工程材料学第十章铸造
铸造基础知识ppt课件
李静 刘波
. © ABB Group April 15, 2020 | Slide 1
Content
. © ABB Group April 15, 2020 | Slide 2
基本概念
什么是铸造?
用液态合金形成产品的方法,将液态合金注入铸型中 使之冷却、凝固,这种制作金属制品的过程称为铸造生产, 简称铸造,所铸出的金属制品称为铸件。
. © ABB Group April 15, 2020 | Slide 3
基本概念---铸造分类
按材料分类:铸铁、铸钢和铸造有色合金
铸铁分类:灰铸铁、球墨铸铁、蠕墨铸铁、可锻铸铁、特种性能铸铁 (抗磨、冷硬、耐热、耐蚀铸铁)
按造型方法分类:砂型铸造和特种铸造
①普通砂型铸造,包括湿砂型、无机化学粘结剂砂型和有机化学粘结 剂砂型
这是一种有某些特性的铸铁,根据用途的不同,可分为耐磨铸铁、耐热铸 铁、耐蚀铸铁等。大都属于合金铸铁,在机械制造上应用较广泛
基本概念---灰铸铁&球墨铸铁
灰铸铁
球墨铸铁
典型石墨形状
片状
球状
牌号意义
HT250(HT100-350)
QT450-10(QT400~QT800)
性能
1、良好的减振性 2、良好的切削加工性 3、良好的耐磨性能和缺口敏感性 4、具有一定的机械性能,尤其是 抗压强度比较高 5、优良的铸造性能 6、成本较低
. © ABB Group April 15, 2020 | Slide 21
生产工艺---造型& 合箱
. © ABB Group April 15, 2020 | Slide 22
生产工艺---砂型分类
1
铸造的知识点总结
铸造的知识点总结一、铸造工艺流程1.原料处理铸造的原料通常是金属或合金,其常见的形式包括块状、颗粒状或粉末状。
在进行铸造之前,首先需要对原料进行处理,以确保其化学成分和物理性能的满足要求。
原料处理的过程通常包括熔炼、合金化、脱气和除渣等步骤。
2.模具制备模具是铸造工艺中不可或缺的一环,它可以决定最终产品的形状和尺寸。
根据模具的不同制备材料和制造工艺,可以将铸造分为砂型铸造、金属型铸造、压铸等多种类型。
不同类型的模具具有不同的特点和适用范围,选用合适的模具对于保证铸造质量至关重要。
3.浇注浇注是铸造过程中的核心环节,其目的是将熔融金属或其他材料注入到模具内部,以形成所需的产品形状。
在浇注过程中需要考虑浇注温度、压力、速度以及浇注口的设计等因素,以确保产品的内部结构和表面质量。
4.冷却、固化浇注完成后,熔融金属开始在模具内逐渐冷却,经过一段时间的固化后形成固态产品。
冷却和固化的速度和方式对于产品的性能具有重要影响,需要根据具体工艺要求进行控制。
5.清理、整理在产品冷却固化完成后,需要将铸件从模具中取出,并进行清理和整理。
通常需要去除浇口、毛刺和气孔等缺陷,以及进行表面处理、热处理等工艺,以提高产品的外观和性能。
6.质量检测最后,铸造产品需要进行质量检测,以确认其各项性能指标是否满足设计要求。
质量检测的内容包括金相组织分析、力学性能测试、化学成分分析、缺陷检测等多个方面,以确保产品的质量和可靠性。
二、铸造材料1.金属材料铸造最常用的材料是金属或合金,常见的铸造金属包括铁、钢、铝、铜、锌等。
每种金属材料都具有特定的物理性能、化学成分和工艺特性,适用于不同的工程应用领域。
2.非金属材料除金属材料外,铸造也可以使用一些非金属材料,如陶瓷、塑料、混凝土等。
这些非金属材料通常用于制造复合材料、绝缘材料、建筑材料等产品,具有更广泛的应用领域。
三、模具设计1.模具结构模具的结构设计直接影响着铸造产品的形状和尺寸精度。
