第一章 张量分析(书籍附,详尽易懂)
第一章 张量分析初步

eijk eijk 6
证明见例题
eijk与ij间的关系
由排列符号的性质 : ei e j eijk ek
ei e j • ek eijk
由于ei e j • ek表示的是混合积,其物理意义是单位立方体的体积.
另外,由矢量分析知, 平行六面体的体积可以表示成其三个棱的行
i e1, j e2, k e3
X1
X3 P(x1, x2, x3)
O
X2
➢ 再对上述代换结果进行简写P点改写为: P(x1,x2,x3)P(xi, i=1,2,3)P(xi)
➢ 基向量:ei, i=1,2,3 ei ➢ 则称上述字母i为指标,i的取值i=1,2,3为指标i的取值
列式形式.
eeij
(i1, ( j1
i2,i3 , j2,
)
j3
)
ek (k1,k 2 ,k3)
ei,ej,ek为3个单位基向量, i,j,k互不相等。
i1 i2 i3 ei e j • ek j1 j2 j3 eijk
k1 k2 k3
a13 x3 a23 x3
b1 b2
a31x1 a32 x2 a33 x3 b3
如何用一个最简单 的式子来表示?
用矩阵? 还有更简单的表示方法吗? 可总结为:aij x j bi
aij, xj, bi是些什么量?
§1.1 指标记号及两个特殊符号
两种方式:
将左式展开,再给定每一个i值,求左右是否相等;
只有当i=j时ij才不等于“0”,
∴
a j ij ai ii ( ii不求和) ai
张量分析(1)

x2
' x2
e2'
e2 e ' 1
' x1
e1 x1
x1
x2
' x2
' x1
x2
' x2 e2'
e 2 e1'
' x1
e1 x1
x1
令:αi' j cos(ei' ,e j )
( i' , j 1,2 )
则: αi' j
cos(e1' , e1 ) cos(e1' , e2 ) cos sin cos( e , e ) cos( e , e ) ' ' sin cos 1 2 2 2
A B ( Aij Bij )ei e j Tijei e j Τ
符合 φ ijklei e j ek el ,为一新张量
另证:
Ai ' j ' i 'i j ' j Aij Bi ' j ' i 'i j ' j Bij
Ai ' j ' Bi ' j ' i 'i j ' j ( Aij Bij )
xi xi , j ij x j aii jk a jk
三.Ricci 符号
定义:
ei j k
1 1 0
ei j k
即:
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0
最新第1章-张量分析(清华大学张量分析-你值得拥有)PPT课件

1 、g
2
P
其中 g 1 、g 2 不一定是单位矢量。
矢量 P 可表示为:
P P1 g1 P 2 g2
2
P g P g 1
斜角直线坐标系的基矢量与矢量分量
➢ 平面内斜角直线坐标系的协变基矢量和逆变基矢量
P P g :哑指标
x2
( x 1 , x 2 ) Einstein求和约定
r
g2
如何计算 u(vw)?
vw
观察右图,可知 vw正交于
u
v 、w 构成的平面,而 u(vw)
w
正交于 vw,因此,u(vw)
一定在 v 、w 构成的平面
v
u (v w) v w
u(vw)
(u w)v (u v)w (uv) w
数形结合
矢量及其代数运算
➢矢量的乘法 矢量的混合积
uv wuvw群u论的v轮w换次序不变性w
张
gij gi gj gij gi gj
量
可证明:
分 析
g ij g ji
gij g ji
的
称 g i j 为度量张量的协变分量
起
称 g i j 为度量张量的逆变分量
点
gi gij g j gi = g ij g j
协变基矢量在逆变基矢量下分解 逆变基矢量在协变基矢量下分解
斜角直线坐标系的基矢量与矢量分量
※ 根据几何图形直接确定
由对偶条件可知, g 1 与 g 2 、g 3 均正交,因此正交于 g 2 与 g 3 所
确定的平面;其模的大小等于
g1 1
g1 cos
g1 g1
2 g2
2
g3
斜角直线坐标系的基矢量与矢量分量
张量分析——初学者必看精选全文

§ A-1 指标符号 三、Kronecker-符号和置换符号(Ricci符号)
Ricci符号定义
偶次置换
1 若i, j, k 1,2,3, 2,3,1, 3,1,2 eijk 1 若i, j, k 3,2,1, 2,1,3, 1,3,2
0 若有两个或三个指标相等
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0
§A-4 张量的代数运算 三、矢量与张量的叉积
A 张量分析
右叉乘
T a (Tijeie j ) (akek ) Tij akeie jkrer e T jkr ij akeier B
§A-4 张量的代数运算
A 张量分析
四、两个张量的点积
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 2
坐标变换式 xi ii xi xi ii xi
ii cos(xi, xi ) ii cos(xi , xi )
§A-3 坐标变换与张量的定义 A 张量分析
[ii ], [ii ]
互逆、正交矩阵
ii ii
ij
1 0
0 1
基矢量变换式
ei iiei ei iiei
坐标变换系数
v 任意向量变换式 i vii i vii i
ip iq ir eijk epqr jp jq jr
kp kq kr
pk
eijk ekqr
iq jq
ir jr
iq jr ir jq
a11 a12 a13 A a21 a22 a23 a11a22a33 a12a23a31
a31 a32 a33 a13a21a32 a13a22a31 a12a21a33 a11a23a32 eijk a1ia2 j a3k eijk ai1a j2ak3
张量分析书籍附详尽易懂

