两位同学主持感恩节主题班会课,请用树状图或列表法求抽出1人主持过班会而另一人没主持过班会的概率.【答案】(1)见解析;(2)2 3【分析】(1)联系扇形统计图和条形统计图的信息分别求出调查的学生总数、C类人数和B 类人数,然后画图即可;(2)先采用列表法或树状图法列出所有机会均等的结果,然后求出抽出1人主持过班会而另一人没主持过班会的概率.【详解】(1)调查的学生总数为510÷%50=(人),C类人数为1085015360⨯=(人),B类人数为505151218---=(人),条形统计图为:(2)设主持过班会的两人分别为1A 、2A ,另两人分别为1B 、2B ,填表如下:所以P (抽出1人主持过班会而另一人没主持过班会)82123==. 【点睛】此题主要考查关联扇形统计图与条形统计图、通过列表法与树状图法求概率,解题关键是正确读懂统计图的信息.17.(2021·山东中区·一模)加强劳动教育是学校贯彻“五育并举”的重要举措.为了解学生参加各项劳动的情况,某校对七年级部分学生进行了随机问卷调查,其中一个问题是“你每周在家参加家务劳动的时间是多少?”,共有如下四个选项: A .1小时以下 B .1~2小时(不包含2小时) C .2~3小时(包含2小时) D .3小时以上图①、图②是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)填空:本次问卷调查一共调查了______名学生; (2)请将图①的条形统计图补充完整; (3)并求出图②中D 部分所对应的圆心角度数;(4)若该校共有1800名学生,请你估计全校可能有多少名学生每周在家参加家务劳动的时间在2小时以上(包含2小时)?【答案】(1)200;(2)见解析;(3)18︒;(4)估计全校可能有360名学生每周在家参加家务劳动的时间在2小时以上(包含2小时)【分析】(1)根据B 选项人数及其占被调查人数的比例计算即可得出答案. (2)用总人数减去其他选项的人数求出D 选项的人数,即可补全统计图; (3)用360︒乘以D 部分所占的百分比即可得出D 部分所对应的圆心角度数;(4)用该校的总人数乘以每周在家参加家务劳动的时间在2小时以上(包含2小时)的人数所占的百分比即可.【详解】解:(1)本次问卷调查一共调查的学生数是:10050%200÷=(名) 故答案为:200;(2)劳动的时间在3小时以上的人数有:200601003010---=(名),补全统计图如下:(3)D 部分所对应的圆心角度数是1036018200⨯=︒︒; (4)根据题意得:30101800360200+⨯=(名), 答:估计全校可能有360名学生每周在家参加家务劳动的时间在2小时以上(包含2小时). 【点睛】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,学会用样本估计总体的思想解决问题,属于基础题,中考常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用样本估计总体(北京习题集)(教师版)一.选择题(共6小题)1.(2020春•海淀区校级月考)袋子中有42个除颜色外完全相同的小球,在看不到球的条件下,随机地从袋子中摸出一个球,记录颜色后放回,将球摇匀.重复上述过程180次后,共摸到红球30次,由此可以估计口袋中的红球个数是 A .6B .7C .8D .92.(2019•房山区一模)某地区有网购行为的居民约10万人.为了解他们网上购物消费金额占日常消费总额的比例情况,现从中随机抽取168人进行调查,其数据如表所示.由此估计,该地区网购消费金额占日常消费总额的比例在及以下的人数大约是 网购消费金额占日常消费金额的比例人数 及以下 40 (含 54 (含 32 (含 7 (含 8 (含14 以上13 合计168A .1.68万B .3.21万C .4.41万D .5.60万3.(2019春•顺义区期末)某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图.该校七年级有400名女生,则估计800米跑不合格的约有 ()20%()10%10%20%-20%)20%30%-30%)30%40%-40%)40%50%-50%)50%60%-60%)60%()A .2人B .16人C .20人D .40人4.(2017春•西城区期末)“共享单车”为人们提供了一种经济便捷、绿色低碳的共享服务,成为城市交通出行的新方式,小文对他所在小区居民当月使用“共享单车”的次数进行了抽样调查,并绘制成了如图所示的统计图,下面有四个推断:①小文一共抽样调查了20人②样本中当月使用“共享单车” 次的人数最多 ③样本中当月使用“共享单车”不足30次的人数有14人④若小文所在小区的居民约有740人,估计其中当月使用“共享单车” 次的人数约为120人 其中合理的是 A .①②B .②③C .②④D .③④5.(2017春•朝阳区期末)为了了解某地区七年级学生每天体育锻炼的时间,要进行抽样调查.