专题05 挖掘“隐零点”,破解导数压轴题-2121年高考数学压轴题之函数零点问题(解析版)
专题05 用好导数破解函数零点问题(第一篇)2021年高考数学压轴题命题区间探讨与冲破(原卷版)
一.方式综述近几年的高考数学试题中几次出现零点问题,其形式逐渐多样化、综合化.处置函数零点问题时,咱们不但要掌握零点存在性定理,还要充分运用等价转化、函数与方程、数形结合等思想方式,才能有效地找到解题的冲破口.利用导数解决函数的零点问题,是近几年高考命题的热点题型,此类题一般属于压轴题,难度较大.本专题举例说明如何用好导数,破解函数零点问题.二.解题策略类型一 讨论函数零点的个数【例1】【吉林省通榆县第一中学2021届高三上期中】已知函数f (f )=12f 2−3ln f . (1)求f (f )在(1,f (1))处的切线方程;(2)试判断f (f )在区间(1,f )上有无零点?如有则判断零点的个数. 【指点迷津】讨论函数零点的个数,可先利用函数的导数,判断函数的单调性,进一步讨论函数的取值情况,按照零点存在定理判断(证明)零点的存在性,肯定函数零点的个数.【触类旁通】【2021高考新课标1,理21】已知函数f (x )=31,()ln 4x ax g x x ++=-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数.类型二 已知函数在区间上有零点,求参数的取值范围【例2】【河北省衡水中学2021届高三上学期二调】已知函数f (f )=e f −2f . (1)求曲线f =f (f )在点(0,f (0))处的切线方程;(2)若函数f (f )=f (f )−f ,f ∈[−1,1]恰有2个零点,求实数f 的取值范围. 【例3】【2021年理数全国卷II 】已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.【指点迷津】已知区间上有零点,求参数的范围问题.往往因为含有超越函数式的函数图象较为复杂,也没有固定的形状特点,所以在研究此类问题时,可以从两个方面去思考:(1)按照区间上零点的个数情况,估量出函数图象的大致形状,从而推导出导数需要知足的条件,进而求出参数知足的条件;(2)也可以先求导,通过求导分析函数的单调情况,再依据函数在区间内的零点情况,推导出函数本身需要知足的条件,此时,由于函数比较复杂,常常需要构造新函数,借助导数研究函数的单调性、极值等,层层推理得解.【触类旁通】【贵州省遵义航天高级中学2021届高三上第四次模】已知函数f(f)=ff +12ln f−1(f∈f)的两个零点为f1,f2(f1<f2).(1)求实数m的取值范围;(2)求证:1f1+1f2>2f.类型三已知存在零点,证明零点的性质【例4】【安徽省皖中名校联盟2021届10月联考】已知函数f(f)=(f−1)f f−ff2.(1)讨论f(f)的单调性;(2若函数f(f)有两个零点别离记为f1,f2.①求f的取值范围;②求证:f′(f1+f22)<0.【指点迷津】已知函数存在零点,需要证明零点知足某项性质时,实际上是需要对函数零点在数值上进行精准求解或估量,需要对零点进行更高要求的研究,为此,不妨结合已知条件和未知要求,构造新的函数,再次通过导数的相关知识对函数进行更进一步的分析研究,其中,需要灵活运用函数思想、化归思想等,同时也需要咱们有较强的抽象归纳能力、综合分析问题和解决问题的能力.含参数的函数的单调性的讨论,合理分类讨论是关键,分类点的选择一般依据导数是不是存在零点,若存在零点,则查验零点是不是在给定的范围当中.【触类旁通】【江西师范大学附属中学2021年10月高三月考】设f ∈f ,函数f (f )=ln f −ff (1)若f (f )无零点,求实数f 的取值范围;(2)如有两个相异零点f (f )f 1,f 2,求证: ln f 1+ln f 2+2ln f <0.三.强化训练1.【2021年理新课标I 卷】已知函数 .若g (x )存在2个零点,则a 的取值范围是( )A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)2.【山西省太原市第五中学2021届10月月考】已知f (f )=|ff f |,又f (f )=f 2(f )−ff (f )(f ∈f ),若知足f (f )=−1的f 有四个,则f 的取值范围是( )A . (−∞,−f 2+1f )B . (f 2+1f ,+∞)C . (−f 2+1f ,−2)D . (2,f 2+1f )3.【山东省安丘市2021届10月检测】若存在正实数m ,使得关于x 的方程f +f (2f +2f −4ff )[ln (f +f )−ln f ]=0有两个不同的根,其中e 为自然对数的底数,则实数a 的取值范围是( )A . (−∞,0)B . (12f,+∞) C . (−∞,0)∪(12f ,+∞) D . (0,12f) 4.【江西省南昌市2021届二轮测试卷(一)】设f (f )=ln f +1f,若函数f =|f (f )|−ff 2恰有3个零点,则实数f 的取值范围为( )A . (0,f 23)B . (f 23,f )C . (1f ,1)D . (0,1f )∪{f 23}5.【四川省攀枝花市第十二中学2021届10月月考】已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为( )A.(2,+∞) B.(-∞,-2) C.(1,+∞) D.(-∞,-1)6.【江苏省淮安市淮海中学2021届高三上学期第二阶段测试】若方程(f−2)2f f−ff−f+2f|f−2|=0,有且仅有6个不相等的实数根,则实数f的取值范围是______.7.【河北省衡水中学2021届高三上二调】已知函数f(f)=f+ln f−2e ,f(f)=ff,其中e为自然对数的底数,若函数f(f)与f(f)的图象恰有一个公共点,则实数f的取值范围是____________.8.【陕西省西安市长安区第五中学2021届高三上期中】已知函数f(f)=f ln f.(1)若直线f过点(1,0),而且与曲线f=f(f)相切,求直线f的方程;(2)设函数f(f)=f(f)−(ff−1)在[1,e]上有且只有一个零点,求f的取值范围.(其中f∈R,e为自然对数的底数)9.【山东省实验中学2021届高三第一次诊断】函数f(f)=13f3+ff2+ff+f(f,f,f∈f)的导函数的图象如图所示:(1)求f,f的值并写出f(f)的单调区间;(2)若函数f=f(f)有三个零点,求f的取值范围.10.【河北省衡水中学2019届高三上二调】已知函数f(f)=ln f+f+ff(f∈f).(1)若函数f(f)在[1,+∞)上为增函数,求f的取值范围;(2)若函数f(f)=ff(f)−(f+1)f2−f有两个不同的极值点,记作f1,f2,且f1<f2,证明:f1·f22>e3(e为自然对数的底数).。
2021高考数学一轮提高复习《难点5 利用导数研究函数的零点》
设函数 f (x)=lnx+mx ,m∈R,讨论函数 g(x)=f′(x)-13x 的零点的个数.
【思维引导】 先对 f (x)求导,求出函数 g(x)的表达式,然后令 g(x)=0 得出 x 与 m 的关系式 m=h(x),将问题转化为讨论 h(x)与 y=m 的交点问题.
若 a>e,则 g(x)极小值=a(1-lna)<0,而 g(0)=1>0. 由(1)可知,f (x)=lnxx在 x>e 时为减函数, 所以 a>e 时,ea>ae>a2,从而 g(a)=ea-a2>0. 所以 g(x)在(0,lna)与(lna,+∞)上各有一个零点. 综上可知:当 g(x)有两个零点时,a 的取值范围为(e,+∞). 【点评】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和 极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与 x 轴的位置关系, 进而确定参数的取值范围.
【点评】当 a>0 时,f′(x)在(0,+∞)上单调递增,从而 f′(x)在(0,+∞)上至多
有一个零点,问题的关键是找到 b,使 f′(b)<0.
已知函数 f (x)=lnxx. (1)求函数 f (x)的最大值; 【思维引导】(1) 求导得出,当 0<x<e 时,f (x)为增函数;当 x>e 时,f (x)为减函数, 从而求得 f (x)的最大值;(2) 对 a=0,a<0 和 a>0 进行分类讨论,再结合(1)的结论,然 后根据零点个数求参数的范围. 【解答】由 f (x)=lnxx,得 f′(x)=1-x2lnx. 当 0<x<e 时,f′(x)>0,f (x)为增函数;当 x>e 时,f′(x)<0,f 根个数的常用方法 (1) 构建函数 g(x)(要求 g′(x)易求,g′(x)=0 可解),转化确定 g(x)的零点个数问 题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化 趋势)等,画出 g(x)的图象草图,数形结合求解函数零点的个数. (2) 利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数 研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个 数.
高考数学二轮复习 专题五 函数与导数、不等式 微点深
【题组训练】
1.(2018·浙江名校联盟联考)已知函数 f(x)=ax+bxln x,其中 a,b∈R.
(1)若函数 f(x)在点(e,f(e))处的切线方程为 y=x+e,求 a,b 的值;
(2)当 b>1 时,f(x)≥1 对任意 x∈12,2恒成立,证明:a>
e+1 2e .
(1)解 由题得 f′(x)=-xa2+b(ln x+1),∴f′(e)=-ea2+2b=1,且 f(e)=ae+eb=2e.
即当 1<x<x0 时,h(x)<0,即 g′(x)<0,
当 x>x0 时,h(x)>0,即 g′(x)>0,
g(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增.
令
h(x0) = x0 - ln
x0 - 2 = 0 , 即
ln
x0
=
x0
-
2
,
g(x)min
=
g(x0)
=
x0(1+ln x0-1
(2)证明:当 a>0 时,f(x)≥2a+aln
2 a.
(1)解 f(x)的定义域为(0,+∞),f ′(x)=2e2x-ax(x>0).由 f ′(x)=0 得 2xe2x=a.令 g(x)=
2xe2x,g′(x)=(4x+2)e2x>0(x>0),从而 g(x)在(0,+∞)上单调递增,所以 g(x)>g(0)=0.