铸造ppt
熔模铸造:
定义:在易熔模样(简称熔模)的表面包覆多层耐火
材料,然后将模样熔去,制成无分型面的型壳,经焙烧、 烧注而获得铸件的方法称为熔模铸造。
工艺过程:a) 压型
结壳脱模
e) 浇铸
b) 压制蜡模 c) 焊蜡模组 f) 带有浇铸系统的铸件
d)
a)
b)
c) d) 熔模铸造工艺过程
机器造型采用模板两箱造型。模板上安装模样、浇
注系统、并以分型面为界,分上、下两块,分别在两台 配对的造型机上造型。 紧砂方法 机械造型大都以压缩空气为动力来紧实型砂。
压实、振实、振压和抛砂。
3、造型、造芯及合箱 放置模样、填充、紧实型砂、起模、造出浇冒口和 通气口、合箱。最关键部分是起模。 起模方法: 顶箱起模:结构简单,
生产率低,劳动强度大,铸件尺寸精度和表面质量差,
特大型铸件只能采用手工造型。 1)整模造型 采用整体模样造型的方法。
整模造型过程 适用于最大截面在一端且为平面的铸件
1)分模造型 模样在最大截面处分为两半,分别处于上、下砂型内的造 型 方法称为分模造型。
分模造型过程 适用于最大截面在中间的铸件
2 、机器造型 机器造型在于使紧砂和起模两个步骤采用全部或者部 分实现机械化。可大大提高生产率和铸件质量,改善工 人劳动条件,适用于中、小型铸件的批量生产。
强度高,内部耐磨性好,还可节约贵重金属。
4)离心铸件内表面粗糙,尺寸不易控制,需增大加工 余量来保证铸件质量,且不适宜易产生偏析的合金。
连续铸造:
定义:是指将熔融金属连续不断地浇注到被成为结晶
器的特殊容器中,凝固的铸件不断从结晶器的另一端被引 出,从而获得任意长度的等横截面铸件的铸造方法。
铸造初级知识点总结
铸造初级知识点总结一、铸造的基本原理铸造工艺是一种通过熔化金属,然后将熔融金属注入模具中,使其冷却凝固后获得所需铸件的工艺。
铸造的基本原理是将金属材料加热至其熔点以上,然后借助重力或压力,将熔融金属填充到模具中,并在一定时间内冷却凝固,最终获得成型铸件。
二、铸造的基本过程1.原料准备:铸造的原料为金属,通常为各种合金,并且需要进行严格的配料和熔炼,以保证所得的金属合金符合工艺要求。
2.模具准备:模具是铸造的关键工具,其形状和尺寸决定着最终铸件的形态,模具通常由砂型、金属型等材料制成。
3.熔炼金属:将金属原料放入熔炼炉中进行加热,直至金属完全熔化为止。
4.填充模具:借助重力或压力,将熔融金属注入模具中,填满整个模具腔体。
5.冷却凝固:待金属在模具中冷却凝固后,取出模具,即可取得所需的铸件。
6.后处理:对铸件进行必要的处理,包括去除模具残余物、修磨表面、进行热处理等,以满足工程要求。
三、铸造的分类1.按照金属状态分:包括压铸、重力铸造等。
2.按照模具材料分:包括砂型铸造、金属型铸造等。
3.按照成型方式分:包括静压铸造、气压铸造等。
4.按照成型材料分:包括铸铁、铸钢、铸铝等。
四、铸造的优点和局限优点:1.批量生产:铸造可以实现大规模的批量生产,满足大规模产品的生产需求。
2.成本低廉:相对于其他加工工艺,铸造的成本较低,投资回报率高。
3.复杂形状:铸造可以轻松实现各种复杂形状的产品生产。
4.材料选择广泛:铸造可以用于各种金属和合金的加工,选择范围广泛。
5.循环再利用:废旧铸件可以进行回收,再利用,具有较好的环保性。
局限:1.尺寸精度:铸造的尺寸精度相对较低,难以满足一些高精度工程要求。
2.表面质量:铸造的表面质量一般较差,需要研磨和表面处理。
3.材料浪费:铸造需要一定的冶炼和浇注过程,存在一定的材料浪费。
4.成本高昂:对于小批量精密铸造来说,成本较高。
五、铸造的相关设备1.熔炼设备:包括电炉、煤气炉、电弧炉等。
