自动控制原理第五章

合集下载

自动控制原理第五章

自动控制原理第五章

自动控制原理第五章为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的整体,这就是自动控制系统。

在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度、压力或飞行轨迹等;而控制装置则是对被控对象施加控制作用的相关机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。

折叠反馈控制系统在反馈控制系统中,控制装置对被控装置施加的控制作用,是取自被控量的反馈信息,用来不断修正被控量和控制量之间的偏差从而实现对被控量进行控制的任务,这就是反馈控制的原理。

下面是一个标准的反馈模型:开方:公式:X(n+1)=Xn+(A/Xn^2-Xn)1/3设A=5,开3次方5介于1^3至2^3之间(1的3次方=1,2的3次方=8)X_0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0都可以。

例如我们取2.0。

按照公式:第一步:X1={2.0+[5/(2.0^2-2.0)]1/3=1.7}。

即5/2×2=1.25,1.25-2=-0.75,-0.75×1/3=-0.25,输入值大于输出值,负反馈2-0.25=1.75,取2位数字,即1.7。

第二步:X2={1.7+[5/(1.7^2-1.7)]1/3=1.71}.。

即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,输入值小于输出值正反馈1.7+0.01=1.71。

取3位数字,比前面多取一位数字。

第三步:X3={1.71+[5/(1.71^2-1.71)]1/3=1.709} 输入值大于输出值,负反馈第四步:X4={1.709+[5/(1.709^2-1.709)]1/3=1.7099} 输入值小于输出值正反馈这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动减小;第二步,第四步输入值偏小,输出值自动增大。

自动控制原理--第五章-频率特性法

自动控制原理--第五章-频率特性法
2.频率特性反映系统本身性能,取决于系统结构、参数,与外 界因素无关。
3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
4.频率特性表征系统对不同频率正弦信号的跟踪能力,一般有 “低通滤波”与“相位滞后”作用。
2024年5月3日
2024年5月3日
若用一个复数G(jω)来表示,则有 G(jω)=∣G(jω)∣·ej∠G(jω)=A(ω)·ej 指数表示法
G(jω)=A(ω)∠ (ω) 幅角表示法
G(jω)就是频率特性通用的表示形式,是ω的函数。
当ω是一个特定的值时,可以 在复平面上用一个向量去表示G (jω)。向量的长度为A(ω),向量
频率特性的数学意义
频率特性是描述系统固有特性的数学模型,与微分方程、 传递函数之间可以相互转换。
微分方程
(以t为变量)
d s
dt
传递函数
(以s为变量)
s j 频率特性
(以ω为变量)
控制系统数学模型之间的转换关系
以上三种数学模型以不同的数学形式表达系统的运 动本质,并从不同的角度揭示出系统的内在规律,是经 典控制理论中最常用的数学模型。
R() A()cos()
I () A()sin()
2024年5月3日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
并且A(ω)与R(ω)为ω的偶函数, (ω)与I
(ω)是ω的奇函数。
2024年5月3日
三、频率特性的实验求取方法
css(t) =Kce-jωt+K-cejωt
系数Kc和K-c由留数定理确定,可以求出