则 φ′(x)=-b(2ln x+3),易知 φ′(x)<0,故 g′(x)在12,2上单调递减,
1
1
1
因为 g′(e-2)=1-b(-e-2+e-2)=1>0,g′(1)=1-b(2ln 1+1)=1-b<0,
浙江省2021届高考数学一轮复习第四章导数及其应用补上一课导函数的“隐零点”问题含解析
导函数的“隐零点”问题知识拓展利用导数解决函数问题常与函数单调性的判断有关,而函数的单调性与其导函数的零点有着紧密的联系,按导函数零点能否求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.对于隐零点问题,由于涉及灵活的代数变形、整体代换、构造函数、不等式应用等技巧,对学生综合能力的要求较高,成为考查的难点.题型突破题型一 函数最值中的“隐零点”【例1】 设函数f (x )=e 2x-a ln x .(a 为大于零的常数),已知f ′(x )=0有唯一零点,求f (x )的最小值.解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x-ax(x >0). 当a >0时,设u (x )=e 2x,v (x )=-a x,因为u (x )=e 2x在(0,+∞)上单调递增,v (x )=-a x在 (0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于2e 2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a.故当a >0时,f (x )≥2a +a ln 2a.故f (x )的最小值为2a +a ln 2a.【训练1】 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0; (2)证明:当a ∈[0,1)时,函数g (x )=e x-ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=(x -1)(x +2)e x-(x -2)e x(x +2)2=x 2ex(x +2)2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x>-(x +2),即(x -2)e x+x +2>0.(2)证明 g ′(x )=(x -2)e x+a (x +2)x 3=x +2x3(f (x )+a ). 由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增.因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e xa -a (x a +1)x 2a =e x a +f (xa )(x a +1)x 2a=e xax a +2. 于是h (a )=e x a x a +2,由⎝ ⎛⎭⎪⎫e xx +2′=(x +1)e x (x +2)2>0,得y =e xx +2单调递增.所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e24.因为y =e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.题型二 不等式证明中的“隐零点”【例2】 (2019·天津卷)设函数f (x )=ln x -a (x -1)e x,其中a ∈R . (1)若a ≤0,讨论f (x )的单调性. (2)若0<a <1e,①证明f (x )恰有两个零点;②设x 0为f (x )的极值点,x 1为f (x )的零点,且x 1>x 0,证明3x 0-x 1>2.(1)解 由已知,f (x )的定义域为(0,+∞),且f ′(x )=1x -[a e x +a (x -1)e x]=1-ax 2e xx.因此当a ≤0时,1-ax 2e x>0,从而f ′(x )>0, 所以f (x )在(0,+∞)内单调递增. (2)证明 ①由(1)知f ′(x )=1-ax 2e xx.令g (x )=1-ax 2e x,由0<a <1e,可知g (x )在(0,+∞)内单调递减.又g (1)=1-a e>0,且g ⎝ ⎛⎭⎪⎫ln 1a =1-a ⎝ ⎛⎭⎪⎫ln 1a 2·1a =1-⎝ ⎛⎭⎪⎫ln 1a 2<0, 故g (x )=0在(0,+∞)内有唯一解, 从而f ′(x )=0在(0,+∞)内有唯一解, 不妨设为x 0,则1<x 0<ln 1a.当x ∈(0,x 0)时,f ′(x )=g (x )x >g (x 0)x=0, 所以f (x )在(0,x 0)内单调递增; 当x ∈(x 0,+∞)时,f ′(x )=g (x )x <g (x 0)x=0, 所以f (x )在(x 0,+∞)内单调递减, 因此x 0是f (x )的唯一极值点.令h (x )=ln x -x +1,则当x >1时,h ′(x )=1x-1<0,故h (x )在(1,+∞)内单调递减,从而当x >1时,h (x )<h (1)=0,所以ln x <x -1, 从而f ⎝ ⎛⎭⎪⎫ln 1a =ln ⎝ ⎛⎭⎪⎫ln 1a -a ⎝ ⎛⎭⎪⎫ln 1a -1e ln 1a =ln ⎝ ⎛⎭⎪⎫ln 1a -ln 1a+1=h ⎝ ⎛⎭⎪⎫ln 1a <0.又因为f (x 0)>f (1)=0,所以f (x )在(x 0,+∞)内有唯一零点. 又f (x )在(0,x 0)内有唯一零点1, 从而,f (x )在(0,+∞)内恰有两个零点.②由题意,⎩⎪⎨⎪⎧f ′(x 0)=0,f (x 1)=0,即⎩⎪⎨⎪⎧ax 20e x0=1,ln x 1=a (x 1-1)e x1, 从而ln x 1=x 1-1x 20e x 1-x 0,即e x 1-x0=x 20ln x 1x 1-1.因为当x >1时,ln x <x -1,又x 1>x 0>1, 故e x 1-x0<x 20(x 1-1)x 1-1=x 20,两边取对数,得ln e x 1-x 0<ln x 20, 于是x 1-x 0<2ln x 0<2(x 0-1),整理得3x 0-x 1>2.【训练2】 (2017·全国Ⅱ卷)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2. (1)解 f (x )的定义域为(0,+∞),设g (x )=ax -a -ln x ,则f (x )=xg (x ),f (x )≥0等价于g (x )≥0, 因为g (1)=0,g (x )≥0,故g ′(1)=0, 而g ′(x )=a -1x,g ′(1)=a -1,得a =1.若a =1,则g ′(x )=1-1x.当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以x =1是g (x )的极小值点,故g (x )≥g (1)=0. 综上,a =1.(2)证明 由(1)知f (x )=x 2-x -x ln x ,f ′(x )=2x -2-ln x , 设h (x )=2x -2-ln x ,则h ′(x )=2-1x.当x ∈⎝ ⎛⎭⎪⎫0,12时,h ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫12,+∞时,h ′(x )>0. 所以h (x )在⎝ ⎛⎭⎪⎫0,12单调递减,在⎝ ⎛⎭⎪⎫12,+∞单调递增.又h (e -2)>0,h ⎝ ⎛⎭⎪⎫12<0,h (1)=0,所以h (x )在⎝ ⎛⎭⎪⎫0,12有唯一零点x 0,在⎣⎢⎡⎭⎪⎫12,+∞有唯一零点1,且当x ∈(0,x 0)时,h (x )>0; 当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0. 因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0). 由x 0∈⎝ ⎛⎭⎪⎫0,12得f (x 0)<14.因为x =x 0是f (x )在(0,1)上的最大值点,由e -1∈(0,1),f ′(e -1)≠0得f (x 0)>f (e -1)=e-2.所以e -2<f (x 0)<2-2.题型三 导函数中“二次函数”的“设而不求”技巧【例3】 (2018·全国Ⅰ卷)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.(1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2.①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ②若a >2,令f ′(x )=0得,x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.(2)证明 由(1)知,f (x )存在两个极值点时,当且仅当a >2. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x-x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减, 又g (1)=0,从而当x ∈(1,+∞)时,g (x )<0. 所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.【训练3】 已知函数f (x )=x 2+a ln(x +2),a ∈R ,存在两个极值点x 1,x 2,求f (x 1)+f (x 2)的取值范围.解 函数f (x )的定义域为(-2,+∞), 且f ′(x )=2x +ax +2=2x 2+4x +a x +2,由于f (x )有两个极值点,则二次函数g (x )=2x 2+4x +a 在(-2,+∞)上有两个相异实根x 1,x 2, 由于g (x )的对称轴为x =-1,由二次函数的图象可知,只需Δ=16-8a >0且g (-2)=a >0,即0<a <2. 考虑到x 1,x 2是方程2x 2+4x +a =0的两根. 从而x 1+x 2=-2,x 1x 2=a2,从而f (x 1)+f (x 2)=x 21+a ln(x 1+2)+x 22+a ln(x 2+2)=(x 1+x 2)2-2x 1x 2+a ln[2(x 1+x 2)+x 1x 2+4] =4-a +a ln a2,其中0<a <2.令h (a )=4-a +a ln a 2,a ∈(0,2),则h ′(a )=-1+ln a2+1=ln a2<0,从而h (a )在(0,2)上单调递减,又当x →0(x >0),h (a )→4,a →2,h (a )→2,所以h (a )的值域为(2,4).综上所述f (x 1)+f (x 2)的取值范围是(2,4).补偿训练1.(2020·杭州二中考试)设函数f (x )=1-1x,g (x )=ln x .(1)求曲线y =f (2x -1)在点(1,0)处的切线方程;(2)求函数y =f (x )·g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的取值范围. 解 (1)当x =1时,y =f (2-1)=f (1)=0.y ′=f ′(2x -1)=1(2x -1)32,f ′(1)=1,所以切线方程为y =x -1. (2)y =f (x )·g (x )=⎝⎛⎭⎪⎫1-1x ln x =ln x -ln xx, y ′=1x -1x x +ln x 2x x=x -1+ln x2x x,因为x ∈⎣⎢⎡⎦⎥⎤1e ,e ,所以x x >0. 令h (x )=x -1+ln x 2⎝ ⎛⎭⎪⎫1e ≤x ≤e ,h ′(x )=x +12x >0, 则h (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递增,因为h (1)=0,所以y =f (x )·g (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递减, 在[1,e]上单调递增.y min =f (1)·g (1)=0,y max =max ⎩⎨⎧⎭⎬⎫f ⎝ ⎛⎭⎪⎫1e ·g ⎝ ⎛⎭⎪⎫1e,f (e )·g (e )=max ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫e -1,1-1e , 因为e -1>1-1e,所以y =f (x )·g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的取值范围为[0,e -1]. 