工程材料学第10章工程材料的选用
陶瓷材料的选用
• 总结词:陶瓷材料具有高硬度、高耐磨性、高耐腐蚀性等特性,广泛应用于机械、化工、电子等领域。 • 详细描述:陶瓷材料如氧化铝、氮化硅等,具有优异的力学性能和化学稳定性,能够承受高温和高强度的环境。
在机械领域,陶瓷材料用于制造刀具、磨具、密封件等,具有高硬度和耐磨性,能够提高机械设备的效率和寿 命。在化工领域,陶瓷材料用于制造管道、阀门、反应器等,具有高耐腐蚀性和高温稳定性,能够保证化工生 产的稳定性和安全性。在电子领域,陶瓷材料用于制造电路基板、电容器、绝缘子等,具有优良的电气性能和 热稳定性,能够保证电子产品的可靠性和稳定性。
透光材料
选用高透光性能的材料,如光学玻璃、聚合物等, 用于制造眼镜片、镜头等。
滤光材料
选用具有特定光谱透射性能的材料,如红外截止 滤光片、紫外滤光片等。
反射材料
选用具有高反射性能的材料,如金属膜、铝膜等, 用于制造反射镜、凹面镜等。
05 工程材料选用的合材料
利用先进技术制备高性能复合材 料,提高材料的强度、刚度和耐 久性,满足高端装备和产品的需
04 功能材料的选用
电功能材料的选用
电绝缘材料
选用高绝缘性能的材料,如陶瓷、玻 璃、聚合物等,用于制造绝缘子、绝 缘套管、绝缘胶带等。
导电材料
选用高导电性能的材料,如铜、铝、 银等,用于制造电线、电缆、电极等。
压电材料
选用具有压电效应的材料,如石英、 锆钛酸铅等,用于制造压电器件。
热电材料
选用具有热电效应的材料,如碲化铋、 碲化铅等,用于制造热电器件。
复合材料的选用
• 总结词:复合材料是由两种或多种材料组成的新型材料,具有各组成材料的优 点,广泛应用于航空航天、汽车、建筑等领域。
铸造课件论述可编辑全文
浇不足
冷隔
夹砂
气孔
夹渣
充型能力的决定因数
合金的流动性 铸型性质 浇注条件 铸件结构等
合金的充型能力
测试合金充型 能力的方法:
如右图,将合 金液浇入铸型中, 冷凝后测出充满型 腔的式样长度。浇 出的试样越长,合 金的流动性越好, 合金充型能力越好.
几种不同合金流动性的比较
比较下面几种合金流动性能 *铸钢的流动性
裂纹
当热应力大到一定程度会导致出现裂纹。
热应力的形成过程演示
热应力的消除方法
铸件的结构:铸件各部分能自由收缩
铸件的结构尽可能对称 铸件的壁厚尽可能均匀
工艺方面:采用同时凝固原则 时效处理:人工时效;自然时效
铸件的变形原因
结论: 厚部、心部受拉应力, 出现内凹变形。 薄部、表面受压应力, 出现外凸变形。
铸件的结构
凡能增加金属流动阻力和冷却速度,降低流速的因素,均能降低金属的流动性。 如型腔过窄,浇注系统结构复杂,直浇道过低,内浇道截面太小,型砂水分 过多或透气性不好,铸型材料热导性过大等,都会降低金属的流动性。
铸件结构对充型能力的影响
折算厚度:
复杂程度:
折算厚度也叫当量厚度 或模数,是铸件体积与铸件 表面积之比。折算厚度越大, 热量散失越慢,充型能力就 越好。
孕育铸铁应用:一般用于动载荷较小、静载荷较大, 对强度、硬度、和耐磨性要求较高的重要铸件,尤 其是厚大铸件,如床身、凸轮轴、汽缸体等
灰铸铁的铸造性能:流动性好、 收缩小,铸造性能好, 具有自身补缩的能力。
铸造工艺特点:冲天炉熔炼(金属炉料、燃料、熔剂) 砂型铸造 常采用同时凝固原则,高强度采用顺序凝固
成本低,原材料来源广泛, 价格低廉,一般不需要昂 贵的设备
铸造成型上(工程材料课件)
而是在图中液固两相区中阴影区开始的。在此阴影区