n个
称为n维仿射空间。E n 中旳每一种元素称为点。
记:
o (0, ,0),
x (x1,, xn ) ,
(x1, , xn )
且分别称为放射空间旳原点、位置矢量和负矢量。
对于n维仿射空间,全部旳位置矢量构成一种集合:
V0 x (x1,, xn ) xi , xi F,1 i n
(1 t)(1,1) t(1,1) a t b
(1 2t,1 2t) a t b
当 t b 时:
(2t 1,2t 1) (1,1)
当 t a 时:
(2t 1,2t 1) (1,1)
由此可得 a 0 ,b 1 。显然 r1 等 r2 价。
r1 与 r5 : (取 s b5 b1 )
域上旳矢量空间。且仍记为V0 。
数域上旳矢量空间V0 具有如下性质:x, y, z V0 ,、 F
(1)
x yyx
(2)
(x y) z x ( y z)
(3)V0中存在称为有关加法旳单位元素o,使得:
xo x
x V0
(4)V0中每一种元素x都存在唯一旳(-x ),使得:
x (x) o
当t=b时:位置矢量标
定b点。即:
S
(4b 2,3 2b) (2,1)
由此拟定b=1 。
x2
当t=a时:位置矢量标
3
2
定a点。即:
1
(4a 2,3 2a) (1,1.5 )
由此拟定a=0.75 。
图中画出了计算成果 。
x2 3
2 u ab
1
2 (a)
u xy
x1
4
6
u xy u ab
1
2
。 Vx空间中旳矢量称为约束矢量。
最新张量分析第一章ppt课件

0,当 i , j , k 中有取值相同者.
1
1
3
2
3
2
偶排列
奇排列
21
矢量叉积 a b ( a 2 b 3 a 3 b 2 ) e 1 ( a 1 b 2 a 2 b 1 ) e 3 ( a 3 b 1 a 1 b 3 ) e 2 用置换符号可写成
a b c ( ijka jb k ) ( c i)
23
1.2 恒等式 ijk istjs kt jt ks
第一种证明:
11 12 13 1 0 0
1r 1s 1t
I 21 22 23 0 1 0 1 rst I 2r 2s 2t rst
31 32 33 0 0 1
3r 3s 3t
ir is it ijkrst jr js jt
a b abco s
点积满足
abba
a ( b c ) a b a c
11
(5)矢量的叉积
e1 e2 e3 aba1 a2 a3
b1 b2 b3
(a2b3a3b2)e1(a1b2a2b1)e3(a3b1a1b3)e2
注意:
a b b a
axb
O
b
a -axb
12
质量守恒,动量守恒,能量守恒,热力学基本定律 3)连续介质的本构方程
描述各种连续介质模型对外部作用的响应;
3
第一章 连续介质力学的数学基础
重点掌握: 1. 张量的概念 满足坐标变换规律 运算法则 2 .证明一些恒等式 3 .梯度,散度,旋度等概念
7
第一章 连续介质力学的数学基础
1.1 矢量
1.1.1矢量的概念
在三维欧几里得空间内, 具有大小和方向 的有向 线段.
张量分析 陈国荣 徐芝纶

8
gi j ,k k ( gi g j ) k gi g j k g j gi
g j k ,i i ( g j gk ) i g j gk i gk g j
(a) (b) (c)
gk i, j j ( gk gi ) j gk gi j gi gk
2
g i j 称为度量张量
r r ds dr.dr . dxi dxj gij dxi dxj xi x j
2
例1
求圆柱坐标系的自然基 gi 和度量张量g i j
空间任意点的向径为
r r cos e1 r sin e 2 ze 3 r g1 cos e1 sin e 2 r r g2 r sin e1 r cos e 2 r g3 e3 z
(b)+(c)-(a),并考虑到
k gi g j i gk g j
得到
1 i g j g k ( g j k ,i g k i , j g i j ,k ) 2
9
1 1 1 i j k [ ( g j k ,i g k i , j g i j ,k ) g j j ( )g jk ] xi g j j gii g j j g k k 2
张量分析第一章