2.已知函数f (x )=(x -1)e x-ax 的图象在x =0处的切线方程是x +y +b =0. (1)求a ,b 的值;(2)求证函数f (x )有唯一的极值点x 0,且f (x 0)>-32.(1)解 因为f ′(x )=x e x-a ,由f ′(0)=-1得a =1,又当x =0时,f (x )=-1, 所以切线方程为y -(-1)=-1(x -0), 即x +y +1=0, 所以b =1.(2)证明 令g (x )=f ′(x )=x e x-1, 则g ′(x )=(x +1)e x,所以当x <-1时,g (x )单调递减,且此时g (x )<0, 则g (x )在(-∞,-1)内无零点; 当x ≥-1时,g (x )单调递增, 且g (-1)<0,g (1)=e -1>0,所以g (x )=0有唯一解x 0,f (x )有唯一的极值点x 0. 由x 0e x 0=1⇒e x 0=1x 0,f (x 0)=x 0-1x 0-x 0=1-⎝ ⎛⎭⎪⎫1x 0+x 0, 又g ⎝ ⎛⎭⎪⎫12=e 2-1<0, g (1)=e -1>0⇒12<x 0<1⇒2<1x 0+x 0<52,所以f (x 0)>-32.3.已知f (x )=ax +x ln x (a ∈R ),y =f (x )在点(1,f (1))处的切线的斜率为2.若2f (x )-(k +1)x +k >0(k ∈Z )对任意x >1都成立,求整数k 的最大值. 解 由题设知f ′(x )=a +1+ln x ,由f ′(1)=2,解得a =1,所以f (x )=x +x ln x . 当x >1时,不等式2f (x )-(k +1)x +k >0(k ∈Z )化为k <x +2x ln xx -1,记g (x )=x +2x ln x x -1(x >1),则g ′(x )=2x -2ln x -3(x -1)2, 再设h (x )=2x -2ln x -3,则h ′(x )=2(x -1)x>0, 所以h (x )在(1,+∞)上单调递增,又h (2)=1-2ln 2<0,h ⎝ ⎛⎭⎪⎫52=2⎝⎛⎭⎪⎫1-ln 52>0, 故h (x )在⎝ ⎛⎭⎪⎫2,52上存在唯一零点x 0,使h (x 0)=2x 0-2ln x 0-3=0,且当1<x <x 0时,g ′(x )<0; 当x >x 0时,g ′(x )>0.即g (x )在(1,x 0)单调递减,在(x 0,+∞)单调递增, 所以g (x )min =g (x 0)=x 0+2x 0ln x 0x 0-1,由2x 0-2ln x 0-3=0得2ln x 0=2x 0-3, 则g (x )min =x 0+x 0(2x 0-3)x 0-1=2x 0∈(4,5),又k <x +2x ln xx -1恒成立,故整数k 的最大值为4.4.已知函数f (x )=x 2·ln x .(1)证明:对任意的t >0,存在唯一的s ,使t =f (s );(2)设(1)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g (t )ln t <12.证明 (1)当x ∈(0,1]时f (x )≤0;当x ∈(1,+∞)时f (x )>0,故下面只考虑f (x )在(1,+∞)上的性质. 由于对任意给定的t >0,令F (x )=f (x )-t ,x >1, 则F ′(x )=x (2ln x +1)>0, 从而F (x )在(1,+∞)单调递增,又F (1)=-t <0,F (e t )=e 2t·t -t >0,故F (x )在(1,+∞)存在唯一零点s ,满足t =f (s ). (2)由于s 2·ln s =t >e 2,从而s >e , 故ln g (t )ln t =ln s ln (s 2·ln s )=ln s2ln s +ln (ln s ), 令m =ln s ,则ln g (t )ln t =m2m +ln m =12+ln m m,m >1, 设h (m )=ln mm,m >1,下面求h (m )的取值范围. 由于h ′(m )=1-ln m m2, 从而当m ∈(1,e]时,h ′(m )≥0,当m ∈(e,+∞)时,h ′(m )<0, 故h (m )在(1,e]上单调递增,在(e ,+∞)上单调递减,而h (1)=0,h (e)=1e,m →+∞,h (m )→0,从而h (m )∈⎝ ⎛⎦⎥⎤0,1e , 从而e 2e +1=12+1e ≤ln g (t )ln t <12,又25<e 2e +1, 从而当t >e 2时,有25<ln g (t )ln t <12.5.已知函数f (x )=-12ax 2+x ln x +bx (a ,b ∈R ),函数f (x )的导函数为f ′(x ).(1)求f ′(x )的单调区间;(2)若f ′(x )有两个不同的零点x 1,x 2,证明: a 2x 1x 2<1.(1)解 函数f (x )的定义域为(0,+∞),f ′(x )=-ax +1+ln x +b . 令g (x )=f ′(x )=-ax +1+ln x +b (x >0), ∴g ′(x )=-a +1x.当a ≤0时, g ′(x )=-a +1x>0,则g (x )即f ′(x )在(0,+∞)上是增函数;当a >0时,若x ∈(0,1a ),则g ′(x )>0,若x ∈(1a,+∞),则g ′(x )<0,∴g (x )即f ′(x )在(0,1a)上是增函数,在⎝ ⎛⎭⎪⎫1a ,+∞上是减函数.综上所述,当a ≤0时,函数f ′(x )的单调递增区间为(0,+∞),无单调递减区间;当a >0时,函数f ′(x )的单调递增区间为⎝⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞.(2)证明 由(1)知当a ≤0时, f ′(x )在(0,+∞)上是增函数,不可能有两个零点,故a >0. 由f ′(x )有两个不同的零点x 1,x 2,得⎩⎪⎨⎪⎧f ′(x 1)=ln x 1-ax 1+b +1=0,f ′(x 2)=ln x 2-ax 2+b +1=0, 两式相减得ln x 1-ln x 2+ax 2-ax 1=0,即a =ln x 1-ln x 2x 1-x 2=lnx 1x 2x 1-x 2.∵a >0,x 1>0,x 2>0,∴欲证a 2x 1x 2<1,只需证⎝ ⎛⎭⎪⎪⎫ln x 1x 2x 1-x 22x 1x 2<1, 即证⎝ ⎛⎭⎪⎫ln x 1x 22<(x 1-x 2)x 1x 22=x 1x 2-2+x 2x 1. 不妨设0<x 1<x 2,令x 1x 2=t ∈(0,1),则只需证(ln t )2<t -2+1t. 设φ(t )=(ln t )2-t -1t+2, 则φ′(t )=2t ln t -1+1t 2=2ln t -t +1t t. 设h (t )=2ln t -t +1t ,则h ′(t )=-(t -1)2t 2, 当t ∈(0,1)时, h ′(t )<0,∴h (t )在(0,1)上单调递减,∴h (t )>h (1)=0,∴当t ∈(0,1)时, φ′(t )>0,φ(t )在(0,1)上单调递增, ∴当t ∈(0,1)时, φ(t )<φ(1)=0,即(ln t )2<t +1t-2在t ∈(0,1)上恒成立, 故原不等式得证.6.(2020·浙江新高考仿真卷二)设a 为实数,函数f (x )=x 2e 1-x -a (x -1).(1)当a =1时,求f (x )在⎝ ⎛⎭⎪⎫34,2上的最大值; (2)设函数g (x )=f (x )+a (x -1-e 1-x ),当g (x )有两个极值点x 1,x 2(x 1<x 2)时,总有x 2g (x 1)≤λf ′(x 1),求实数λ的值(f ′(x )为f (x )的导函数).解 (1)当a =1时,f (x )=x 2e1-x -(x -1), 则f ′(x )=(2x -x 2)e1-x -1=2x -x 2-e x -1e x -1. 令h (x )=2x -x 2-e x -1,则h ′(x )=2-2x -e x -1,显然h ′(x )在⎝ ⎛⎭⎪⎫34,2上是减函数. 又∵h ′⎝ ⎛⎭⎪⎫34=12-14e<0, ∴在⎝ ⎛⎭⎪⎫34,2上,总有h ′(x )<0.∴h (x )在⎝ ⎛⎭⎪⎫34,2上是减函数. 又∵h (1)=0,∴当x ∈⎝ ⎛⎭⎪⎫34,1时,h (x )>0, ∴f ′(x )>0,这时f (x )单调递增;当x ∈(1,2)时,h (x )<0,∴f ′(x )<0,这时f (x )单调递减.∴f (x )在⎝ ⎛⎭⎪⎫34,2上的极大值也即最大值是f (1)=1. (2)由题意知g (x )=(x 2-a )e1-x , 则g ′(x )=(2x -x 2+a )e1-x =(-x 2+2x +a )e 1-x . 根据题意,方程-x 2+2x +a =0有两个不同的实根x 1,x 2(x 1<x 2).∴Δ=4+4a >0,即a >-1,且x 1+x 2=2, ∵x 1<x 2,∴x 1<1,且x 2=2-x 1.由x 2g (x 1)≤λf ′(x 1),其中f ′(x )=(2x -x 2)e 1-x -a , 得(2-x 1)(x 21-a )e1-x 1≤λ[(2x 1-x 21)e 1-x 1-a ]. ∵-x 21+2x 1+a =0,∴上式化为(2-x 1)(2x 1)e1-x 1≤λ[(2x 1-x 21)e 1-x 1+(2x 1-x 21)]. 又∵2-x 1>0,∴不等式可化为x 1[2e 1-x1-λ(e1-x 1+1)]≤0对任意的x 1∈(-∞,1)恒成立. ①当x 1=0时,不等式x 1[2e1-x1-λ(e 1-x 1+1)]≤0恒成立,λ∈R ; ②当x 1∈(0,1)时,2e1-x 1-λ(e 1-x 1+1)≤0恒成立,即λ≥2e 1-x 1e 1-x 1+1.令函数k (x )=2e 1-x e 1-x +1=2-2e 1-x +1, 显然k (x )是R 内的减函数,∴x ∈(0,1)时,k (x )<k (0)=2e e +1,∴λ≥2e e +1; ③当x 1∈(-∞,0)时,2e 1-x1-λ(e 1-x 1+1)≥0恒成立,即λ≤2e 1-x 1e 1-x 1+1, 由②,当x ∈(-∞,0)时,k (x )>k (0)=2e e +1,即λ≤2e e +1. 综上所述,λ=2e e +1.。
2021高考数学导数与函数零点用思维导图破解导数压轴大题
2021高考数学导数与函数零点用思维导图破解导数压轴大题用思维导图突破导数压轴题专题3 导数与函数零点函数()f x 零点x 0就是方程()f x =0的根x 0,也是函数()f x 图象与x 轴交点的横坐标x 0.这里函数与方程随时转化,互换角色,充分体现数形结合的思想.函数零点个数转化为方程根的个数,有时把方程()f x =0转化为函数y h x =()与y g x =(),再作函数的图象,从图象确定交点个数,即把求方程根的个数转化为两个函数图象交点的个数.如果连续函数在某个单调区间内两个端点函数值之积为负,则函数在该区间有且仅有一个零点.要求函数的单调区间有回到求其导数的路子上,即转化为前面熟悉的问题.函数零点方程根 求导定调需认真 端点异号那最好 如若不然做转化例1(2019年Ⅰ理第20题)已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.求函数f (x )的零点数:求导判断f (x )的单调性,适当选取区间,确定端点函数值异号形:a =g (x )或h (x )=q (x ) 判断相应函数单调性、值域,确定零点个数或范围结合具体问题运用分析法和相关性质确定端点(一般不唯一,见例2等)结合图象确定零点范围(见例3、例6),有时还需证明(见例1)思路点拨第(1)题:若1()cos 1f x x x '=-+在区间(1,)2π-的极大值点x 0,则在x 0左边,()f x '递增,在x 0右边()f x '递减.这需要考虑()f x ''在x 0左边为正,右边为负,也就是说x 0是()f x '的零点,从而()f x '在0(1,)x -上单调递增;在0(x ,)2π上()f x ''<0,可得()f x '单调递减. 第(2)结论等价于方程sinx=ln(1+x)有且仅有两个不等的实数根.在同一坐标系中分别作出图象可知一根为0,另一根介于(2]2π,之间.从图象可以看出当(1,0)x ∈-和(0,)2π时,sin ln(1)0x x -+>,即()0f x >;当[2,)x ∈+∞,()0f x <.