内的固态合金已形成了完整的骨架,但晶粒之间还存 在少量液体,故强度塑性甚低。 热裂分为外裂和内裂。 大部分外裂用肉眼就能观察到,细小的外裂用 磁力探伤或其它方法才能发现。 内裂需要用X射线,射线或超声波探伤检查。
“厚短薄长”: 冷却到室温,粗厚部位比薄 细部位有短一些的趋势。
“向厚凹曲”: 若铸件刚性不足,产生变形 的方向,向厚的一侧凹曲。
“厚拉薄压”: 粗厚部位受拉应力,薄细部 位受压应力。
框形铸件变形
T形梁铸钢件变形
用反变形法防止箱体、床身导轨的变形。
箱体件反变 形量和方向
床身导轨的翘曲 变形及反变形
五、铸件中的气孔
气孔是气体在铸件中形成的孔洞,其内壁光滑、明亮或 带轻微氧化色。
侵 入 气 孔
第二节 砂型铸造
砂型铸造是应用最广泛的铸造方法
一、砂型铸造生产过程简介
套筒的砂型铸造过程:
(一)手工造型 ——单件、小批量生产 (二)机器造型 ——中、小件大批量生产
(三)机器造芯 ——中、小件大批量生产
铸造生产的成本低。
铸造生产的零件其尺寸、形状可以做到与
零件最接近,从而减少机械加工的切削量,节
约金属材料和加工工时。
铸造生产的缺点: 铸造生产的产品其机械性能较差。如铸钢 45的抗拉强度为580Mpa,而锻钢45的抗拉强 度为 610Mpa。 铸造生产的质量不稳定。生产过程工序多 工艺复杂,对工人的技术要求高。 铸造生产的零件表面质量不高尤其是砂型 铸造。 铸造生产的劳动强度大,生产环境差。
金属的补充,而将缩孔转移到冒口之中。
铸 钢 轮 缘 加 冒 口 补 贴
《工程材料学》习题
《工程材料学》习题《工程材料学》习题第一章概论一、解释名词晶体、金属键、离子键、分子键、共价键二、填空题 1、材料科学的任务是揭示材料的之间的相互关系及变化规律。
2、材料的性能主要包括两个方面。
3、晶体物质的基本特征是。
4、固体中的结合键可分为种,它们是、、、。
三、是非题1、晶体是较复杂的聚合体。
2、结构材料是指工程上要求机械性能的材料。
3、物质的状态反映了原子或分子之间的相互作用和它们的热运动。
4、比重较大的金属是黑色金属,比重较小的金属是有色金属。
四、综合分析题1、比较离子晶体与分子晶体的结构特征及性能特点。
2、比较金属材料、陶瓷材料、高分子材料和复合材料在结合键上的差别。
第二章金属的结构一、名词解释固溶强化弥散强化相金属化合物固溶体二、是非题1、金属化合物相与固溶体相的本质区别在于前者的硬度高、脆性大。
2、于溶质原子对位错运动具有阻碍作用,因此造成固溶体合金的强度、硬度提高。
3、固溶体的强度、硬度一定比溶剂金属的强度、硬度高。
三、选择题1、固溶体合金在结晶时a)不发生共晶转变b)要发生共晶转变c)必然有二次相析出 d)多数要发生共析转变 2、二元合金中,铸造性能最好的合金是:a)固溶体合金b)共晶合金c)共析合金d)包晶成分合金 3、同素异构转变伴随着体积的变化,其主要原因是: a)晶粒尺寸发生变化b)过冷度发生变化c)致密度发生变化d)晶粒长大速度发生变化 4、二元合金中,压力加工性能最好的合金是a)固溶体合金b)共晶合金c)共析合金d)包晶成分合金四、填空题1、强化金属材料的基本方法:、和。
合金的两大基本相是和,其本质区别是。
第三章金属的结晶一、解释名词疲劳强度、组织、过冷度、晶格、变质处理、晶体结构、晶体二、是非题1、金属结晶的必要条件是快冷。
2、细晶粒金属的强度高但塑性差。
3、凡是液体凝固成固体的过程都是结晶过程。
4、金属的晶界是面缺陷。
晶粒越细,晶界越多,金属的性能越差。
5、纯金属的实际结晶温度与其冷却速度有关。
铸造知识PPT课件
尺寸精度和表面粗糙度控制方法
尺寸精度控制方法
采用高精度的造型和制芯设备;加强模样和芯盒的制造精度 ;严格控制型砂和芯砂的性能等。