主要掌握:应力张量,应力张量的对称性,变换规律,主应力,主 方向,剪应力,应力偏张量等
第三章 连续介质运动学
4
主要掌握:物质坐标与空间坐标,物质导数,随波导数,速度张 量,速度分解定理等.
第四章 连续介质力学基本定律
三大守恒定律:质量守恒,动量守恒,能量守恒,状态方程,熵 不等式,热力学两大定律.
间位置的变化及各邻近点距离的变化;研究随时间变化 的物理量的时间变化率. 2)连续介质满足的物理基本定律
质量守恒,动量守恒,能量守恒,热力学基本定律 3)连续介质的本构方程
描述各种连续介质模型对外部作用的响应;
3
课程内容
第一章 连续介质力学中的数学模型
主要掌握:张量的概念,张量的表示方法以及张量的运算规律等
O
b
a -axb
12
(6)并矢 定义 ab ai eibj ej ai bj eiej
展开共9项, ei e j 可视为并矢的基
ai bj 为并矢的分解系数或分量
13
1.1.3 Einstein求和约定
在同一项内的一个指标的重复,将表示对该指标 在它的范围上遍历求和.
自由指标:无重复出现的指标,取值域1,2,3(三维空间中) 哑标: 重复出现一次且仅重复一次的指标为求和指标或 为哑标.
ds2 dx2 dy2 dz2 dxidxi ijdxidx j
ij jk ik
aiij a j
xi x j
xi, j
ij
19
例: Aijbj
分量形式:
Ai1b1 Ai2b2 Ai3b3
uii
u11 u22 u33
k
1 2 3
张量分析-第1讲LJ

a2 F3 a3 F2 a c b1 a b c1 a3 F1 a1 F3 a c b2 a b c2 a1 F2 a2 F1 a c b3 a b c3
所以有: a b c a c b a b c
g1和g 2
g1和g 2 不是单位矢量,即它们有量纲的, 一般地说,
其长度也不为单位长度。此外它们也并不正交。 矢量F可以在 g1和g 2 上分解:
F F g1 F g 2
1 2
(平行四边形法则)
则有: F g 1 F 1g 1 g 1 F 2 g 2 g 1
F g 1 F 1g 1 g 1 F 2 g 2 g 1
e2 b2 c2
e3
e3 b3 b2 c3 b3 c2 e 1 b3 c1 b1c3 e 2 b1c2 b2 c1 e 3 c3
b3 a 2 F3 a3 F2 e 1 a3 F1 a1 F3 e 2 a1 F2 a 2 F1 e 3 F3
j 1
F2 ' e 2 ' e1 F1 e 2 ' e 2 F2 e 2 ' e 3 F3 2 ' j F j
j 1 3
3
F3' e 3' e1 F1 e 3' e 2 F2 e 3' e 3 F3 3' j F j
j 1
矢量场函数的散度: 矢量场函数的旋度:
i F x Fx j y Fy
Fx Fy Fz F z y x
k Fz Fy Fx Fz Fy Fx i k j y z y z z x x Fz
教材张量分析及场论

张量分析与场论 第一章 张量代数任何物理现象的发展都是按照自身的规律进行的,这是客观的存在,而不以人们的意志为转移。
但是,在研究、分析这些物理现象时,采用什么样的方法则是由人们的意志决定的。
无数事实证明,研究方法的选取与当时人们对客观事物的认识水平有关,而研究方法的好坏则直接关系到求解问题的繁简程度。
由于物理量的分量与坐标的选择有关,所以由物理量的分量表示的方程,其形式就必然与坐标系的选取有关。
在建立基本方程时,每选用一种坐标系都要作一些繁琐的推导。
张量分析能以简洁的表达式,清晰的推导过程,有效地描述复杂问题的本质,并突出现象的几何和物理特点。
张量分析成功应用的根本在于由它表示的方程具有坐标变换下不变的性质,即由张量表示的方程,其形式不随坐标的选择而变化。
第一章中将着重介绍直角坐标系中的张量代数,第二章介绍正交曲线坐标系的张量分析及场论,作为进一步的学习的基础,在第三章还对一般曲线坐标系中的张量做了简单的介绍。
1.1点积、矢量分量及记号ij δ我们在以前的学习中已熟悉了用箭头表示的矢量,如位移u ρ,力F ρ等。
这些量满足平行四边形运算的矢量加法法则,即设u ρ,v ρ为矢量,则v u w ρρρ+=的运算如右图所示。
在理论力学中我们还知道,如u ρ表示某一点的位移,F ρ表示作用在该点上的力,则该力对物体质点所做的功为 其中F ρ、|u ρ|分别表示矢量F ρ、u ρ的大小,θ表示矢量F ρ与矢量u ρ之间的夹角,这就定义了一种称为点积的运算。
点积的定义:设u ρ,v ρ为两个任意矢量,设|u ρ|,|v ρ|分别为其大小(也称为模)。
θ为这两个矢量之间的夹角,则u ρ与v ρ的点积为由点积定义可知,点积具有交换律,即u ρ•v ρ=v ρ•u ρ。
可以用几何的方法证明点积也具有分配率,即如w ρ=u ρ+v ρ,则或可写为如果0v u =⋅ρρ则称u ρ垂直于v ρ,记为u ρ⊥v ρ。
由点积的定义可知,2u u u ρρρ=⋅。
张量分析