自动控制原理第五章

自动控制原理第五章

•表5-1 RC网络的幅频特性和相频特性数据

A( )
( )
0 1 0
1 0.707
45
2 0.45
5 0.196

0
63.4 78.69 90
图5-2 RC网络的幅频和相频特性
图5-3 RC网络频率特性的幅相曲线
对数频率特性图又称伯德图(Bode图),包 括对数幅频特性和对数相频特性两条曲线, 其中,幅频特性曲线可以表示一个线性系 统或环节对不同频率正弦输入信号的稳态 增益;而相频特性曲线则可以表示一个线 性系统或环节对不同频率正弦输入信号的 相位差。对数频率特性图通常绘制在半对 数坐标纸上,也称单对数坐标纸。
图5-20控制系统结构图
将系统的开环频率特性函数按典型环节划分, 可以分解为: ( j 1) ( ( j ) 2 ( j ) 1) k
m1 m2
G ( j ) H ( j )
k
2 l
2
l l
( j )
0
k 1 n1
( i s 1) ( 2 ( j ) 2 2 j j ( j ) 1) j
图5-19 Ⅱ型三阶系统幅相频率特性图
讨论更一般的情况,对于如图5-20所示的闭 环控制系统结构图,其开环传递函数为 G( s) H ( s) ,可以把系统的开环频率特性写作如 下的极坐标形式或直角坐标形式:
G( j)H ( j) G( j)H ( j) e j () P() jQ()
•图5-6积分环节频率特性的极坐标图
在伯德图上,积分环节的对数频率特性为
L( ) lg A( ) lg G( j ) lg ( ) 2
图5-7积分环节的伯德图

《自动控制原理》第五章:系统稳定性

《自动控制原理》第五章:系统稳定性

5.2 稳定的条件
当σi和λi均为负数,即特征根的 σi和λi均为负数, 均为负数 实部为负数,系统是稳定的; 实部为负数,系统是稳定的; 或极点均在左平面。 或极点均在左平面。
5.3 代数稳定性判据
定常线性系统稳定的充要条件 定常线性系统稳定的充要条件是特征方程的根具有负 充要条件是特征方程的根具有负 实部。因此,判别其稳定性,要解系统特征方程的根。为 实部。因此,判别其稳定性,要解系统特征方程的根。 避开对特征方程的直接求解,可讨论特征根的分布, 避开对特征方程的直接求解,可讨论特征根的分布,看其 是否全部具有负实部,并以此来判别系统的稳定性,这样 是否全部具有负实部,并以此来判别系统的稳定性, 也就产生了一系列稳定性判据。 也就产生了一系列稳定性判据。 其中最主要是E.J.Routh(1877 )h和Hurwitz( 其中最主要是E.J.Routh(1877年)h和Hurwitz(1895 E.J.Routh(1877年 年)分别提出的代数判据。 分别提出的代数判据 代数判据。
习题讲解: 习题讲解:
µ
G1
Q21
G1
h2
k1 k1 G1 ( s ) = , G1 ( s ) = (T1s + 1) (T1s + 1) k1k 2 G0 ( s ) = (T1s + 1)(T2 s + 1)
kp
G0 ( s ) G(s) = 1 + G0 ( s ) K p
5.4 Nyquist稳定性判据 Nyquist稳定性判据
系统稳定的条件? 系统稳定的条件?
5.2 稳定的条件
d n y (t ) d ( n −1) y (t ) dy (t ) 线性系统微分方程: 线性系统微分方程: n a + an −1 + L + a1 + a0 y (t ) n ( n −1) dt dt dt d m x(t ) d ( m −1) x(t ) dx(t ) = bm + bm−1 + L + b1 + b0 x(t ) m ( m −1) dt dt dt d n y (t ) d ( n −1) y (t ) dy (t ) + a( n −1) + L + a1 + a0 y (t ) = 0 齐次微分方程: 齐次微分方程: an n ( n −1) dt dt dt an s n + an −1s n −1 + L + a1s + a0 = 0 设系统k 设系统k个实根

自动控制原理(胡寿松版)完整第五章ppt课件

自动控制原理(胡寿松版)完整第五章ppt课件

-20
φ (ω )
ω=0.1 L(ω )=20lg0.1=-20dB 90
对数相频特性:φ (ω )=90o 0 0.1
1
10ω
第二节 典型环节与系统的频率特性
4).惯性环节
G(s)=Ts1+1
G(ωj
)=