表面粗糙度控制方法
选用细粒度的型砂和芯砂;提高铸型的表面光洁度;优化浇 注系统设计,减少铁液对型壁的冲刷等。
05
特种铸造技术简介
压力铸造(压铸)
定义
压力铸造是利用高压将熔融金属压入金属模具中, 并在压力下快速凝固成型的铸造方法。
冷铁应用
02
在铸件厚大部位放置冷铁,以加快该部位的冷却速度,实现顺
序凝固,防止缩孔和裂纹缺陷。
其他辅助措施
03
根据铸件特点和生产要求,还可采用其他辅助措施,如设置出
气孔、加强型芯的固定和排气等。
04
常见铸造缺陷及防止措施
气孔、夹杂等内部缺陷产生原因及防止方法
气孔产生原因
型砂水分过多或过少;造型操作不当; 浇注系统设计不合理;熔炼过程控制不
准备原材料
选择符合要求的金属原材 料,并进行必要的预处理。
铸造工艺过程
熔炼金属
将金属原材料按照一定比 例配料,通过熔炼设备将 其熔化,获得符合要求的 液态金属。
制造模具
根据铸件的结构和尺寸, 设计并制造相应的模具, 包括型腔、型芯、浇口、 冒口等部分。
浇注
将液态金属倒入模具中, 注意控制浇注温度、速度 和压力等参数。
智能化生产
应用机器人、自动化生产线等智能化设备,实现铸造生产的自动化、 柔性化和智能化,提高生产效率和产品质量。
数字化检测
采用三维扫描、无损检测等数字化检测技术,实现铸件质量的快速、 准确检测,提高产品质量和生产效率。
绿色、环保、可持续发展理念在铸造中体现
材料成型工艺基础——铸造 ppt课件
ppt课件
18
ppt课件
19
2.机械应力(收缩应力)
上型
铸件的收缩受到铸型、型
芯、浇注系统的机械阻碍而
形成的内应力。
下型
退让性:铸件冷却收缩时铸型(型芯)可以稍微压缩的性能。
ppt课件
20
3. 铸件的变形与防止
ppt课件
21
防止变形的方法:
1)使铸件壁厚尽可能均匀或形状对称; 2)采用同时凝固的原则; 3)采用反变形法。 对某些重要的、精密的铸件必须采取去应力退火(人工时效、 热时效)或自然时效等方法,消除残余内应力;必要时可在 粗加工后进行去应力退火或人工时效,再进行精加工。
2.在生产中,为什么要选择共晶成分、近共晶 成分或凝固温度范围小的合金作为铸造合金?
ppt课件
26
10.2 砂型铸造
一、砂型铸造的生产过程
ppt课件
27
二、砂型铸造工艺过程
1.造型 1) 手工造型 2) 机器造型
3) 造芯 4) 涂料 5) 开设浇注系统 6) 合型 2.熔炼与浇注 3.落砂与清理
ppt课件
22
ppt课件
23
4. 铸件的裂纹与防止 (1) 热裂 热裂的特征是:裂纹短、缝隙宽、形状曲折、断面有严 重氧化、无金属光泽、裂纹沿晶界产生和发展等。
热裂的防止: 1) 应尽量选择凝固温度范围小、热裂倾向小的合金。 2) 应提高铸型和型芯的退让性,以减小机械应力。 3) 对于铸钢件和铸铁件,严格控制硫的含量,防止热脆性。
铸造缺点:组织晶粒粗大,实体内部常有气孔、缩孔、缩 松、砂眼,力学性能不如锻件;生产工序多,废品率高; 工作环境差,劳动强度大。
ppt课件
2
10.1 铸造成形理论基础
铸造基础知识
单件小批生产的重型铸件,手工造型仍是重要的方 法,手工造型能适应各种复杂的要求比较灵活,不 要求很多工艺装备。可以应用水玻璃砂型、VRH法 水玻璃砂型、有机酯水玻璃自硬砂型、粘土干型、 树脂自硬砂型及水泥砂型等;对于单件生产的重型 铸件,采用地坑造型法成本低,投产快。批量生产 或长期生产的定型产品采用多箱造型、劈箱造型法 比较适宜,虽然模具、砂箱等开始投资高,但可从 节约造型工时、提高产品质量方面得到补偿。 低压铸造、压铸、离心铸造等铸造方法,因设备 和模具的价格昂贵,所以只适合批量生产。