这就需要考虑f ′(x )在(−1,0)、(0,π2]、(π2,2]、(2,+∞)单调性以及端点值的正负.由于x 0位于(0,x 0)和(x 0,π2),还有对这两个区间作相应讨论. 第(2)的思维导图:f '(x)-1yx0π2x 02y =ln(1+x )y =sin x-1yx0π2已知f (x )=sin x -ln(1+x )结论:f (x )有且仅有2个零点sinx=ln(1+x)有两个不等实数根当和时,f (x )>0;当 x ∈ሾ2,+∞)时,f (x )<0当 x ∈ሾ2,+∞)时, f (x )<0等价转化函数方程不等式三者联系很密切相互转化无痕迹根据需要作选择极值两边单调反一撇两撇找零点区分左右大和小增减正负是关键综上,f(x)有且仅有2个零点.思路点拨(1)直接进行求导,分类讨论.(2)由(1)知()f x 在上单调递减,在上单调递增, ()f x 有极小值,若()f x 有两个零点,则,且在该点左右两个区间再各找一个点,其函数值大于0即可,当然也可以把函数有两个零点问题转化为另外两个函数图象有两个交点. 满分解答(1)对函数进行求导可得. ①当时,恒成立,故而函数恒递减.②当时,,解得x >ln 1a ,所以函数在上单调递减,在上单调递增.(2)解1 由(1)知,当时,在上单调递减,故在上至多一个零点,不满足条件;当时,. 令,则,从而在上单调递增,而,故当时,;当时,;当时,.当时,,此时恒成立,从而无零点,不满足条件. 当时,,,此时仅有一个实根,不满足条件.当时,,,注意到,故在上有一个实根. 1,ln a ⎛⎫-∞ ⎪⎝⎭1ln ,a ⎛⎫+∞ ⎪⎝⎭11ln ln 1f a a a ⎛⎫=-+ ⎪⎝⎭()1ln 100a a a-+<>()()()()2'22111x x x xf x ae a e ae e =+--=-+0a ≤()()()'110x xf x ae e =-+≤0a >()()()1'110ln x xf x ae e x a =-+>⇒>1,ln a ⎛⎫-∞ ⎪⎝⎭1ln ,a ⎛⎫+∞ ⎪⎝⎭0a ≤()f x R ()f x R 0a >()min 1()ln 1ln f x f a a a=-=-+()11ln (0)g a a a a=-+>()2110g a a a'=+>()g a ()0,+∞()10g =01a <<()0g a <1a =()0g a =1a >()0g a >1a >()0g a >()0f x >()f x 1a =()0g a =min 1()1ln 0f x a a =-+=()0f x =01a <<()0g a <()min 1()ln 1ln 0f x f a a a=-=-+<22ln 0,(1)10a a a f e e e->-=++->()f x (1,ln )a --而 ,. 故在上有一个实根.又在上单调减,在单调增,故在上至多两个实根.注 怎么知道要算f (-1)>0、3ln(1)0⎛⎫->⎪⎝⎭f a ?事实上,()()[2]=+--x x f x e ae a x ,当x =-1时f (-1)>0;为了再找一点x ,使f (x )>0,因为()()22=+--x xf x ae a e x()=[2]+--x x e ae a x ,注意到0->x e x ,所以只要()21+-=x ae a ,解得3ln(1)=-x a.其实,还可以证f (-2)>0,03ln(1)>-x a 时,3ln(1)0⎛⎫-> ⎪⎝⎭f a . (2)解2 令()0f x =,即()220xxae a e x +--=,所以有22x x x e xa e e+=+.于是函数()f x 有两个零点,即y a =与()22x x x e xg x e e+=+的图象有两个交点.()g x 的导函数为()()()()2211'1xx xxe e x g x e e ++-=-+,当0x <时,()'0g x >;当0x >时,()'0g x <时,所以()g x 在(),0-∞上单调递增,在()0,+∞上单调递减,且()g x 在0x =处取得最大()01g =.当1a ≥时,y a =与()g x 至多有一个零点,不符合题意;当0a ≤时,由于当0x ≥时,()0g x >,而当0x <时,()g x 是单调递增,所以y a=与()g x 至多有一个交点,不符合题意;当01a <<时,一方面,由于()()20,01g a g a -<<=>,且()g x 在()2,0-上单调递增,所以y a =与()g x 在()2,0-上有且仅有一个交点.31ln 1ln ln a a a ⎛⎫->=- ⎪⎝⎭33ln 1ln 133ln(1)e e2ln 1a a f a a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫-=⋅+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()33132ln 1a a a a ⎛⎫⎛⎫=-⋅-+--- ⎪ ⎪⎝⎭⎝⎭331ln 10a a ⎛⎫⎛⎫=---> ⎪ ⎪⎝⎭⎝⎭()f x 3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,()f x ()ln a -∞-,(ln ,)a -+∞()f x R思路点拨 第(1)题要证明不等式()1f x ≥,由于(0)=1f ,结论等价于当0x ≥时,()(0)f x f ≥,只要证明'()0f x >,接下来就是从已知入手证明'()0f x >,也可以把()1f x ≥转化为只要证明210x e x --≥,两边同时除以xe (注:这样构造下面的函数g(x)求导比较方便),不等式转化为2(1)10x x e -+-≤,构造新的函数2()(1)1x g x x e -=+-,只要证明()(0)g x g ≤.第(2)题要求()f x 的零点,如果直接对()f x 求导得'()2x f x e ax =-,要判断其符号就要对a 进行讨论,如果把()f x 转化为22()()x f x x e x a -=-,令2()x h x e x a -=-,则()f x 与()h x 在(0,)+∞零点个数相同,而'3(2)()xx eh x x-=中没有a ,讨论符号方便,运算量会减小.当然,也可把()f x 转化为2()1xx f x e ax e -=-()来解答.还可以用最常见的方法来思考:函数()f x 只有一个零点问题等价转化为方程2xe a x=只有一根问题,从而寻找两函数(y a =与 2()x e G x x =)的图像只有一个交点问题,于是,本小题有下面的3种解法. 满分解答解(1)解 1 因为2()x f x e ax =-,所以'()2x f x e x =-, 令'()2,()2x x g x e x g x e =-=-,由2=0x e -得ln 2x =.当''[0,ln 2),()0;(ln 2,),()0x g x x g x ∈<∈+∞>,所以()g x 在[0,ln 2)上单调递减,在(ln 2,)+∞上单调递增,所以()(ln 2)220,g x g ln ≥=->因此()f x 在[0,)+∞上递增,所以2()1(0)x f x e x f =-≥=.解2 设函数2()(+1)1x g x x e -=-,则'22()(21)(1)x x g x x x e x e --=--+=--, 当1x ≠时,'()0g x <,所以()g x 在[0,)+∞单调递减,从而有()(0)0g x g ≤=,即2(+1)10x x e --≤,整理得,21x e x -≥,故有()1f x ≥.(2)解1因为()f x 在(0,)+∞只有一个零点,由于22()x f x x e x a -=-(),则2()xh x e x a -=-在(0,)+∞只有一个零点,'3(2)()x x e h x x-=,当(0,2)x ∈时,'()0h x <,当(2,)x ∈+∞时,'()0h x >,所以()h x 在(0,2)上递减,在(2,)+∞上递增,所以()h x ≥2(2)4e h a =-.当24e a <时,()h x 在(0,)+∞无零点;当24e a =时,()h x 在(0,)+∞只有一个零点,满足题意;当24e a >时,由(1)可得:()20xg x e x =->,即22()x e h x a a x x=->-,当 20a x ->,此时22x a <<时,()0,h x >取1,x a =故()h x 在1(,2)a有一个零点.由(1)可得当0x >时,2x e x >,有32,3xx e >此时即3222()83()27xx e h x a a x a x x =->-=-,当2728x a >>时,()0,h x >取4,x a =则(4)0h a >,由零点存在定理知()h x 在(2,4)a 有一个零点,此时()f x 在(0,)+∞有两个零点,不合题意.综上所述:24e a =.解2因为()f x 在(0,)+∞只有一个零点,由于2()1xx f x e ax e -=-(),令2()1xh x ax e -=-在(0,)+∞只有一个零点,(i )当0a ≤时,()0h x >,()h x 没有零点; (ii )当0a >时,'(2)()xax x h x e -=; 当(0,2)x ∈时,'()0h x <;当(2,)+∞时,'()0h x >.所以()h x 在(0,2)单调递减,在(2,)+∞单调递增.故有24()(2)1ah x h e ≥=-. 当24e a <时,24()10,a h x e ≥->函数无零点,不合题意;当24e a =时,24()10,a h x e ≥-=函数只有一个零点,满足题意;当24e a >时,24()10,a h x e ≥-<由(0)1h =,所以()h x 在(0,2)有一个零点,由(1)得,当0x >时,2,xe x >所以33342241616161(4)11110()(2)a a a a a h a e e a a=-=->-=->,故有()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上所述,()f x 在(0,+∞)只有一个零点时,24e a =.解3 由()f x 在(0,)+∞只有一个零点可知方程20x e ax -=在(0,)+∞只有一个根,即 2xe a x=在(0,)+∞只有一个根,从而可得函数y a =与 2()x e G x x =的图像在(0,)+∞只有一个交点.'3(2)()x e x G x x-=,当(0,2)x ∈时,'()0G x <,当(2,)x ∈+∞时,'()0,G x >所以()G x 在(0,2)递减,在(2,)+∞递增;当0x →时,()G x →+∞,当x →+∞时,()G x →+∞,所以()f x 在(0,)+∞只有一个零点时,2(2)4e a G ==.思路点拨第(2)题解1是把零点问题转化为不等式问题,又转化为方程解的问题,但不是直接解方程,由于通过条件知道方程的解,就转化为验证是否是方程的解,有效回避解高次方程.解2是通过“两边夹”的方法得到c 的值,再验证其是唯一满足条件的值. 满分解答(1)()ax x x f 232'+=,令()0'=x f ,解得01=x ,322ax -=. 若0=a ,因()032'≥=x x f ,所以函数()x f 在R 上单调递增. 若0>a ,当32ax -<或0>x 时,()0'>x f ; 当032<<-x a 时,()0'<x f ,所以函数()x f 在⎪⎭⎫ ⎝⎛-∞-32,a 和()+∞,0上单调递增,在⎪⎭⎫⎝⎛-0,32a上单调递减.若0<a ,当32ax ->或0<x 时,()0'>x f ; 当320a x -<<时,()0'<x f ;所以函数()x f 在()0,∞-和⎪⎭⎫ ⎝⎛+∞-,32a 上单调递增,在⎪⎭⎫ ⎝⎛-32,0a 上单调递减. (2)解1 ()a c ax x x f -++=23,()ax x x f 232'+=,322ax -=. 由函数()x f 有三个不同的零点知0≠a 且()0320<⎪⎭⎫ ⎝⎛-⋅a f f ,即()02743<⎪⎪⎭⎫ ⎝⎛-+-a c a a c . 又因为a 的解集是()⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,2323,13, .31-=a ,12=a ,233=a 是()02743=⎪⎪⎭⎫ ⎝⎛-+-a c a a c 因为c a =一定是方程的一个根,若分别令31,,32c =-,则只要检验a 的其余两个值是否满足34027a c a +-=. (*) 当1=c 时,3a =-和32a =是(*)的根(32a =是重根);当3-=c 时,32a =和1a =不是(*)的根; 当23=c 时,3a =-和1a =不是(*)的根. 