1 T+1
(1) 奈氏图
A(ω
)=
1 1+(ω T)2
φ (ω )= -tg-ω1 T
取特可殊以点证:绘明ω制:=0奈氏图近似方I法m : AA图心半A点(ω(ω(是 , 圆ω,))=以 以 。惯=)0然=根ωω0(1性.171==/后据0/环2∞27为T将幅1节φ,jφo半φ它频的(ω)(ω径为(ω奈们特))=的圆)=氏平-性=09-o0滑4和o5连o相ω接频起∞特来0性-。求45ω=出T1特殊ω1=0Re
5)二阶微分环节 s 2 /n 2 2s /n 1(n 0 ,0 1 )
6)积分环节 1 / s
7)微分环节 s
第二节 典型环节与系统的频率特性
(2)非最小相位系统环节
1)比例环节 K (K0)
2)惯性环节 1/( T s1 ) (T0) 3)一阶微分环节 Ts1 (T0)
4)振荡环节 1 /( s 2 /n 2 2 s /n 1 )(n 0 ,0 1 )
第一节 频率特性
系统输入输出曲线 定义频率特性为:
r(t) c(t)
r(t)=Asinωt
G(ωj )
=|G(jω)|e j G(jω) =A(ω )e φj (ω )
A 0
幅频特性: t A(ω )=|G(jω)|
G(jω)
A G(jω )
相频特性: φ (ω )= G(jω)

自动控制原理(第五章)

自动控制原理(第五章)

L(ω)
0.1ωn
ωn
10ωn -40 db/dec
ω
-40
() G( j)
n 0 90 n 180 n
φ( ω )
ω
-90o -180o
自动控制原理 ——线性系统的频域分析法
7) 二阶微分环节
G( s) ( s
-30


自动控制原理 ——线性系统的频域分析法
3) 微分环节
G( s) s G( j ) j
20
L( )(dB)
0 0.01 0.1 1 10

20dB / dec
G ( j )
j
40
G ( j ) j 90
0

( )()
90 60 30 0 0.01 0.1 1 10
0
0 .1 1 T
1 T
10
1 T

自动控制原理 ——线性系统的频域分析法
2 n 6) 振荡环节 G(s) 2 2 s 2n s n 2 n G( j) 2 j ( j)2 2n ( j) n
பைடு நூலகம்
G( j )
2 2 2 (1 2 ) (2 ) 0 n n
G ( j )
1

自动控制原理 ——线性系统的频域分析法
L( )(dB)
0 .1 1 T
L( ) 20lg G ( j0)
-20 20lg 1 T 1 时,L( ) 20lg 1 0 T ( )() 1 1 时,L( ) 200 lg .1 T T T ( ) G ( j ) 0 arctanT
自动控制原理 ——线性系统的频域分析法

《自动控制原理》第五章习题解答

《自动控制原理》第五章习题解答
5-4 典型二阶系统的开环传递函数
2 ωn s( s + 2ζω n )
G( s) =
当取 r (t ) = 2 sin t 时,系统的稳态输出
css (t ) = 2 sin(t − 450 )
试确定系统参数 ω n , ζ 。 解:根据公式(5-16)和公式(5-17) 得到: c ss (t ) = A G B ( jω ) sin(ωt + ϕ + ∠G B ( jω ))
根据题目给定的条件: ω = 1 A = 2 所以: G B ( jω ) =
2 (ω n − ω 2 ) + (2ζω nω ) 2
=
=1
(1)
∠G B ( jω ) = − arctan
2ξω nω 2ξω = − arctan 2 n = −45 0 2 2 ωn − ω ωn −1
(2)
由式(1)得 ω n = (ω n − 1) + ( 2ζω n )
20
ϕ (ω )
− 89 o
− 87.2 o
− 92.1o − 164 o
− 216 o
− 234.5 o
− 246 o
− 254 o
− 258 o
ω
30
50
100
ϕ (ω )
− 262 o
− 265 o
− 267.7 o
作系统开环对数频率特性图,求得 ω c = 1 ,系统的穿越频率 ω r = 18 系统的幅值裕度和相角裕度为 h =
-26
-20
5-12 已知最小相位系统的对数幅频渐进特性曲线如图 5-50 所示, 试确定系统的开环传递函 数。 解: (a) G ( s ) =