附录弹性力学数学基础目录附录1 张量基础附录2 复变函数数学基础附录3 变分法概要§i1 张量1附录1 张量基础张量特征笛卡儿张量下标求和定约偏导数下标记法特殊张量张量——简化缩写记号表达物理量的集合显著优点——基本方程以及其数学推导简洁张量的特征——整体与描述坐标系无关分量需要通过适当的坐标系定义笛卡儿(Descartes)张量定义一般张量——曲线坐标系定义三维Descartes 坐标系中,一个含有3个与坐标相关独立变量集合,通常可以用一个下标表示。
位移分量u ,v ,w 缩写记为u i (i =1, 2, 3)表示为u 1, u 2, u 39个独立变量的集合,两个下标来表示s ij 和e ij ——9个应力分量或应变分量s ij,k——27个独立变量的集合用三个下标表示i ——下标求和定约张量表达式的某一项内的一个下标出现两次,则对此下标从1到3求和。
=A ji ij a ηζ=k k k a ζ∑=31∑∑ijjiij a ηζkk a ζ=哑标:出现两次的下标——求和后消失=A jij i y c x =32322212123132121111y c y c y c x y c y c y c x ++=++=自由标:非重复下标自由标个数表示张量表达式代表的方程数§i1 张量3偏导数的下标记法缩写张量对坐标x i 偏导数的表达式逗号约定逗号后面紧跟一个下标i 时,表示某物理量对x i 求偏导数。
)()(,iix ∂∂=利用偏导数下标记法,偏导数均可缩写为j i ji x u u ∂∂=,k ij k ij x ∂∂=e e ,k ij k ij x ∂∂=s s ,i iki u u ∂=,ij kl ij ∂=s s ,ij kl ij ∂=e e ,张量的偏导数集合仍然是张量证明:u i ,j 如果作坐标变换','j i u ∑∑∑∂∂==l j l k l k k i l x x u n ',')(∑=kj k k i u n ',')(∑∑∂∂=l j lklk k i x x u n ',')(''j i j i x n x =ij j in x x ''=∂∂∑∑=llj k i kl k j i n n u u '',','由此可证,u i , j 服从二阶张量的变换规律由于因此特殊的张量符号克罗内克尔(Kronecker Delta )记号d ijji j i ij ≠==1d 显然⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001333231232221131111d d d d d d d d d d ij 克罗内克尔记号是二阶张量运算规律i m im ii T T a a ===++=d d d d d d 3332211§i1 张量6置换符号e ijk有相等下标时的奇排列,,为,,的偶排列,,为,,032113211k j i k j i e ijk -=偶排列有序数组1,2,3逐次对换两个相邻的数字而得到的排列奇排列11213321132312231123-======e e e e e e二阶对称张量反对称张量ji ijT T=ji ijT T-=任意一个二阶张量,总是可以分解为一个对称张量和一个分对称张量之和。
附录:张量分析

ui ei (2)分解式记法: u=u1e1+u2e2+u3e3= i 1
分量和基矢量
(3)分量记法:
ui(i=1,2,3)的集合
张量是具有多个分量的复杂物理量,为表达简洁,需引入一些记号和约定
指标符号
指标符号: 对于一组性质相关的n个量用相同的字母加不同的指标符号来表示
举例——
◈
a的n个分量
∑:通过哑指标可把多个项缩写成一项,通过自由指标又把多个方程缩写成一个方程。
指标符号使书写简洁,但也必须小心,因为许多重要的含义往往只表现在指标的细微变化上。
§ A.2 符号δij与erst
本节介绍两个张量分析中的常用符号
一、符号δij ,称为“Kronecker delta” 【使重复下标求和约定更加方便】
内容梗概
【坐标变换揭示各类量的性质、张量方程的特点等】 求和约定: 多项简写 自由标: 多个方程简写 符号δij 符号erst
哑标
⇒
自由标
⇒
换标符δij
⇒ 排列符erst
张量分析引论
张量分析以简洁的表达形式和清晰的推导过程描述复杂问题,被近代力学文献和教科书普遍采用。 本附录着重介绍笛卡儿坐标系和正交曲线坐标系中的张量。
❷ 同一项中出现两对(或几对)的不同哑标,表示重复求和。(共九项求和)
❸ 若对在同项内出现两次以上的指标进行遍历求和,一般应加求和号,或者,在多余指标下加一横, 表示该指标不计指标数。如:
❹ 当自由指标在同项内出现两次时,应申明该指标不求和。 或者,在其中一个指标下加一横,表示该指标不求和。例如:s=aii原表示s=a11+a22+a33 , 但
§A.1
矢量和张量的记法,求和约定
张量分析01