综上所述,1=c .解2 由(1)知,函数()x f 的两个极值为()b f =0,b a af +=⎪⎭⎫ ⎝⎛-327432,则函数()x f 有三个零点等价于()02743203<⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛-⋅b a b a f f ,从而30,40,27a a b >⎧⎪⎨-<<⎪⎩或30,40.27a b a <⎧⎪⎨<<-⎪⎩又a c b -=,所以当0>a 时,02743>+-c a a 或当0<a 时,02743<+-c a a . 设()c a a a g +-=3274,因为函数()x f 有三个零点时,a 的取值范围恰好是(),3-∞-331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,所以当(),3a ∈-∞-时,(g (),3a ∈-∞-时,()0<a g ,且当31,2a ⎛⎫∈ ⎪⎝⎭3,2⎛⎫+∞ ⎪⎝⎭时,()min 0g a >,()0g a >均恒成立,从而()013≤-=-c g ,且0123≥-=⎪⎭⎫ ⎝⎛c g ,因此1=c .此时,()a ax x x f -++=123()()[]ax a x x -+-++=1112,因函数有三个零点,则()0112=-+-+a x a x 有两个异于1-的不等实根, 所以()()2141a a ∆=---2a =+2a 30->,且()()2111320a a a ---+-=-≠,解得()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 综上1=c . 解3 由解1得函数()f x 有三个不同的零点知0a ≠等价于()34027a c a c a ⎛⎫-+-< ⎪⎝⎭,即43222727270424a ca a ca c --+->,其解集恰为()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 又不等式233102a a a +⋅-⋅->()()(),即4322727270424a a a a --+->的解集也是()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a ,故不等式43222727270424a ca a ca c --+->与不等式4322727270424a a a a --+->同解,比较系数可得1=c .思路点拨第(1)的①可直接求解,②可转换为恒成立问题;(2)由f (0)=2知0就是g(x )的零点,由条件知这是唯一零点.利用导数判断g(x )的单调性,则需唯一的极小值为0,由此得ab 的值. 满分解答①()122xxf x ⎛⎫=+ ⎪⎝⎭,由01a <<可得1222x x+=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =. ②由题意得221122622xx x x m ⎛⎫++- ⎪⎝⎭≥恒成立. 令122x x t =+,则由20x >可得2t ≥,此时226t mt --≥恒成立,即244t m t t t+=+≤恒成立.因为2t ≥时44t t +=≥,当且仅当2t =时等号成立,因此实数ab 的最大值为4.(2)解1()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 由01a <<,1b >可得1b a >,令()ln ln xb ah x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b aa xb ⎛⎫=-⎪⎝⎭时()00h x =,因此, 当()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <; 当()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;所以,()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22ax a a >=,0x b >,则()0g x >;当x >log b 2时,0x a >,log 22bx b b >=,则()0g x >;当1log 2a x <且10x x <时,()10g x >,则()g x 在()10,x x 有零点,当2log 2b x >且20x x >时,()20g x >,则()g x 在()02,x x 有零点,所以()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x ,可得()00g x =,由()00020g a b =+-=,因此00x =.因此ln log 0ln b aa b ⎛⎫-= ⎪⎝⎭,即ln 1ln ab -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.解2 因为函数2)()(-=x f x g 只有1个零点,而022)0()0(00=-+=-=b a f g , 所以0是函数)(x g 的唯一零点.由解1知道()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x . 下证00x =.若00x <,则0002x x <<,于是0()(0)02x g g <=,又log 2log 2log 2(log 2)220a a a a g ab a =+->-=,且函数()g x 在以2x 和log 2a 为端点的闭区间上的图象不间断,所以在02x 和log 2a 之间存在()g x 的零点,记为1x .因为01a <<,所以log 20a <,又002x <,所以10x <与“0是函数()g x 的唯一零点”矛盾.若00x >,同理可得,在02x 和log 2a 之间存在()g x 的非0的零点,矛盾. 因此,00x =.于是ln 1ln ab-=,故ln ln 0a b +=,所以1ab =.。
三种方法破解隐零点问题
=g(
x)
≥g(
x)
mi
n >0。
时 取 得 最 小 值,即 当 x ∈ (-1,+ ∞ )时,
:
证法二(
数形结合,
转化切线)
x)
=e -l
n(
x +1)≥f (
0)=1>0,所 以
f(
x
当 m ≤2 时,
x)=
f(
e -l
n(
x+1)
>0 恒成立。
x
x
x
e -l
n(
x+m ) ≥ e -
x
,
当 m ≤1 时,
。
知函数 f(
x)
=e -l
n(
x+m )
x
34
(
设 x=0 是 f(
1)
x)的 极 值 点,求 m 的
值,
并讨论 f(
的单调性;
x)
(
当 m ≤2 时,
证明 f(
2)
x)
>0。
x
(
,得
解析:
1)由 f (
x)=e -l
n(
x +m )
1
x
。
'(
x)
=e f
x+m
因 为 x =0 是 f (
x )的 极 值 点,所 以
解题篇 经典题突破方法
高二数学 2019 年 7-8 月
三种方法破解隐零点问题
■ 甘肃省白银市第一中学
导 数 是 探 究 函 数 性 质 的 利 器,求 导 函 数
的零点是 其 中 一 个 关 键 环 节,有 些 导 函 数 的
高考数学二轮复习专题突破—利用导数研究函数的零点(含解析)
高考数学二轮复习专题突破—利用导数研究函数的零点1.(2021·福建厦门月考)已知函数f(x)=x3-43x2e x的定义域为[-1,+∞).(1)求f(x)的单调区间;(2)讨论函数g(x)=f(x)-a在区间[-1,2]上的零点个数.2.(2021·江苏苏州月考)已知函数f(x)=x 2a-2ln x(a∈R,a≠0).(1)求函数f(x)的极值;(2)若函数f(x)有两个零点x1,x2(x1<x2),且a=4,证明:x1+x2>4.3.(2021·山东烟台期中)已知函数f(x)=ax+2e x+1(a∈R).(1)若函数f(x)在区间(1,+∞)上单调递增,求实数a的取值范围;(2)当a≠0时,讨论函数g(x)=f(x)-a-3的零点个数,并给予证明.4.(2021·山西太原三模)已知函数f(x)=a ln x-14x2+b-ln 2的图象在点(2,f(2))处的切线方程为y=-12x+1.(1)求f(x)的单调区间;(2)设x1,x2(x1<x2)是函数g(x)=f(x)-m的两个零点,求证:x2-x1<32-4m.5.(2021·广东佛山期末)已知函数f(x)=ln x-mx有两个零点.(1)求m的取值范围;(2)设x1,x2是f(x)的两个零点,证明:f'(x1+x2)<0.6.(2021·山东实验中学模拟)已知函数f(x)=2e x sin x(e是自然对数的底数).(1)求f(x)的单调区间;π(2)记g(x)=f(x)-ax,0<a<6,试讨论g(x)在区间(0,π)上的零点个数(参考数据:e2≈4.8).答案及解析1.解 (1)f'(x )=x 3+53x 2-83x e x =x3(3x+8)(x-1)e x ,因为x ∈[-1,+∞),所以函数f'(x )的零点为0和1. 所以当0<x<1时,f'(x )<0; 当x>1或-1≤x<0时,f'(x )>0.所以f (x )的单调递减区间为(0,1),单调递增区间为[-1,0),(1,+∞). (2)由(1)知,f (x )在区间[-1,2]上的极大值为f (0)=0,极小值为f (1)=-e3. 因为f (-1)=-73e ,f(-1)f(1)=7e 2<72.72<1,所以f (1)<f (-1)<0.f (2)=8e 23,由g (x )=0,得f (x )=a.故当a<-e3或a>8e 23时,g (x )的零点个数为0; 当a=-e 3或0<a ≤8e 23时,g (x )的零点个数为1;当-e3<a<-73e 或a=0时,g (x )的零点个数为2; 当-73e ≤a<0时,g (x )的零点个数为3. 2.(1)解 函数f (x )的定义域为(0,+∞),f'(x )=2xa −2x =2x 2-2a ax.当a<0时,f'(x )<0,所以f (x )在区间(0,+∞)上单调递减,所以f (x )在区间(0,+∞)上无极值;当a>0时,若x ∈(0,√a ),f'(x )<0,f (x )在区间(0,√a )上单调递减.若x ∈(√a ,+∞),f'(x )>0,f (x )在区间(√a ,+∞)上单调递增,故f (x )在区间(0,+∞)上的极小值为f (√a )=1-2ln √a =1-ln a ,无极大值. (2)证明 当a=4时,f (x )=x 24-2ln x.由(1)知,f(x)在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,x=2是函数f(x)的极值点.又x1,x2为函数f(x)的零点,所以0<x1<2<x2,要证x1+x2>4,只需证x2>4-x1.∵f(4-x1)=(4-x1)24-2ln(4-x1)=x124-2x1+4-2ln(4-x1),又f(x1)=x124-2ln x1=0,∴f(4-x1)=2ln x1-2x1+4-2ln(4-x1).令h(x)=2ln x-2x+4-2ln(4-x)(0<x<2),则h'(x)=2x -2+24−x=2(x-2)2x(4-x)>0,∴h(x)在区间(0,2)上单调递增,∴h(x)<h(2)=0,∴f(4-x1)<0=f(x2),又4-x1>2,x2>2,∴4-x1<x2,即x1+x2>4得证.3.解 (1)f'(x)=a-2e x.由题意得f'(x)≥0,即a≥2e x在区间(1,+∞)上恒成立.当x∈(1,+∞)时,2e x ∈0,2e,所以a≥2e.故实数a的取值范围为2e,+∞.(2)当a<0时,函数g(x)有且只有一个零点; 当a>0时,函数g(x)有两个零点.证明如下:由已知得g(x)=ax+2e x -a-2,则g'(x)=a-2e x=ae x-2e x.当a<0时,g'(x)<0,所以函数g(x)单调递减.又g(0)=-a>0,g(1)=2e-2<0,故函数g(x)有且只有一个零点.当a>0时,令g'(x )<0,得x<ln 2a ,令g'(x )>0,得x>ln 2a ,所以函数g (x )在区间-∞,ln 2a 上单调递减,在区间ln 2a ,+∞上单调递增,而g (ln 2a )=a ln 2a −2a <0,g (a+2a)=2e a+2a>0.