《自动控制原理》第5章习题答案

《自动控制原理》第5章习题答案


期望极点
期望极点
− p3
j
600
j0.58
− p2
-1
− p1
0 -j
-3
-2
σ
-2
19.150 -1
40.880 0.33 0
119.640
校核相角条件: 根据在图中主导极点位置的近似值-0.33 ± j 0.58 和开环极点的位置, 作由各开环极点到期望主导极点的向量,
Φ = -119.640 -40.880 -19.150 = -179.670≈-1800
− p2
-10 -5
− p1
0
σ
②计算期望主导极点位置。
超调量σ% ≤ 20%,调整时间 ts ≤ 0.5s
4
ζω n
= 0.5s , ζω n = 8
σ%=e

ζπ
1−ζ 2
= 0.2 , ζ = 0.45 , θ = 63.2 0
故,期望主导极点位置, s1, 2 = −8 ± j15.8
期望极点
Gc ( s ) =
4,控制系统的结构如图 T5.3 所示,Gc(s)为校正装置传递函数,用根轨迹法设计校正装置,
使校正后的系统满足如下要求,速度误差系数 Kv ≥ 20,闭环主导极点 ω n = 4 ,阻尼系数 保持不变。
R(s)
+ -
Gc(s)
4 s ( s + 2)
Y(s)
图 T5.3
解:①校核原系统。
14
+20
0dB
1
Φ (ω ) 度
900 00
5
ω rad/s
ω rad/s
2,控制系统的结构如图 T5.1 所示,试选择控制器 Gc(s), 使系统对阶跃响应输入的超调量

自动控制原理第五章

自动控制原理第五章

L( )
Im
c
-1
1


0
ωc
(c )
Re
( )

90
180

2.增益裕度
定义:开环频率特性曲线相位为-π 时对应幅值的
倒数。
计算:
GM
1 1 1 , Kg Wk ( j ) A( j ) 1
或h 20 lg

20 lg
含义:
增益裕度含义
① 乃图上 WK ( j ) A( ) 1 的单位图对应于Bode图 的零分贝线。 ② 单位图以外对应L(ω )>0 ③ 乃图上负实轴对应于Bode图上相频特性的-π 线。
三、系统稳定裕度
稳定裕度:衡量闭环系统相对稳定性的指标。
相位裕度: 开环频率特性曲线上模值
等于1的矢量与负实轴的夹角。
增益裕度:开环频率特性曲线与负实轴相
交点模值的倒数。
1.相位裕度
定义:在频率特性上对应于幅值A(ω )=1的角频
率称为剪切频率,用 ω c表示。在剪切频率ω c使系统 达到稳定的临界状态所要附加的相角迟后量,称为相 位裕度。
计算: 含义:
( c ) 180 ( c )
相位裕度含义
L( )
1.BODE图
-2
20 lg K
1
-1
10
c
20 lg h