以下是几个主要步骤:①随机选择该地区一部分七年级学生完成调查问卷;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.正确的顺序是 A .①②④⑤③B .②①③④⑤C .②①④③⑤D .②①④⑤③6.(2009•通州区一模)把中考体检调查学生的身高作为样本,样本数据落在(单位:米)之间的频率为0.28,于是可估计2 000名体检中学生中,身高在米之间的学生有 A .56B .560C .80D .150二.填空题(共8小题)7.(2020•丰台区模拟)某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、30~400~20()() 1.6~2.01.6~2.0()便携性与综合质量在此检测中的排名情况如图所示,可以看出其中型保温杯的优势是 .8.(2019秋•海淀区校级期中)某电动汽车“行车数据”的两次记录如表:记录时间累计里程 (单位:公里)平均耗电量 (单位:度公里)剩余续航里程 (单位:公里)2019 年 10 月 5 日 4000 0.125280 2019 年 10 月 6 日41000.126146(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,平均耗电量,剩余续航里程由表中数据可得,该车在两次记录时间段内行驶100公里的耗电量约为 度(结果精确到个位).9.(2018•昌平区二模)近年来,随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者开始接受并购买新能源汽车,我国新能源汽车的生产量和销售量都大幅增长,下图是年新能源汽车生产和销售的情况: 根据统计图中提供的信息,预估全国2018年新能源汽车销售量约为 万辆,你的预估理由是 .A /=累计耗电量累计里程=剩余电量平均耗电量20142017-10.(2018春•北京期末)根据《中华人民共和国2017年国民经济和社会发展统计公报》,我国年农村贫困人口统计如图所示.根据统计图中提供的信息,预估2018年年末全国农村贫困人口约为 万人,你的预估理由是 .11.(2018•门头沟区二模)某生产商生产了一批节能灯,共计10000个,为了测试节能灯的使用寿命(使用寿命大于等于6000小时为合格产品),从中随机挑选了100个产品进行测试,有5个不合格产品,预计这批节能灯有 个不合格产品.12.(2018•朝阳区二模)鼓励科技创新、技术发明,北京市年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约 件,你的预估理由是 .20132017-20122017-13.(2018春•朝阳区期末)为了估计一个鱼池中鱼的条数,采用了如下方法:先从鱼池的不同地方捞出40条鱼,给这些鱼做上记号后放回鱼池,过一段时间后,在同样的地方捞出200条鱼,其中有记号的鱼有4条.请你估计鱼池中鱼的条数约为 条.14.(2017•门头沟区二模)2016年11月年4月某省“共享单车”的用户使用情况如图,根据统计表中提供的信息,预估2017年5月该省共享单车的使用用户约 万人,你的预估理由是 .2017用样本估计总体(北京习题集)(教师版)参考答案与试题解析一.选择题(共6小题)1.(2020春•海淀区校级月考)袋子中有42个除颜色外完全相同的小球,在看不到球的条件下,随机地从袋子中摸出一个球,记录颜色后放回,将球摇匀.重复上述过程180次后,共摸到红球30次,由此可以估计口袋中的红球个数是 A .6B .7C .8D .9【分析】首先求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个. 【解答】解:摸了180次后,发现有30次摸到红球, 摸到红球的频率, 袋子中共有42个小球, 这个袋中红球约有(个, 故选:.【点评】此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率所求情况数与总情况数之比.2.(2019•房山区一模)某地区有网购行为的居民约10万人.为了解他们网上购物消费金额占日常消费总额的比例情况,现从中随机抽取168人进行调查,其数据如表所示.由此估计,该地区网购消费金额占日常消费总额的比例在及以下的人数大约是 网购消费金额占日常消费金额的比例人数 及以下 40 (含 54 (含 32 (含 7 (含 8 (含14 以上13()Q ∴3011806==Q ∴14276⨯=)B =20%()10%10%20%-20%)20%30%-30%)30%40%-40%)40%50%-50%)50%60%-60%)60%合计168A .1.68万B .3.21万C .4.41万D .5.60万【分析】用总人数乘以样本中购消费金额占日常消费总额的比例在及以下的人数所占比例即可得. 【解答】解:该地区网购消费金额占日常消费总额的比例在及以下的人数大约是(万人), 故选:.