由于x>ln x ,所以a+2a >2a >ln 2a ,所以g (x )在区间ln 2a ,a+2a上存在一个零点.又g ln 2a 2+a+2=a a-lna 2+a+22,且ln 2a 2+a+2<ln 2a ,设h (a )=a-lna 2+a+22,则h'(a )=1-2a+1a 2+a+2=a 2-a+1a 2+a+2>0在区间(0,+∞)上恒成立,故h (a )在区间(0,+∞)上单调递增.而h (0)=0,所以h (a )>0在区间(0,+∞)上恒成立,所以g ln 2a 2+a+2>0, 所以g (x )在区间ln 2a 2+a+2,ln 2a 上存在一个零点. 综上所述,当a<0时,函数g (x )有且只有一个零点; 当a>0时,函数g (x )有两个零点.4.(1)解 由题可知,函数f (x )的定义域为(0,+∞),f'(x )=ax −12x ,又函数f (x )的图象在点(2,f (2))处的切线方程为y=-12x+1,所以{f(2)=0,f'(2)=-12,即{aln2−1+b-ln2=0,a2-1=-12,解得{a =1,b =1,所以f (x )=ln x-14x 2+1-ln 2,f'(x )=1x−12x=2−x 22x,当x ∈(0,√2)时,f'(x )>0;当x ∈(√2,+∞)时,f'(x )<0,所以函数f (x )的单调递增区间为(0,√2),单调递减区间为(√2,+∞).(2)证明 由(1)得f (x )=ln x-14x 2+1-ln 2(x>0),且f (x )在区间(0,√2)上单调递增,在区间[√2,+∞)上单调递减,由题意得f (x 1)=f (x 2)=m ,且0<x 1<√2<x 2,∴x 2-x 1-32+4m=x 2-x 1-32+2(f (x 2)+f (x 1))=2ln x 2+x 2-12x 22+2ln x 1-x 1-12x 12+52-4ln 2.令t 1(x )=2ln x+x-12x 2,x>√2, 则t 1'(x )=(x+1)(x-2)-x,令t 1'(x )>0,得√2<x<2;令t 1'(x )<0,得x>2,∴t 1(x )在区间(√2,2]上单调递增,在区间(2,+∞)上单调递减,∴t 1(x )≤t 1(2)=2ln 2.令t 2(x )=2ln x-x-12x 2,0<x<√2,则t 2'(x )=(x+2)(x-1)-x,令t 2'(x )>0,得0<x<1;令t 2'(x )<0,得1<x<√2,∴t 2(x )在区间(0,1)上单调递增,在区间[1,√2)上单调递减, ∴t 2(x )≤t 2(1)=-32,∴x 2-x 1-32+4m ≤t 1(2)+t 2(1)+52-4ln 2=1-2ln 2<0. ∴x 2-x 1<32-4m. 5.(1)解 f'(x )=1x -m=1−mx x(x>0),当m ≤0时,f'(x )>0,则f (x )在区间(0,+∞)上单调递增,至多有一个零点;当m>0时,若0<x<1m ,则f'(x )>0,f (x )在区间0,1m 上单调递增; 若x>1m ,则f'(x )<0,f (x )在区间1m,+∞上单调递减,∴f (x )在x=1m 处取得最大值,由题意得f (1m )=-ln m-1>0得0<m<1e ,此时,有1m 2>1m>e >1,而f (1)=-m<0,f (1m 2)=-2ln m-1m <0, ∴由零点存在定理可知,f (x )在区间1,1m 和1m ,1m 2上各有一个零点. 综上所述,m 的取值范围是0,1e .(2)证明 ∵x 1,x 2是f (x )的两个零点,不妨设x 1>x 2>0,∴ln x 1-mx 1=0①,ln x 2-mx 2=0②, ①-②得ln x 1-ln x 2=mx 1-mx 2,即有m=ln x 1-ln x 2x 1-x 2,由f'(x )=1x -m ,有f'(x 1+x 2)=1x1+x 2-m=1x1+x 2−ln x 1-ln x 2x 1-x 2,∴要证f'(x 1+x 2)<0,即证ln x 1-ln x 2x 1-x 2>1x1+x 2,即证ln x 1-ln x 2>x 1-x2x 1+x 2,即证ln x 1x 2−x 1x 2-1x 1x 2+1>0,即证ln x 1x 2+2x 1x 2+1-1>0,令x 1x 2=t>1,设φ(t )=ln t+2t+1-1(t>1),则φ'(t )=t 2+1t(t+1)2>0,∴φ(t )在区间(1,+∞)上单调递增,则φ(t )>φ(1)=0, ∴f'(x 1+x 2)<0得证.6.解 (1)函数f (x )=2e x sin x 的定义域为R .f'(x )=2e x (sin x+cos x )=2√2e x sin x+π4.由f'(x )>0,得sin x+π4>0,可得2k π<x+π4<2k π+π(k ∈Z ),解得2k π-π4<x<2k π+3π4(k ∈Z ), 由f'(x )<0,得sin x+π4<0,可得2k π+π<x+π4<2k π+2π(k ∈Z ),解得2k π+3π4<x<7π4+2k π(k ∈Z ).所以f (x )的单调递增区间为-π4+2k π,3π4+2k π(k ∈Z ),单调递减区间为3π4+2k π,7π4+2k π(k ∈Z ). (2)由已知g (x )=2e x sin x-ax ,所以g'(x )=2e x (sin x+cos x )-a ,令h (x )=g'(x ),则h'(x )=4e x cosx.因为x ∈(0,π),所以当x ∈0,π2时,h'(x )>0; 当x ∈π2,π时,h'(x )<0,所以h (x )在区间0,π2上单调递增,在区间π2,π上单调递减,即g'(x )在区间0,π2上单调递增,在区间π2,π上单调递减.g'(0)=2-a ,g'(π2)=2e π2-a>0,g'(π)=-2e π-a<0.①当2-a≥0,即0<a≤2时,g'(0)≥0,所以∃x0∈π2,π,使得g'(x0)=0,所以当x∈(0,x0)时,g'(x)>0;当x∈(x0,π)时,g'(x)<0,所以g(x)在区间(0,x0)上单调递增,在区间(x0,π)上单调递减.因为g(0)=0,所以g(x0)>0.因为g(π)=-aπ<0,所以由零点存在定理可得,此时g(x)在区间(0,π)上仅有一个零点.②当2-a<0,即2<a<6时,g'(0)<0,所以∃x1∈0,π2,x2∈π2,π,使得g'(x1)=0,g'(x2)=0,且当x∈(0,x1),x∈(x2,π)时,g'(x)<0;当x∈(x1,x2)时,g'(x)>0.所以g(x)在区间(0,x1)和(x2,π)上单调递减,在区间(x1,x2)上单调递增.因为g(0)=0,所以g(x1)<0,因为g(π2)=2eπ2−π2a>2eπ2-3π>0,所以g(x2)>0,因为g(π)=-aπ<0,由零点存在定理可得,g(x)在区间(x1,x2)和(x2,π)内各有一个零点,即此时g(x)在区间(0,π)上有两个零点.综上所述,当0<a≤2时,g(x)在区间(0,π)上仅有一个零点;当2<a<6时,g(x)在区间(0,π)上有两个零点.。
导数压轴题之隐零点问题专辑含答案纯word版
导数压轴题之隐零点问题专辑含答案纯word版本文介绍了导数压轴题中的隐零点问题,共有13道题目。
1.对于已知函数$f(x)=(aex-a-x)ex$,若$f(x)\geq 0$对于$x\in R$恒成立,求实数$a$的值,并证明$f(x)$存在唯一极大值点$x$,且$f(x)<f(x_0)$,其中$x_0$为$f(x)$的零点。
解答:1) 对于$f(x)=ex(aex-a-x)\geq 0$,因为$ex>0$,所以$aex-a-x\geq 0$恒成立,即$a(ex-1)\geq x$恒成立。
当$x=0$时,显然成立。
当$x>0$时,$ex-1>0$,故只需$a\geq 1$。
令$h(x)=aex-a-x$,则$h'(x)=aex-1$,在$(0,+\infty)$恒成立,故$h(x)$在$(0,+\infty)$递减。
又因为$h(0)=0$,故$a\geq1$。
当$x<0$时,$ex-1<0$,故只需$a\leq 1$。
令$g(x)=aex-a-x$,则$g'(x)=aex-1$,在$(-\infty,0)$恒成立,故$g(x)$在$(-\infty,0)$递增。
又因为$g(0)=0$,故$a\leq 1$。
综上,$a=1$。
2) 由(1)得$f(x)=ex(ex-x-1)$,故$f'(x)=ex(2ex-x-2)$。
令$h(x)=2ex-x-2$,则$h'(x)=2ex-1$,所以$h(x)$在$(-\infty,\ln)$单调递减,在$(\ln,+\infty)$单调递增,$h(0)=0$,$h(\ln)=2e^{\ln}-\ln-2=\ln2-10$,故$h(x)$在$(-2,\ln)$有唯一零点$x_0$。
设$x_0$为$f(x)$的零点,则$2ex_0-x_0-2=0$,从而$h(x)$有两个零点$x_0$和$-x_0-2$,所以$f(x)$在$(-\infty,x_0)$单调递增,在$(x_0,+\infty)$单调递减,在$(-2,x_0)$上单调递增,在$(-\infty,-2)$上单调递减,从而$f(x)$存在唯一的极大值点$x_0$。
2021年高考数学题型秒杀题型14函数的零点(解析版)
秒杀高考数学题型之函数的零点函数零点存在定理:若函数()y f x =在区间[],a b 上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(),a b 内存在零点,即存在(),,c a b ∈使得()0f c =。
深层理解:1.若()f x 在(),a b 上内单调,且0)()(<⋅b f a f ,则()f x 在(),a b 上有且只有一个零点。
2.若0)()(>⋅b f a f ,则)(x f 在(),a b 上不一定有零点。
若()f x 在(),a b 上内单调,且0)()(>⋅b f a f ,则()f x 在(),a b 上一定没有零点。
【秒杀题型一】:函数零点所在区间确定(一般情况下只考查选择题)。
『秒杀策略』:一般情况下只需验证四个选项中给出区间两个端点函数值是否异号。
1.(高考题)函数()23x f x x =+的零点所在的一个区间是 ( )A.()2,1--B.()1,0-C.()0,1D.()1,2【解析】:)(x f 单调递增,且(1)(0)0f f -⋅<,选B 。
2.(高考题)函数()f x =2x e x +-的零点所在的一个区间是 ( )A.()2,1--B.()1,0-C.()0,1D.()1,2【解析】:)(x f 单调递增,且0)1()0(<⋅f f ,选C 。
【秒杀题型二】:函数零点个数确定。
【题型1】:单一函数分析法。
『秒杀策略』:若)(x f 在(),a b 上单调,且0)()(<⋅b f a f ,则)(x f 有且只有一个零点,若0)()(>⋅b f a f ,则)(x f 没有零点,逆过来亦成立。
1.(高考题)函数22)(3-+=x x f x 在区间()1,0内的零点个数是 ( ) A.0 B.1 C.2 D.3【解析】:)(x f 单调递增,且0)1()0(<⋅f f ,选B 。
高考数学复习压轴题专题讲解05 与函数的对称性相关的零点问题
【解析】由圆方程 ,可得 ,圆心坐标为(−3, 2)
,其对称中心为(−3, 2).
在同一直角坐标系中,画出圆和函数图像如右图所示:
数形结合可知,圆和函数都关于点M(−3, 2)对称,
故可得其交点A和C,B和D都关于点M(−3, 2)对称.
6.【答案】B
【分析】该题设计抽象函数 关于点 成中心对称,函数 由奇函数 向上平移一个单位得到,也关于点 成中心对称,因而两函数图象的交点为也关于点 成中心对称, ,考虑倒序相加法,可得 , ,故 .
7.【答案】2020
【提示】两边取自然对数得
设 ,则易得其为 上的单增奇函数
所以 ,
故 .
8.【答案】
设 ,显然 关于直线 对称,顶点为 .
若 ,则函数 关于直线 对称,且在 上是减函数,在 上是增函数,最大值为 , .
若 的图象与 的图象有一个公共点A,根据对称性必有另一个公共点B.所以, 不合题意;
若 ,函数 关于直线 对称,且在 上是增函数,在 上是减函数,最小值为 .若 的图象与 的图象只有一个公共点,必有 ,得 .
故 ,
所以 .
9.【答案】 或
10.【答案】A
点评:
f(0)=0仅是函数存在零点的必要条件,要注意检验充分性,一般是代入检验进行取舍.