( )
-3
90
180
270

2.稳定分析图
L( )
-2
20 lg K
1
-1
10
c
20 lg h

( )
-3

自动控制原理(胡寿松) 第五章ppt

自动控制原理(胡寿松) 第五章ppt
第五章
线性系统的频率特性
1
控制系统的时域分析法是研究系统在典型输入信号作用的 性能,对于一阶、二阶系统可以快速、直接地求出输出的时域 表达式、绘制出响应曲线,从而利用时域指标直接评价系统的 性能。因此,时域法具有直观、准确的优点。然而,工程实际 中有大量的高阶系统,要通过时域法求解高阶系统在外输入信 号作用下的输出表达式是相当困难的,需要大量计算,只有在 计算机的帮助下才能完成分析。此外,在需要改善系统性能时, 采用时域法难于确定该如何调整系统的结构或参数。
2
在工程实践中 , 往往并不需要准确地计算系统响应的全部过
程,而是希望避开繁复的计算,简单、直观地分析出系统结构、
参数对系统性能的影响。因此,主要采用两种简便的工程分析 方法来分析系统性能,这就是根轨迹法与频率特性法,本章将 详细介绍控制系统的频率特性法。 控制系统的频率特性分析法是利用系统的频率特性(元件或 系统对不同频率正弦输入信号的响应特性)来分析系统性能的 方法,研究的问题仍然是控制系统的稳定性、快速性及准确性 等,是工程实践中广泛采用的分析方法,也是经典控制理论的
20
1.低频段
在T<<1(或<<1/T)的区段,可以近似地认为T0,从而有
L( ) 20 lg (T ) 2 1 20 lg1 0
故在频率很低时,对数幅频特性可以近似用零分贝线表示,这称 为低频渐近线。
21
2.高频段
在T>>1(或>>1/T)的区段,可以近似地认为
14
5.2 典型环节的频率特性
5.2.1 比例环节
传递函数:G(s)=K 频率特性:G(jω)=K 幅频特性:A(ω)=K 相频特性:φ(ω)=0 对数幅频和相频特性: L(ω)=20lgA(ω)=20lgK

自动控制原理第五章

自动控制原理第五章

第五章§5-1 引言§5-2频率特性§5-3 开环系统的典型环节分解和开环频率特性曲线的绘制§5-4开环和闭环系统Bode图的绘制方法§5-5 系统稳定性分析§5-6控制系统的相对稳定性分析第五章 控制系统的频率响应分析[教学目的]:掌握利用频域法进行系统分析的一般方法 ,为后面的校正及信号与系统分析打下基础。

掌握系统频率特性分析与系统幅角之间的关系,掌握Nyquist 图和Bode 图的绘制方法,根据系统的Nyquist 图和Bode 图分析系统的性质。

本章的难点是Nyquist 稳定性分析。

[主要容]:一、引言 二、 频率特性 三、 开环系统的典型环节分解和开环频率特性曲线的绘制 四、 频率域稳定判据 五、 稳定裕度 六、 闭环系统的频域性能指标[重点]: 频率特性的基本概念,各种频域特性曲线的绘制,Nyquist 稳定判据的应用,及相对稳定裕度的分析,理解三频段的概念与作用。

[难点]:时域性能指标与频域性能指标之间的相互转换。

闭环频域性能指标的理解与应用[讲授方法及技巧]:联系传递函数,微分方程等数学模型,将频率法和时域分析法、根轨迹法相比较,理解和掌握古典控制系统的完整体系。

准确理解概念,把握各种图形表示法的相互联系。

与时域法进行对比,以加深理解。

§5-1 引言1.时域分析法(特点)1)以传递函数和单位阶跃响应为分析基础构成的一整套解析法为主响应曲线图形分析法为辅的分析方法。

它具有直观、明确的物理意义,但就是运算工作量较大,参数的全局特征不明显。

2) 原始依据--数学模型,得来不易,也同实际系统得真实情况有差异,存在较多的近似、假设和忽略,有时对于未知对象,还可能要用经验法估计。

3) 对工程中普遍存在的高频噪声干扰的研究无能为力。

4) 在定性分析上存在明显的不足。

5) 属于以“点”为工作方式的分析方法。

2.根轨迹法(特点)1)根轨迹法弥补了时域分析法中参数全局变化时特征不明显的不足,在研究单一指定参数对整个系统的影响时很有用;2)增加零极点(增加补偿器)时,是一种很好的辅助设计工具; 3)以“线”和“面”为工作方式;4)为定性分析提供了一种非常好的想象空间和辅助思维界面。