附录I 张量分析近代力学在电子计算机的辅助下冲破了数学求解上的重重困难,取得了突飞猛进的发展,力求对复杂的物理现象和工程问题做出更为系统和真实的描述和研究。
张量分析能以简洁的表达形式和清晰的推导过程来有效地描述复杂问题的本质,已被近代力学文献和教科书普遍采用。
作为入门,此处着重介绍笛卡儿坐标系和正交曲线坐标系中的张量。
I.1 矢量和张量的记法,求和约定力学中常用的量可以分成三类:只有大小没有方向性的物理量称为标量。
例如温度T 、密度ρ、时间t 等。
既有大小又有方向性的物理量称为矢量,常用黑体(或加箭头)表示,为与课堂讲述一致,此处选择用上加箭头表示矢量。
例如矢径r 、位移u 、速度v 、力f 等。
具有多重方向性的更为复杂的物理量称为张量,常用黑体(或加下横)表示,为与课堂讲述一致,此处选择用下加横线表示矢量。
例如一点的应力状态要用应力张量来表示,它是具有二重方向性的二阶张量,记为σ。
矢量可以在参考坐标系中分解。
例如图1 中P 点的位移u 在笛卡儿坐标系()321,,x x x 中分解为∑==++=31332211i i i e u e u e u e u u (I.1)其中1u 、2u 、3u 是位移的三个分量,1e 、2e 、3e是沿坐标轴的三个单位基矢量。
由此引出矢量(可推广至张量)的三种记法: ( l )实体记法:把矢量或张量的整个物理实体用一个黑体字母或上加箭头来表示。
例如把位移记为u 。
( 2 )分解式记法:同时写出矢量或张量的分量和相应分解方向的基矢量。
例如用式(I.1)表示位移u 。
( 3 )分量记法:把矢量或张量用其全部分量的集合来表示,省略相应的基矢量。
例如用三个位移分量()3,2,1=i u i 的集合表示位移u 。
下面详细讨论后两种记法中广泛采用的指标符号。
对于一组性质相关的n 个量可以采用指标符号来表示。
例如,n 维空间中矢量a 的n 个分量1a ,2a ,…,n a 可缩写成()n i a i ,,2,1 =。
【张量分析ppt课件】张量分析课件第一章 线性空间-50页精选文档

(2)∵ x y z ( x 1 y 1 ) z 1 , , ( x n y n ) z n
( x 1 y 1 z 1 , ,x n y n z n )
x ( y z ) ( x 1 ( y 1 z 1 ) , , ( x n ( y n z n ))
( x 1 y 1 z 1 , ,x n y n z n )
∴ x + (y + z )= ( x + y )+ z = x + y + z (4)∵ o(0, ,0)V0 x o (x 1 0 , x n 0 )(x1, ,xn)
∴ xox
(5)∵ ()x ()(x 1 , ,xn) (()x 1 , ,()xn)
∴
(x 1 , ,xn) (x 1 ), ,)xn)
第一章 线性空间
若记实数集合为F,F中的元素记为a、b、c、…。
则加法法则将F中的任意两个元素 a, bF ; c F
+ (a, b)c
abc
乘法法则将F中的任意两个元素 a, bF ; c F
× (a, b)c
abc
显然具有加法法则和乘法则所确定的实数集中元
素间确定关系使得实数集构成一个空间。并记为:
所有以x点为起点的矢量按:
u x yu x z(y 1 x 1 , ,y n x n ) (z 1 x 1 , ,z n x n )
(y 1 ( x 1 ) (z 1 x 1 ) ,,(y n x n ) (z n x n ))
u xy (y1x1, ,ynxn) ((y1x1) ,,(ynxn)) F
a, b,xF
(6) (a b ) x a x b x
a, b,xF
张量分析答案完整版

= T J• T ii • 2
=
tr(T
•T
)
=T
•T
•G
•
T T = •m •a am
• •
JT 3
=T •T •T •G •
=T T T •m •p •a a mp
对于 S :
得证。
JT 1
=T jj
J• T
•2
= tr(T T
•TT) = TT
TT
•
•G
•
= T T J m •a • T •a m • 3
2δ
i j
[u
v
w
]
+
2δ
i j
[u
v
w]
[ = T⋅ii δ
i j
u
v
w ]=T⋅ii [u
v
w ]= φ1T [u
v
w ],命题得证。
(2)式左边
[ ] [ ] [ ] = T⋅ija jgi
T
a ⋅b
b
b
g
a
c cgc
+ adgd
T ⋅ijb jgi
T⋅ab cb g a + T⋅ija jgi
∂v m
'
∂x n '
−
∂vn' ∂x m'
∂xm = ∂xm'
∂x n ∂xn '
(
∂vm ∂xn
−
∂vn ∂x m
)
即T(m' .n' )
=
β m' m'
β n' n'
(
∂vm ∂xn
−
∂vn ∂x m
第1章 张量分析基础剖析