【巩固训练】
1.已知函数f(x)是偶函数,且当x>0时,f(x)=lnx-ax,若函数f(x)恰有5个零点,则实数a的取值范围是.
2.若函数 的零点有且只有一个,则实数 .
3.若函数f(x)=x2-mcosx+m2+3m-8有唯一零点,则满足条件的实数m组成的集合为.
【2021高考数学压轴题】三招五法破解含参零点问题
(1)分类讨论参数的不同取值情况,研究零点的个数或取值;(2)利用零点存
在的判定定理构建不等式形结合、转化与化归等思想方法,所以此类题往往能较
好地体现试卷的区分度,往往出现在压轴题的位置.正因为如此,根据函数的零点
情况,讨论参数的范围成为高考的难点.对于此类题目,我们常利用零点存在定
理、函数求解;(3)分离参数后转化为函数的值域(最值)问题求解,如果涉及
围是( )
A.
7 4
,
B.
,
7 4
C.
0,
7 4
D.
7 4
,
2
【答案】D
【解析】函数
恰有 4 个零点,即方程
,即
有 4 个不同的实数根,即直线 与函数
的图像有四个不同的交
点.又
做出该函数的图像如图所示,由图得,
当
时,直线 与函数
的图像有 4 个不同的交点,故函
数
恰有 4 个零点时,b 的取值范围是 故选 D.
4
e2
1
4 e2
e2 4
,即 k
4 e2
e2 4
,
即实数
k
的取值范围是
(
4 e2
e2 4
, )
,故选
B
.
4 / 21
【指点迷津】
1.由两个基本初等函数组合而得的超越函数 f(x)=g(x)-h(x)的零点个数,等价于
方程 g(x)-h(x)=0 的解的个数,亦即 g(x)=h(x)的解的个数,进而转化为基本初
f(
2 a
)>0,即
a2>4,解得
a<-2.
法二 数形结合法:转化为直线与曲线的位置关系求解
2021年高考数学(理)总复习:利用导数解决函数零点问题(解析版) (1)
2021年高考数学(理)总复习:利用导数解决函数零点问题题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∵a >0,∴x 1<x 2,列表如下:∴f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵存在x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∴y =1x 3+3x 在x ∈[1,2]上单调递减,∴当x =1时,y =1x 3+3x 的最大值为4,∴2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ①当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∴h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.②当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∴h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ③当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1), ∵φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∴φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∴存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(ⅰ)当0<x ≤x 0时,∵φ(x )=f (x )-g (x )≥φ(x 0)=0, ∴h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∴h (x )在(0,x 0)上有一个零点; (ⅱ)当x >x 0时,∵φ(x )=f (x )-g (x )<φ(x 0)=0, ∴h (x )=g (x )且h (x )为增函数,∵g (1)=0,∴h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∴函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2.(2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∴0<x 1<1,∴g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2e a ,(a <0),h ′(a )=-12a e a -12e a -2e a +2,(a <0),h ′(0)=-12,h ″(a )=e -a -e a +e -a -12a e a >0,∴h ′(a )在(-∞,0)上单调递增,h ′(a )<h ′(0)<0, ∴h (a )在(-∞,0)上单调递减,∴h (a )>h (0)=0, ∴g (x 1)>0,即当a <0时,g (e a )>0.当x 趋于+∞时,g (x )趋于+∞,且g (2)=2ln2-2<0. ∴函数g (x )在(0,+∞)上始终有两个零点. 题型二 由函数零点个数求参数的取值范围 【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e为自然对数的底数).(1)求f (x )的解析式及单调减区间;(2)若函数g (x )=f (x )-kx 2x -1无零点,求k 的取值范围.【解析】 (1)函数f (x )=mx ln x 的导数为f ′(x )=m (ln x -1)(ln x )2,又由题意有:f ′(e2)=12⇒m 4=12⇒m =2,故f (x )=2xln x.此时f ′(x )=2(ln x -1)(ln x )2,由f ′(x )≤0⇒0<x <1或1<x ≤e ,所以函数f (x )的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1⇒g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∪(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∪(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∪(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ⇒h ′(x )=kx -2x2.①当k ≤0时,h ′(x )<0在x ∈(0,1)∪(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;②当k >0时,h ′(x )=kx -2x 2⇒h ′(x )=22x k x k ⎪⎭⎫ ⎝⎛-, (i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫ ⎝⎛k 2,1内也单调递减,在⎪⎭⎫⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∪(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减. 当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫ ⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ①若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;②若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ③若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;④若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∵f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∴f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∵t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∵t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∴h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∵e -2<x <e∴函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∵g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∴m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.①当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1;②当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合①②,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:①当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.②当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合①②,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围.[解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∴a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∵x ∈(1,+∞),∴ln x ∈(0,+∞), ∴当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∴a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∴f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x+2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∴4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∴g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∴g ′(x )=3x 2-2x -1,g ′(-1)=4,∴点P (-1,1)处的切线斜率k =g ′(-1)=4,∴函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0,∴当x =1时,h (x )取得最大值,h (x )max =h (1)=-2, ∴a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∴φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∵φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∴方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
专题05 挖掘“隐零点”,破解导数压轴题-2020年高考数学压轴题之函数零点问题(解析版)
第二步:以零点为分界点,说明导函数 f′(x)的正负,进而得到 f(x)的最值表达式;这里应注意,进行代
【典型例题】
类型一 挖掘“隐零点”,求参数的最值或取值范围
例 1.【浙江省杭州第十四中学 2019 届高三 12 月月考】设函数
,曲线 y=f(x)
在 x=1 处的切线与直线 y=3x 平行.
(1)判断函数 f(x)在区间 和
上的单调性,并说明理由;
(2)当
时,
恒成立,求 的取值范围.