自动控制原理第5章

自动控制原理第5章

8
二、图形表示法
1.极坐标图(幅相频率特性图;奈奎斯特图) 1.极坐标图(幅相频率特性图;奈奎斯特图) 极坐标图 随着频率的变化,频率特性的矢量长度和幅角也改变。 随着频率的变化,频率特性的矢量长度和幅角也改变。 当频率ω 变化到无穷大时, 当频率ω从0变化到无穷大时,矢量的端点便在平面上画出一 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。画 有这种曲线的图形称为极坐标图。 有这种曲线的图形称为极坐标图。
− j arctan 2 ζT ω 1−T 2ω 2
幅频特性 相频特性
A(ω ) =
ϕ (ω ) = − arctan
23
典型环节的频率特性
9
2.博德图(对数频率特性图) 博德图(对数频率特性图) 博德图 两张图构成 一张是对数幅频图 一张是对数相频图 构成: 对数幅频图, 对数相频图。 由两张图构成:一张是对数幅频图,一张是对数相频图。 两张图的横坐标都是采用了半对数坐标。 两张图的横坐标都是采用了半对数坐标。
10
对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 是频率特性幅值的对数值乘20 即 L(ω ) = 20 lg A(ω ) 表示,均匀分度,单位为db。 表示,均匀分度,单位为db db。 对数相频特性图的纵坐标是相移角φ(ω),均匀分度,单 对数相频特性图的纵坐标是相移角φ 是相移角 均匀分度, 位为“ 位为“度”。 对数幅频特性图绘的是对数幅频特性曲线, 对数幅频特性图绘的是对数幅频特性曲线, 对数相频特性图绘的是对数相频特性曲线。 对数相频特性图绘的是对数相频特性曲线。

自动控制原理第五章

自动控制原理第五章

第五章 频域分析法目的:①直观,对高频干扰的抑制能力。

对快(高频)、慢(低频)信号的跟踪能力。

②便于系统的分析与设计。

③易于用实验法定传函。

§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。

其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。

自动控制原理第五章

自动控制原理第五章

解:
T
du0 dt
u0
ui
T RC
uo t
取拉氏变换并带入初始条件uo0
1
1 A
Uo (s)
Ts
[U 1
i
(s)
Tuo0 ]
Ts
[ 1
s
2
2
Tuo0 ]
uo (t)
AT 1 2T2
t
eT
A sint cos cost sin
1 2T2
AT 1 2T2
t
eT
A sin(t - arctanT) 1 2T2
(2) 当系统由多个环节串联而成时,系统的频率特性为各环 节频率特性的乘积,由于对数可将乘除运算变成加减运算。 以上两式表明,当绘制由多个环节串联而成的系统的对数 坐标图时,只要将各环节对数坐标图的纵坐标相加减即可, 从而简化了画图的过程。
(3) 在对数坐标图上,所有典型环节的对数幅频特性乃至系统 的对数幅频特性均可用分段直线近似表示。这种近似具有一 定的精确度。若对分段直线进行修正,即可得到精确的特性 曲线。
暂态分量
稳态分量
uos (t)
A sin t cos cost sin
1 2T2
A sin(t-arctanT) 1 2T2
AgA() sin[t ()]
其中:
A() 1 , 1 2T2
() -arctanT
分别反映RC网络在正弦信号作用下,输出稳态分量的幅值和相位的变化, 成为幅值比和相位差,且皆为输入正弦信号频率ω的函数。
注意:RC网络的传递函数为:
取s=jω,则有
G(s)
1
T CR
1
1T
CRs 1 Ts 1 s 1 T