张量分析与连续介质力学教材:《The Mechanics and Thermodynamics of Continua》M.E. Gurtin, E. Fried, L. Anand. Cambridge University Press, 2010教学参考书:1、《An Introduction to Continuum Mechanics》, M.E. Gurtin, AcademicPress, 1981. (中译本:郭仲衡等译,连续介质力学引论,高等教育出版社,1992)2、《连续介质力学基础》,熊祝华等,湖南大学出版社,19973、《连续介质力学基础》,黄筑平,高等教育出版社,20034、《非线性连续介质力学》,匡正邦,上海交大出版社,2002x vy第一章张量分析基础第一节矢量和张量代数一、矢量代数本课程只在三维欧氏空间 内讨论连续介质力学的基础原理。
1、点——反应一定的空间位置,由x表示2、矢量——具有大小和方向且满足一定规则的空间实体,用v来表示。
(两点间的距离可由一矢量表示)(点x和矢量v之和是另一个点y)3、矢量的点积和叉积1)点积(θ为两个矢量间的夹角)u 表示矢量的大小,为一标量,有u u u ⋅=。
2)叉积w v u =⨯ (为一新的矢量)v u ⨯表示由u 和v 构成的平行四边形的面积。
θsin v u v u =⨯且u w ⊥,v w ⊥3)混合积()w v u ⨯⋅()w⋅表示由u,v和w三个矢量围成的体的体积。
vu⨯●如果该体的体积不为零,则称u,v和w线性无关。
●如果对于不为零的常数a,b,c,有:u cabv+w=+则称u,v和w线性相关。
不满足线性相关的矢量则是线性无关的。
4、矢量空间及其性质由欧氏空间ε中对应的点构成的矢量形成的空间称为矢量空间ν。
如果u,v和w是线性无关的,则{}wu,构成矢量空间ν的基,即ν中任一矢量v,都可以表示为:w v u γβα++=a1) 如果()0>⨯⋅w v u ,则基{}w v ,u,是正向的(右手法则)。
1第一章 笛卡尔张量

序言张量分析对于现在的力学专业学生以及力学相关问题的解决,是应该掌握的重要数学工具。
事实上,如果没有张量的知识,就无法学习连续介质力学基本理论和阅读相关专业的文献资料。
无庸讳言,张量概念非常抽象,相对来说比较难于学习和把握。
但是,只要克服张量学习过程中的畏难情绪,抓住张量概念的关键点,梳理张量分析的基本数学规则,结合一定的力学实例的张量描述,从而建立张量分析的概念和基本分析方法,就能够为运用张量分析解决实际问题奠定坚实基础。
张量概念最早是由高斯(Gauss)、黎曼(Riemann)、克里斯托夫(Christoffel)等人在十九世纪发展微分几何过程中引入的,是从线性空间推广到非线性空间的纯粹数学的演绎,由于自然科学发展水平的限制,这种具有根本性变革的数学工具长期被自然科学领域所忽略。
直到1915年,爱因斯坦获得格罗斯曼的协助,借助张量分析这一数学工具创立了伟大的广义相对论,才凸显了张量分析在描述具有协变性质物理规律的关键作用。
这个事实再次有力地向我们传达了数学和自然科学之间彼此的依存关系,即数学的规则被赋予了自然规律的意义后才成为有生命力的学问,而借助数学工具建立起的自然规律才能呈现自然科学的奥秘。
此后,张量分析迅速渗透到理论物理、现代微分几何、连续介质力学等学科领域中。
就力学专业的学生而言,学习和掌握张量分析,可以更加深刻地领会连续介质力学的概念和一般力学规律,充分锻炼我们的理性思维能力,提高分析问题和解决问题的能力和水平。
用代数方法和解析方法描述空间问题时,必须引进坐标系或建立坐标基矢量。
坐标系的引入为建立各种物理或几何规律带来了可能和极大的方便,同时也往往使问题复杂化。
可以设想,客观规律应该独立于坐标系,但客观规律的表达形式却严重依赖于所用的具体坐标系,使得客观规律本身的内在性质与建立在坐标系上的数学表达形式完全融为一体。
这样,一方面可能会因其数学的形式外壳而不易揭示问题的内在本质,另一方面,甚至对很多客观规律根本无法进行数学表述。
张量分析

第一篇 张量分析第一章 矢 量 §1—1 矢量表示法物理中的位移、速度、力都是矢量。
利用三维空间中的有向线段ν表示矢量是最直观的表示法,如图1-1所示。
有向线段的长度v 代表矢量的大小。
这种方法不依赖于坐标系的选择。
矢量的分量表示法是另一种表示方法,选定一个坐标系。
比如通常的正交直线坐标系,即卡氏坐标系,然后确定矢量对于该坐标系的分量(,,)x y z v v v ν(1-1a)这一有序数也可视作一个单行矩阵。
矢量也可以用基矢与其对应分量写成x y z iv jv kv ν=++ (1-1b)其中,,x y z iv jv kv 称为分矢量。
而i(1,0,0),j(0,1,0),k(0,0,1) (1-1c)是单位矢量,它们组成卡氏系中的一组基矢(称为标架)。
§1-2指标符号上面所述用分量(,,)x y z v v v 或用基矢量i,j,k 来表示矢量的方法,在推广到比三维更高的空间时就有困难了。
因此,发展了另一种记法。
把x 、y 、z 分别记为111,,x y z 这样,一个n 维空间的矢量(无法用直观图表示)用分量表示时为123(,,,...,)n v v v v ν= (1-2a)它可视为一个M 维的单行矩阵,且可写为{}i v ν= (1,2,3,...,)i n =同理,基矢i,j,k 可分别写为123,,e e e ,n 维空间的基矢i e (1,2,3,...,)i n =。
而与式(1-1b)对应的写法为112233n n e v e v e v e v ν=++++ (1-2b)相应的分矢量为11,,,i i e v e v ,其中1e =(0,…,0,1,0,…,0) (1-2c)↑ 顺序第i 个这里i 叫做v 的下标,也有记作jv (如本书第三章以后章节所出现)的,这时j 称为上标。
有些量比矢量更复杂,只用一个下(或上)指标还不够,还要采用更多的指标,比如,,,ij ij ijk A B C ,等等。
相对论2-1b 第一章 仿射空间中的张量分析 相对论课件