【答案】(1)区间
(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,
所以
f(x)必存在唯一极大值点
x0,且
2x0﹣2﹣lnx0=0,所以
f(x0)=
x
2 0
﹣
x
0
﹣x0
ln
x
0
=
x
2 0
﹣
x
0
﹣
x 0(2x 0
2)=﹣
x
2 0
+
x
0
,由
x0<
1 2
可知
f(x0)<(x
2 0
x 0 )max
1 22
零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点.
我们一般可对零点“设而不求”,通过一种整体的代换和过渡,再结合其他条件,从而最终解决问题.我们
称这类问题为“隐零点”问题.处理此类问题的策略可考虑“函数零点存在定理”、“构造函数”、利用“函
数方程思想”转化等,从操作步骤看,可遵循如下处理方法:
当 x 0,1 ,(x) 0 ,即(x) 在区间 0,1 为增函数,
2021年高考数学 虚设零点法解决隐零点问题
解析:(1)因为
f
( x)
ln x x2
,当 0
x
1 时,
f
( x)
0 ,当
x
1时,
f
( x)
0 ,所以函数
f
(x)
在 0,1上
单调递增,在 1, 上单调递减,故函数 f (x) 的极大值点为 x 1 ,所以1 a, a 1,故所求的实数 a 的取值
范围是 0,1;
(2)方程 f (x) x2 2x k 有实数解,即 f (x) - x2 2x k 有实数解,
当 x∈(0,x0)时,f′(x)<0; 当 x∈(x0,+∞)时,f′(x)>0. 所 以 f(x)在 (0, x0) 上 单调 递 减, 在(x0, +∞) 上 单调 递 增, 当 且仅 当 x= x0 时 , f(x)取 得最 小 值, 最 小值 为
f(x0)= e2x0 a ln x0 .
因为 2e2x0 - a 0 ,所以 e2x0 a ,即 f(x0)= a +2ax0+aln2≥2a+aln2(当且仅当 x0=1时等号成立).
x0
2 x0
2x0
a
a
2
所以当 a>0 时,f(x)≥2a+aln2. a
点评:本题第(2)问的解题思路是求函数 f(x)的最小值,因此需要求 f′(x)=0 的根,但是 f′(x)=2e2x-a=0 的根无法 x
2. “虚设零点法”:基本解决思路是:形式上虚设,运算上代换,数值上估算,策略上等价转化,方法上分离函 数(参数),技巧上反客为主.
设 g(x) f (x)ຫໍສະໝຸດ x22x,则
g
(
x)
2(1
x)
ln x x2
2x2 (1 x) ln x x2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】(Ⅰ)0;(Ⅱ)见解析.
【解析】(Ⅰ)解:因为 f (x) ex+m x3 , 所以 f (x) ex+m 3x2 .……………………………………………………………1 分
因为曲线 y f x 在点 0,f 0 处的切线斜率为1, 所以 f 0 em 1,解得 m 0 .…………………………………………………2 分
(Ⅱ)证法一:因为 f (x) ex+m x3 , g x ln x 1 2 ,
精品公众号:学起而飞
所以 f x g (x) x3 等价于 ex+m ln x 1 2 0 .
当 m 1时, ex+m ln x 1 2 ex1 ln x 1 2 .
要证 ex+m ln x 1 2 0 ,只需证明 ex1 ln(x 1) 2 0 .………………4 分
,解得: ,
由
,解得:
,
故 在 递减,在
递增;
2 由 1 知要使 存在最小值,
则且
,
精品公众号:学起而飞
令
,
,
则
在
递减,
又
,
,
故存在
使得
故在
递增,在
,
故
,
故
, 递减, ,
,
又
,
,
故
.
2.【广东省汕头市 2019 届高三上学期期末】已知函数
.
讨论 的单调性;
若 , 是 的两个极值点,证明:
.
【答案】(1)答案不唯一,具体见解析(2)见解析 【解析】
解问题决定,因此必要时尽可能缩小其范围;
第二步:以零点为分界点,说明导函数 f′(x)的正负,进而得到 f(x)的最值表达式;这里应注意,进行代
数式的替换过程中,尽可能将目标式变形为整式或分式,那么就需要尽可能将指、对数函数式用有理式替
换,这是能否继续深入的关键;
第三步:将零点方程适当变形,整体代入最值式子进行化简证明;有时候第一步中的零点范围还可以适当
精品公众号:学起而飞
零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点.
我们一般可对零点“设而不求”,通过一种整体的代换和过渡,再结合其他条件,从而最终解决问题.我们
称这类问题为“隐零点”问题.处理此类问题的策略可考虑“函数零点存在定理”、“构造函数”、利用“函
【典型例题】
类型一 挖掘“隐零点”,求参数的最值或取值范围
例 1.【浙江省杭州第十四中学 2019 届高三 12 月月考】设函数
,曲线 y=f(x)
在 x=1 处的切线与直线 y=3x 平行.
(1)判断函数 f(x)在区间 和
上的单调性,并说明理由;
(2)当
时,
恒成立,求 的取值范围.
【答案】(1)区间
1
令 f′(x)=0,可得 2x﹣2﹣lnx=0,记 t(x)=2x﹣2﹣lnx,则 t′(x)=2﹣ ,
x
1
1
1
令 t′(x)=0,解得:x= ,所以 t(x)在区间(0, )上单调递减,在( ,+∞)上单调递增,所以
2
2
2
1 t(x)min=t( 2 )=ln2﹣1<0,从而 t(x)=0 有解,即 f′(x)=0 存在两根 x0,x2,且不妨设 f′(x)在
.
即
.
令
,即
.
令
,
.
,
函数 在 内单调递减,
.
即
.
.
3.【东北师大附中、重庆一中、吉大附中、长春十一中等 2019 届高三联合模拟】已知函数
.
(1)若
,证明:
;
(2)若 只有一个极值点,求 的取值范围.
【答案】(1)详见解析;(2)
.
【解析】
(1)当
时,
等价于
,即
;
设函数
,则
,
当
时,
;当
所以 在
上单调递减,在
数方程思想”转化等,从操作步骤看,可遵循如下处理方法:
第一步:用零点存在性定理判定导函数零点的存在性,列出零点方程 f′(x0)=0,并结合 f(x)的单调性得 到零点的范围;这里应注意,确定隐性零点范围的方式是多种多样的,可以由零点的存在性定理确定,也
可以由函数的图象特征得到,甚至可以由题设直接得到,等等;至于隐性零点的范围精确到多少,由所求
处取得极大值,
即在
上有两个极值点.
综上, 只有一个极值点时, 的取值范围是
4. 已知函数 f (x) ex+m x3 , g x ln x 1 2 . (Ⅰ)若曲线 y f x 在点 0,f 0 处的切线斜率为1,求实数 m 的值;
(Ⅱ)当 m 1时,证明: f x g (x) x3 .
以下给出三种思路证明 ex1 ln(x 1) 2 0 .
思路 1:设 h x ex1 ln x 1 2 ,则 h x ex1 1 .
x 1
设
p x ex1
1 ,则 x 1
p
x
e
x 1
x
1
12
0.
所以函数 p x h x ex1 1 在 1,+ 上单调递增.…………………6 分
缩小.导函数零点虽然隐形,但只要抓住特征(零点方程),判断其范围(用零点存在性定理),最后整体代
入即可.
【提升训练】
1.【江西省九江市 2019 届高三一模】已知函数
.
1 试讨论函数 的单调性;
2 若函数 存在最小值
,求证:
.
【答案】(1)见解析;(2)见解析 【解析】
1
,
时,
在
恒成立,
故在
递增,
时,由
x
x
设(x) 2xe2x a ,(x) 2xe2x 4x 2 e2x ,
当 x 0,1 ,(x) 0 ,即(x) 在区间 0,1 为增函数,
(x) a, 2e2 a 又因为 a 0, 2e2 ,所以(0) a 0,(1) 2e2 a 0
由零点存在定理可知 f '(x) 在 0,1 的唯一零点为 x0
专题五 挖掘“隐零点”,破解导数压轴题
函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数 的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间—— 零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数 的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破 解导数压轴问题,例题说法,高效训练.
单调递增.
故
为 的最小值,
①若
时,由于
,故 只有一个零点,所以 时
,
因此 在
上单调递增,故 不存在极值;
②若
时,由于
,即
,所以
,
因此 在
上单调递增,故 不存在极值;
③若
时,
,即
.
又
,且
,
而由(1)知
,所以
,
取 c 满足
,则
故在
有唯一一个零点 ,在
有唯一一个零点 ;
且当
时
,当
时,
,当
时,
由于
,故 在
处取得极小值,在
,
.
令
则
, 的对称轴为 ,
.
时,
,函数 在
当
时,
,可得
上是增函数;
,
,函数 在
上是增函数;
当 时, ,由
,解得
,
.
在
,
上,
,
,函数 是增函数;
在
,
,
,函数 是减函数.
综上可得:在
,
上,函数 是增函数;
在
,函数 是减函数.
证明:假设
,由 , 是函数 的极值点,则 , 是
的两个实数根,
,
,.
精品公众号:学起而飞
所以当 x x0 时, h x 取得最小值 h x0 .………………………………………10 分
所以 h x
h x0
=
ex0 1
ln x0
1 2
1 x0
1
x0
1
2
0.
综上可知,当 m 1时, f x g (x) x3 . ……………………………………12 分
思路 2:先证明 ex1 x 2 x R .……………………………………………5 分
设 h x ex1 x 2 ,则 h x ex+1 1.
因为当 x 1时, h x 0 ,当 x 1 时, h x 0 ,
所以当 x 1时,函数 h x 单调递减,当 x 1 时,函数 h x 单调递增.
所以 h x h1 0 .
所以 ex1 x 2 (当且仅当 x 1 时取等号).…………………………………7 分 所以要证明 ex1 ln(x 1) 2 0 ,
当 x (0, x0 ) 时, f '(x) 0 ,当 x x0 ,1 , f '(x) 0
故 f (x) 在 (0, x0 ) 单调递减,在 x0 ,1 单调递增,
所以当 x x0 时, f (x) 取得最小值,最小值为 f (x0 ) e2x0 a ln x0 ,
由 2x0e2x0
(1)求 a;
(2)证明:f(x)存在唯一的极大值点 x0,且 e﹣2<f(x0)<2﹣2.
精品公众号:学起而飞
【答案】(1)1;(2)见解析. 【解析】(1)因为 f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则 f(x)≥0 等价于