【点评】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.3.(2019春•顺义区期末)某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图.该校七年级有400名女生,则估计800米跑不合格的约有 A .2人B .16人C .20人D .40人【分析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值. 【解答】解:(人.答:估计800米跑不合格的约有20人. 故选:.【点评】本题考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.4.(2017春•西城区期末)“共享单车”为人们提供了一种经济便捷、绿色低碳的共享服务,成为城市交通出行的新方式,小文对他所在小区居民当月使用“共享单车”的次数进行了抽样调查,并绘制成了如图所示的统计图,下面有四个推断:①小文一共抽样调查了20人②样本中当月使用“共享单车” 次的人数最多 ③样本中当月使用“共享单车”不足30次的人数有14人④若小文所在小区的居民约有740人,估计其中当月使用“共享单车”次的人数约为120人 其中合理的是 20%20%405410 5.60168+⨯≈D ()2400201216102⨯=+++)C 30~400~20()A .①②B .②③C .②④D .③④【分析】利用条形图中的信息一一判断即可.【解答】解:小文一共抽样调查了(人,故①错误, 样本中当月使用“共享单车” 次的人数最多,有20人,故②正确, 样本中当月使用“共享单车”不足30次的人数有26人,故③错误,若小文所在小区的居民约有740人,估计其中当月使用“共享单车”次的人数约为(人,故④正确, 故选:.【点评】本题考查条形统计图、样本估计总体的思想等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.5.(2017春•朝阳区期末)为了了解某地区七年级学生每天体育锻炼的时间,要进行抽样调查.以下是几个主要步骤:①随机选择该地区一部分七年级学生完成调查问卷;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.正确的顺序是 A .①②④⑤③B .②①③④⑤C .②①④③⑤D .②①④⑤③【分析】直接利用调查收集数据的过程与方法分析排序即可.【解答】解:解决一个问题所要经历的几个主要步骤为②设计调查问卷,再①随机选择该地区一部分七年级学生完成调查问卷;④整理数据;⑤分析数据;③用样本估计总体. 则正确的顺序是:②①④⑤③; 故选:.【点评】此题主要考查了调查收集数据的过程与方法,正确掌握调查的过程是解题关键.6.(2009•通州区一模)把中考体检调查学生的身高作为样本,样本数据落在(单位:米)之间的频率为0.28,于是可估计2 000名体检中学生中,身高在米之间的学生有 A .56B .560C .80D .150【分析】根据频率的意义,每组的频率该组的频数:样本容量,即频数频率样本容量.数据落在481420161274+++++=)30~400~201274012074⨯=)C ()D 1.6~2.01.6~2.0()==⨯(单位:米)之间的频率为0.28,于是2 000名体检中学生中,身高在米之间的学生数即可求解.【解答】解:.故选.【点评】本题考查频率的意义与计算,频率的意义,每组的频率该组的频数:样本容量.二.填空题(共8小题)7.(2020•丰台区模拟)某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、便携性与综合质量在此检测中的排名情况如图所示,可以看出其中型保温杯的优势是 便携性 .【分析】从点图的分布可以看到在便携性中,综合质量名次好于保温性;【解答】解:从左图可以看出型的综合质量名次为120名,保温性名次为140名,从右图可以看出综合质量为120名的点,便携性名次为60名,所以型的优势为便携性; 故答案为便携性.【点评】本题考查用样本估计总体;能够从图中综合对比出样本的优劣是解题的关键. 8.(2019秋•海淀区校级期中)某电动汽车“行车数据”的两次记录如表:记录时间累计里程 (单位:公里)平均耗电量 (单位:度公里)剩余续航里程 (单位:公里)2019 年10 月 5 日 4000 0.125 280 2019 年 10 月 6 日41000.126146(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,平均耗电量,剩余续航里程由表中数据可得,该车在两次记录时间段内行驶100公里的耗电量约为 17 度(结果精确到个位). 【分析】根据题目中耗电量的定义,直接计算得到行驶100公里的耗电量.1.6~2.0 1.6~2.00.282000560⨯=B =A A A /=累计耗电量累计里程=剩余电量平均耗电量【解答】解:由题意,得 (度故答案为:17【点评】本题考查了新定义、基本的分析求解能力.