铸件 复杂 程度
生产成 本
适用范围
工艺特点
砂型铸造
各种材 质
几十 克~ 很大
差
简单
低
最常用的铸造方法 手工造型:单件、小批量 和难以使用造型机的形状 复杂的大型铸件 机械造型:适用于批量 生产的中、小铸件
手工:灵活、易行,但 效率低,劳动强度大, 尺寸精度和表面质量低 机械:尺寸精度和表面 质量高,但投资大
5、冷裂
6、缩裂
更多铸造缺陷及其防治参见铸造缺陷及其防
治 铸件的缺陷修复参见铸件缺陷修复 铸钢件补焊参见jbt5000.7铸钢件补焊
一般来讲,对于中、大型铸件,铸铁件可以用树脂 自硬砂型、铸钢件可以用水玻璃砂型来生产,可以 获得尺寸精确、表面光洁的铸件,但成本较高。 当然,砂型铸造生产的铸件精度、表面光洁度、 材质的密度和金相组织、机械性能等方面往往较差, 所以当铸件的这些性能要求更高时,应该采用其它 铸造方法,例如熔模(失腊)铸造、压铸、低压铸 造等等。
实例:汽车发动机曲轴、机床床身、飞机叶轮、 航天 器内精密复杂件等铸件。
铸造过程
1)造型和制芯直到装配,得到铸型 2)金属熔炼—得到成分、温度合格的金属 液 3)浇注,型腔内冷却凝固 4)清理,检验。得到不同形状、性能要求 的铸件。
铸造基本常识课件
2020/12/8
33
三、铸造合金的偏析和吸气性
1.偏析 铸件中出现化学成分不均匀的现象称为偏析。铸件的偏析可分为晶内偏析、区域偏析和体积质量偏析 三类。 (1)晶内偏析(又称枝晶偏析)是指晶粒内各部分化学成分不均匀的现 象,这种偏析出现在具有一定 凝固温度范围的合金铸件中。为防止和减少晶内偏析的产生,在生产中常采取缓慢冷却或孕育处理的 方 法。 (2)区域偏析是指铸件截面的整体上化学成分和组织的不均匀。避免区域偏析的发生,主要应该采取预 防措施,如控制浇注温度不要太高 ,采取快速冷却使偏析来不及发生,或采取工艺措施造成铸件断面 较低的温度梯度,使表层和中心部分接近同时凝固。 (3)比重偏析 铸件上、下部分化学成分不均匀的现象称为比重偏析。为防止 比重偏析,在浇注时应 充分搅拌金属液或加速合金液的冷却, 使液相和固相来不及分离,凝固即告结束。
2020/12/8
21
(3)中间凝固方式 大多数合金的凝固介于逐层凝固和糊状凝固之间,称为中间凝固方式。中碳钢、高锰钢、白口铸 铁等具有中间凝固方式。
图9-5 铸件的凝固方式
2020/12/8
22
2. 凝固方式的影响因素 (1)合金凝固温度范围的影响 合金的液相线和固相交叉在一起,或间距很小,则金属趋于逐层凝固;如两条相线之 间的距离很大,则趋于糊状凝固;如两条相线间距离较小,则趋于中间凝固方式。 (2)铸件温度梯度的影响 增大温度梯度,可以使合金的凝固方式向逐层凝固转化;反之,铸件的凝固方式向糊 状凝固转化。
缺点或者说适用范围有: 1、从尺寸大小看,不适宜做大型铸件。迪砂虽然不断地扩大可造型尺寸范围,但最大也就 850*1200*675。 2、砂芯太复杂的铸件操作不便,如汽缸体等,不如水平造型下芯方便。 3、砂芯较大的铸件不宜采用,如变速箱壳体。 4、拔模太深,即使在中间分型也不能应用,给春兰做的偏心轴基本已到极限。 5、需要放置冷铁的砂型也不宜采用。
《铸造基础知识》课件
铸造工艺能够生产出形状复杂 的零件,且具有节约金属材料 、生产成本较低等优点。
02 铸造材料
铸造用金属材料
01
02
03
铸钢
用于生产承受较大载荷和 要求高强度、高耐磨性的 机械零件,如齿轮、曲轴 等。
铸铁
具有良好的铸造性能、减 震性能和耐磨性能,广泛 应用于制造各种铸件,如 汽缸体、底座等。