Tdx
2x x x
x x
T dx
T
dx
x x
T dx
2x x x
x x
T dx
左
x x
x x
T dx
右
x x
T dx
2x x x
x x
T dx
x x
x x
x x
2x
x x
x x
故
x x
x x
x x
2x x x
第一章 仿射空间中的张量分析
将物理规律表达为张量方程,使它在任何参考系下
具有相同的形式,从而满足广义相对性原理。
§1.1 n 维仿射空间中的张量
1.张量的定义
n 维空间中的任一点可用 n 个数构成的数组来描
述,即坐标
x (x1, x3,xn )
1,2,, n
同一点可用另一个参考系描述
x (x1, x3 ,xn )
则曲线上任一点的切矢定义为
A dx , d
• 令P,Q为曲线 x 上的两相邻点,其坐标分别
为 x ,x dx 则P点的切矢为 A (P) ,Q点的切矢
为 A (Q)
• 若P点的切矢移至Q点后与原Q点的切矢平行,则 该曲线就叫做测地线,即
A (P Q) || A (Q)
即A (Q) (1 f ()d) A (P Q)
又注意到T ;lim Q NhomakorabeaP
T
(Q)
T ( x
P
Q)
T (P Q) T (P) (P)T (P)dx
T ;
lim Q
P
T
(Q)
T
(
P)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u xy ( y1 x1 , , y n x n )
F ;
,
称为具有加法和乘法法则的实数集空间。
实数空间关于加法和乘法法则有如下性质:
(1) (2)
x y yx
x ( y z ) ( x y) z
x, y F
x, y, z F
(3) F中存在称为关于加法的单位元素0,使得:
x0 x
x ( x) 0
F中存在称为关于乘法的单位元素1,使得:
xF
1.1 矢量集合的运算
对实数域 F,定义n元有序组: ( x1 ,, xn ) x F ,, x ( x1 ,, xn ) ( x1 ,, xn ) 且当: ( x1 x1 ,, xn xn ) 必有: 由n元有序组构成的集合: En F F ( x1, xn ) xi F , xi , 1 i n
a4
-1
r1
r2 :(取 s b2 b1
)
-1
a5
-2
图1-2
与 r3 : (取 s (s , s ) ) a 3 b3 (1 t ) (a1 s ) t (b1 s ) a t b (1 t ) (2 s1 ,0 s 2 ) t (1 s1 ,2 s 2 ) a t b (1 t )( 2,2) t (4,4) a t b 2 s1 2 s 1 显然没有一组 , 的解满足: 1 s 4
xo x
x V0
(4)V0中每一个元素x都存在唯一的(-x ),使得:
( 5) ( 6) ( ) x x x ( x y) x y ( 7) (8) F存在称为关于数乘的单位元素1 ,使得:
1x x
x ( x ) o ( ) x ( x )
对任意给定的矢量 y V0 ,对不同的x所确定的 约束矢量空间 Vx,按平行性可确定一类约束矢 n y u E 量 x x y ∥ 。定义 空间中的每一点约束矢量, 对给定的 y V0 ,按有向直线段:
x x y ξ (1 t ) (o x ) t ( y x ) 0 t 1 , t F
( ( y1 x1 ), , ( y n x n ))
F
定义加法和数乘运算。显然所有以x为起点的矢量当 取 uxy为加法单位元素时,构成矢量空间 ,且记为Vx 。 Vx空间中的矢量称为约束矢量。 xy z (1 t ) x ty 0 t 1, t F 设 定义若存在非o的s位置矢量满足:
(7)∵ ∴ (8)∵
( x y) ( x1 y1 , xn yn ) ( x1 y1 , xn yn ) ( x y) x y
1 F 1x x
1x 1( x1 , x n )
证毕。 定义与 x 和 y 相关,且线性依赖参数 0≤t≤ 的矢量 z :
( x1 y1 z1 , , xn y n z n )
∴ (4)∵ ∴ (5)∵ ∴ (6)∵ ∴
x + ( y + z ) = ( x + y) + z = x + y + z x o ( x1 0, xn 0) ( x1 , , x n ) o (0, ,0) V0
并称定义了实数域上的加法运算和数乘运算的集合为实数 域上的矢量空间。且仍记为V0 。 数域上的矢量空间V0 具有如下性质:x, y, z V0 , 、 F x y yx ( 1) ( x y) z x ( y z ) ( 2) (3)V0中存在称为关于加法的单位元素o,使得:
z (1 t ) x ty
定义连接 x 、y 两点的直线段是满足:
xy z (1 t ) x t y
0 t 1 , t F
仿射空间点的集合。 x、y两点的直线段给出空间x点指向y点的矢量uxy。 uxy是 空间由x点指向y点的有向直线段。对于任意空间的点x, 所有以x点为起点的矢量按:
x V0
证: (1)∵ ∴ (2)∵
x y ( x1 y1 , , x n y n ) ( y1 x1 , , y n x n )
x y yx
x y z ( x1 y1 ) z1 , , ( xn y n ) z n ( x1 y1 z1 ,, xn yn zn ) x ( y z ) ( x1 ( y1 z1 ), , ( xn ( y n z n ))
由此确定a=0.75 。 图中画出了计算结果 。
图1-1
1.2 自由矢量
设 V0是实数域上的矢量空间,x是 V0中任一给定 的位置矢量。 Vx是所有起点在x点的约束矢量空 间。对 V0中的所有矢量,按(1.1-7)式的平行 性,在 Vx中有对应的矢量。若矢量
y V0 , x y ( x1 y1,, xn yn ) V0
确定的矢量 u x x y 所构成的一类矢量,称为矢量 y 的等价类。 V0 中所有矢量按(1.2-1)所构成 的等价类的集合称为自由矢量集合。记为 V0 。 应当注意的是自由矢量的集合中的一个元素是 一类按平行性等价的约束矢量,而不是一个矢 量。
r1 : (1 t) (2,0) t (1,2) 0 t 1 , t F
定义实数域上位置矢量的加法运算和数乘运算:
x y ( x1 y1, xn yn ) ( z1, zn ) z x, y,z V0 ; F x, y,z V0 ; F
x ( x1,, xn ) ( x1,, xn ) ( x1,, xn )
解:
ab (1 t ) ( x s ) ( y s ) a t b
(4t 2,3 2t ) a t b)
s b y (4, 0)
(2 (1 t ),3(1 t )) (2t , t ) a t b)
x F
(4) 存在唯一的元素,对每一个元素使得:
xF
( x) F
(5) (6) (7) (8)
(a b) x a (b x) ( a b) x a x b x
a ( x y) a x b x
1 x x
a , b , x F a , b , x F a , b , x , y F
张量分析
第一章 线性空间
若记实数集合为F,F中的元素记为a、b、c、…。 则加法法则将F中的任意两个元素 a , b F ; c F + ( a , b) c abc 乘法法则将F中的任意两个元素 a , b F ; c F ab c × ( a , b) c 显然具有加法法则和乘法则所确定的实数集中元 素间确定关系使得实数集构成一个空间。并记为:
r5 : (1 t ) (3,1) t (4,1) 0 t 1 , t F
a1 -2
4
r2 3 a 2 b1 r1 2 1来自b2 b3 r3 a3
b4 r4
1 2 3
b5 r5 4 x1
与 a 2 b2 (1 t ) (a 1 s ) t (b1 s ) a t b (1 t ) (2 1.65,2.3 0) t (1 1.65,2 2.3) a t b (0.35 t ,2.3 2t ) a t b (0.35 t ,2.3 2t ) (0.65,4.3) 当 t b 时: (0.35 t ,2.3 2t ) (0,3) 当 t a 时: b 1 。显然由(1.1-7)式可知 r1∥r2 ,但 由此可得 a 0.35 , 由(1.2-1)式可知 r1 和 r2 不等价(因为 a 0.35 0)。
例2:如图所示给定的5个矢量 r1、r2、r3、r4、r5 。 试确定其平行性和等价性。
x2
r2 : (1 t) (0,3) t (0.65,4.3) 0 t 1 , t F r3 : (1 t ) (2,2) t (4,4) 0 t 1 , t F r4 : (1 t ) (1,1) t (1,1) 0 t 1 , t F
1 n
F
n个
E n 中的每一个元素称为点。 称为n维仿射空间。 x ( x1 , , x n ) , ( x1 ,, xn ) o ( 0,, 0), 记: 且分别称为放射空间的原点、位置矢量和负矢量。 对于n维仿射空间,所有的位置矢量构成一个集合:
V0 x ( x1 ,, xn ) xi , xi F ,1 i n
则起点在x的矢量 ux x y Vx 可由有向线段: x x y ξ (1 t ) x t ( x y) 0 t 1 , t F 确定。而 y V0 矢量可由有向线段: o y z (1 t ) o t (o y) 0 t 1 , t F 确定。容易验证 x x y ξ (1 t ) (o x) t ( y x) 0 t 1 , t F 满足(1.1-7)式(取 a 0, b 1, x o, y y, s x )。 u x x y∥ y 因此 :
xo x
( ) x ( )( x1 ,, xn ) (( ) x1 ,,( ) xn ) ( x1 ,, xn ) ( x1 ),, ) xn ) ( ) x ( x )