解决本题的关键是理解平均耗电量的计算办法.9.(2018•昌平区二模)近年来,随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者开始接受并购买新能源汽车,我国新能源汽车的生产量和销售量都大幅增长,下图是年新能源汽车生产和销售的情况: 根据统计图中提供的信息,预估全国2018年新能源汽车销售量约为 103.7 万辆,你的预估理由是 .【分析】依据近两年的新能源汽车的销售量增长速度,即可预估全国2018年新能源汽车销售量.【解答】解:近两年的新能源汽车的销售量平均每年增加26万辆,故预估全国2018年新能源汽车销售量为103.7万辆.故答案为:103.7,近两年的新能源汽车的销售量平均每年增加26万辆.【点评】本题主要考查了折线统计图的应用,关键是正确从统计表中得到正确的信息,折线统计图表示的是事物的变化情况.10.(2018春•北京期末)根据《中华人民共和国2017年国民经济和社会发展统计公报》,我国年农村贫困人口统计如图所示.根据统计图中提供的信息,预估2018年年末全国农村贫困人口约为 1700 万人,你的预估理由是 .0.12641000.1254000⨯-⨯516.6500=-16.617=≈)20142017-20132017-【分析】根据统计图可以得到得到各年相对去年减少的人数,从而可以预估2018年年末全国农村贫困人口约为多少万人,并说明理由.【解答】解:2018年年末全国农村贫困人口约为1700万人,预估理由:由统计图可知,减少约1300万,则减少约为1300万,故2018年农村贫困人口约为1700万,故答案为:1700、由统计图可知,减少约1300万,则减少约为1300万,故2018年农村贫困人口约为1700万.【点评】本题考查用样本估计总体、条形统计图,解题的关键是明确条形统计图的特点,从中可以得到我们需要的信息.11.(2018•门头沟区二模)某生产商生产了一批节能灯,共计10000个,为了测试节能灯的使用寿命(使用寿命大于等于6000小时为合格产品),从中随机挑选了100个产品进行测试,有5个不合格产品,预计这批节能灯有 500 个不合格产品.【分析】用这批节能灯的总数量乘以样本中不合格产品数量占被抽查数量的比例即可得.【解答】解:在所抽取的样本中不合格产品所占比例为, 估计总体中不合格产品所占比例也大约为, 预计这批节能灯中不合格产品的数量为, 故答案为:500.【点评】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.12.(2018•朝阳区二模)鼓励科技创新、技术发明,北京市年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约 113407 件,你的预估理由是 .2016~20172017~20182016~20172017~2018Q 5110020=∴120∴11000050020⨯=20122017-【分析】依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.【解答】解:北京市近两年的专利授权量平均每年增加:(件, 预估2018年北京市专利授权量约为(件,故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.(理由须支撑推断的合理性)【点评】本题考查用样本估计总体、折线统计图,解题的关键是明确题意,找出所求问题需要的条件.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.13.(2018春•朝阳区期末)为了估计一个鱼池中鱼的条数,采用了如下方法:先从鱼池的不同地方捞出40条鱼,给这些鱼做上记号后放回鱼池,过一段时间后,在同样的地方捞出200条鱼,其中有记号的鱼有4条.请你估计鱼池中鱼的条数约为 2000 条.【分析】先计算出有记号鱼的频率,再用频率估计概率,利用概率计算鱼的总数.【解答】解:设鱼的总数为条,鱼的概率近似等于解得.故答案为:2000.【点评】本题主要考查了频率所求情况数与总情况数之比,关键是根据有记号的鱼的频率得到相应的等量关系,难度适中.14.(2017•门头沟区二模)2016年11月年4月某省“共享单车”的用户使用情况如图,根据统计表中提供的信息,预估2017年5月该省共享单车的使用用户约 3400 万人,你的预估理由是 .Q 106948940316458.52-=)∴1069486458.5113407+≈)x 4:20040:x =2000x ==2017-【分析】根据条形图增长趋势预估.【解答】解:3月到4月增幅约为200万,预计4月到5月增幅约为200万,预估2017年5月该省共享单车的使用用户约3400万,理由是与月份增幅持平.故答案为3400万,与月份增幅持平.【点评】本题考查了用样本估计总体,分析透彻折线图是解题的关键.34-34-。

相关文档
最新文档