铝合金
流程
主要包括造型、制芯、熔炼、浇注 、冷却和落砂等步骤。
特种铸造
定义
特种铸造是一种采用特殊工艺和 材料的铸造方法,如消失模铸造
、金属型铸造、压力铸造等。
特点
特种铸造能够提高铸件质量、减 少废品率、提高生产效率,适用 于生产复杂、高精度和高质量的
铸件。
流程
各种特种铸造工艺的流程略有不 同,但通常包括模具设计、材料
质量轻、耐腐蚀、导热性 好,常用于制造轻量化要 求的零件,如汽车发动机 缸体、缸盖等。
铸造用非金属材料
树脂砂
以树脂为粘结剂的型砂,具有较高的强度和耐热 性,主要用于生产复杂形状的铸件。
陶瓷砂
具有高强度、高硬度和耐高温特性,适用于生产 耐磨、耐腐蚀的铸件,如轴承、密封件等。
石墨
具有良好的耐高温、耐腐蚀和润滑性能,常用于 生产高温、高压环境下工作的铸件。
《铸造基础知识》ppt课件
目录
• 铸造简介 • 铸造材料 • 铸造工艺 • 铸造缺陷与质量控制 • 铸造技术的发展趋势与展望
01 铸造简介
铸造的定义
01
铸造是一种通过将液态金属倒入 模具中,待其冷却凝固后形成固 态零件的工艺。
02
铸造工艺广泛应用于机械、汽车 、航空、船舶、轻工等工业领域 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二) 铸造合金的收缩
铸造合金从液态冷却到室温的过程中,其体积和尺寸缩减的现象 称为收缩。它主要包括以下三个阶段: 1.液态收缩 金属在液态时由于温度降低而发生的体积收缩。 2.凝固收缩 熔融金属在凝固阶段的体积收缩。液态收缩和凝固收 缩是铸件产生缩孔和缩松的基本原因。 3.固态收缩 金属在固态时由于温度降低而发生的体积收缩。固态 收缩对铸件的形状和尺寸精度影响很大,是铸造应力、变形和裂 纹等缺陷产生的基本原因。
(3)中间凝固方式 大多数合金的凝固介于逐层凝固和糊状凝固之间,称为中间凝固方 式。中碳钢、高锰钢、白口铸铁等具有中间凝固方式。
图9-5 铸件的凝固方式
2. 凝固方式的影响因素 (1)合金凝固温度范围的影响 合金的液相线和固相交叉在一起,或间距很小,则金属趋于
逐层凝固;如两条相线之间的距离很大,则趋于糊状凝固; 如两条相线间距离较小,则趋于中间凝固方式。
(三) 影响合金收缩的因素 1. 化学成分 不同成分的合金其收缩率一般也不相同。在常用铸造合 金中铸刚的收缩最大,灰铸铁最小。 2. 浇注温度 合金浇注温度越高,过热度越大,液体收缩越大。 3. 铸件结构与铸型条件 铸件冷却收缩时,因其形状、尺寸的不同, 各部分的冷却速度不同,导致收缩不一致,且互相阻碍,又加之铸 型和型芯对铸件收缩的阻力,故铸件的实际收缩率总是小于其自由 收缩率。这种阻力越大,铸件的实际收缩率就越小。
(2)缩松的形成 宏观缩松多分布在铸件最后凝固的部位,显微缩松则是存在于在晶 粒之间的微小孔洞,形成缩松的主要原因也是液态收缩和凝固收缩 所致。缩松形成过程见图10-5。
图10-5 缩松形成过程示意图
(3)缩孔、缩松的防止措施 a)采用定向凝固的原则 所谓定向凝固,是使铸件按规定方向从一 部分到另一部分逐渐凝固的过程。冒口和冷铁的合理使用,可造成 铸件的定向凝固,有效地消除缩孔、缩松。定向凝固原则见图10-7 。
(四)收缩对铸件质量的影响 1. 缩孔和缩松 (1)缩孔的形成 缩孔总是出现在铸件上部或最后凝固的部位,其外形特征是: 内表面粗糙,形状不规则,多近于倒圆锥形。通常缩孔隐藏于 铸件的内部,有时经切削加工才能暴露出来。缩孔形成的主要 原因是液态收缩和凝固收缩。缩孔形成过程见图10-4。
图10-4 缩孔形成过程示意图
图10-1
2. 流动性的影响因素 1)合金的种类 不同种类的合金,具有不同的螺旋线长度,即具有 不同的流动性。其中灰铸铁的流动性最好,硅黄铜、铝硅合金次之 ,而铸钢的流动性最差。
2)化学成分和结晶特征 纯金属和共晶成分的合金,凝固是由铸件壁 表面向中心逐渐推进,凝固后的表面比较光滑,对未凝固液体的流 动阻力较小,所以流动性好,见图10-2a。 在一定凝固温度范围内结 晶的亚共晶合金,凝固时铸件内存在一个较宽的既有液体又有树枝 状晶体的两相区。凝固温度范围越宽,则枝状晶越发达,对金属流 动的阻力越大,金属的流动性就越差,见图10-2b。
第九章 铸 造
引言 第一节 铸造成型理论基础 第二节砂型铸造 第三节特种铸造 第四节常用合金铸造生产特点 第五节 现代铸造技术与发展趋势
引言
1、何为铸造?熔炼金属,制造铸型,并将熔融金属浇入铸型,凝 固后获得一定形状和性能铸件的成形方法,称点
优点: 1)可以生产出形状复杂,特别是具有复杂内腔的零件毛坯,如各 种箱体、床身、机架等。 2)铸造生产的适应性广,工艺灵活性大。工业上常用的金属材料 均可用来进行铸造,铸件的重量可由几克到几百吨,壁厚可由 0.5mm到1m左右。 3)铸造用原材料大都来源广泛,价格低廉,并可直接利用废机件 ,故铸件成本较低。
金的流动性是金属本身的属性,不随外界条件的改变而变化,而合
金的充型能力不仅和金属的流动性相关,而且也受外界因素的影响 。
2. 充型能力的影响因素 1)铸型填充条件 a)铸型的蓄热能力 即铸型从金属液中吸收和储存热量的能力。铸型 的热导率和质量热容越大,对液态合金的激冷作用越强,合金的充 型能力就越差。
缺点: 1)铸造组织疏松、晶粒粗大,内部易产生缩孔、缩松、气孔等缺 陷,因此,铸件的力学性能,特别是冲击韧度低于同种材料的锻件 。 2)铸件质量不够稳定。
铸造产品
第一节 铸造成型理论基础
一、流动性和充型能力 二、合金的凝固与收缩 三、铸造内应力及变形、开裂
一、流动性和充型能力
(一)合金的流动性 1. 流动性 流动性是指熔融金属的流动能力。 合金流动性的好坏,通常以“螺旋形流动性试样”的长度来衡量, 将金属液体浇入螺旋形试样铸型中,在相同的浇注条件下,合金的 流动性愈好,所浇出的试样愈长。
b)铸型温度 提高铸型温度,可以降低铸型和金属液之间的温差, 进而减缓了冷却速度,可提高合金液的充型能力。
c)铸型中的气体 铸型中气体越多,合金的充型能力就越差。
二 合金的凝固与收缩
(一)铸件的凝固方式及影响因素 1. 铸件的凝固方式 (1)逐层凝固方式 合金在凝固过程中其断面上固相和液相由一条界线清楚地分开,这 种凝固方式称为逐层凝固。常见合金如灰铸铁、低碳钢、工业纯铜 、工业纯铝、共晶铝硅合金及某些黄铜都属于逐层凝固的合金。 (2)糊状凝固方式 合金在凝固过程中先呈糊状而后凝固,这种凝固方式称为糊状凝固 。球墨铸铁、高碳钢、锡青铜和某些黄铜等都是糊状凝固的合金。
图10-2 不同结晶特征的合金的流动性
铁碳合金的流动性与相图的关系见图10-3。图中表明,纯铁和共 晶铸铁的流动性最好,亚共晶铸铁和碳素钢随凝固温度范围的增 加,其流动性变差。
图10-3 铁碳合金的流动性与相图的关系
(二)合金的充型能力
1. 充型能力 考虑铸型及工艺因素影响的熔融金属流动性叫合金的充型能力。合
图10-7 定向凝固原则
b)合理确定铸件的浇注位置、内浇道位置及浇注工艺 浇 注位置的选择应服从定向凝固原则;内浇道应开设在铸件 的厚壁处或靠近冒口;要合理选择浇注温度和浇注速度, 在不增加其它缺陷的前提下,应尽量降低浇注温度和浇注 速度。