自动控制原理 第五章 控制系统的频域分析法

自动控制原理 第五章 控制系统的频域分析法


uos (t) = A ⋅ A(ω)sin[ω t + ϕ(ω)]
(5.2)
结论:
(1) 稳态解与输入信号为同一频率的正弦量;
(2) 当ω 从 0 向∞变化时,其幅值之比 A(ω) 和相位差ϕ(ω) 也将随之变化,其变化规
律由系统的固有参数 RC 决定; (3) 系统稳态解的幅值之比 A(ω) 是ω 的函数,其比值为
三角函数形式: G( jω) = A(ω)[cosϕ(ω) + jsinϕ(ω)] 。
式中 A(ω) = G( jω) 是幅值比,为ω 的函数,称为幅频特性;
ϕ(ω) = ∠G( jω) 是相位差,为ω 的函数,称为相频特性; U (ω) 是 G( jω) 的实部,为ω 的函数,称为实频特性; V (ω) 是 G( jω) 的虚部,为ω 的函数,称为虚频特性。
s + p1 s + p2
s + pn s + jω s − jω
∑n
=
Ci
+
B
+
D
i=1 s + pi s + jω s − jω
(5.4)
式中 Ci , B , D 均为待定系数。
将(5.4)式进行拉氏反变换,得系统的输出响应为
n
∑ c(t) = Cie− pi t + (Be− jω t + Dejω t ) = ct (t) + cs (t) i =1
C( jω) = G( jω)R( jω)
因而,得
G( jω) = C( jω) R( jω)
(5.11)
事实上,当ω 从 0 向∞变化时, G( jω) 将对不同的ω 作出反映,这种反映是由系统自

自动控制原理(第二版)第五章频率响应法

自动控制原理(第二版)第五章频率响应法

发展多变量频率响应法
针对多输入多输出系统,需要发展多变量频率响 应法,以便更好地处理复杂系统的分析问题。
深入研究非最小相位系统
针对非最小相位系统的稳定性判断问题,需要深 入研究其频率响应特性,并寻求有效的解决方法 。
06
CATALOGUE
结论
总结频率响应法的要点与重点
01 02 03 04
频率响应法是一种通过分析线性定常系统对正弦输入信号的稳态响应 来评价系统性能的方法。
频率响应法的优势与局限性
优势
频率响应法能够提供系统在整个频率范围内的动态性能信息,有助于全面了解 系统的性能特点;通过分析频率特性,可以更容易地识别系统的稳定性和潜在 的谐振问题。
局限性
频率响应法主要适用于线性定常系统,对于非线性或时变系统,其应用可能受 到限制;此外,频率响应法无法提供系统的时域信息,如瞬态响应和稳定性。
05
CATALOGUE
频率响应法的局限性与改进方法
频率响应法的局限性
01
频率响应法主要适用于线性时不 变系统,对于非线性或时变系统 ,频率响应法可能不适用。
02
频率响应法只能给出系统在正弦 输入下的稳态输出,无法反映系
统的动态行为。
频率响应法无法处理多输入多输 出系统,对于复杂的多变量系统 ,需要采用其他方法进行分析。
02
CATALOGUE
频率响应的基本概念
频率特性的定义
频率特性
系统对正弦输入信号的稳态输出与输入之比,用复数表示的频率 函数。
频率特性与传递函数
传递函数是系统在零初始条件下,频率特性的解析表达式。
频率特性与系统性能
频率特性直接反映系统在不同频率的正弦输入信号下的响应特性 ,与系统的动态和稳态性能密切相关。

自动控制原理第五章

自动控制原理第五章

均 匀 的
(lg ω)
0.1 0.2 0.3 … 1 2 3 … 10 20 30 … 100 200 …
ω
倍频程是均匀 均匀的 一倍频程是不均匀的, 十倍频程是均匀的! 倍频程是不均匀的 不均匀
§5.3 典型环节的频率特性
系统的传递函数可以看成是由若干个典型环节组成的. 系统的传递函数可以看成是由若干个典型环节组成的. 一,比例环节的频率特性 Y (s) = K 传递函数为 Φ ( s ) = R (s)
Im
ω =∞
(ω )
A(ω )
Re
ω =0
Φ( jω)
奈奎斯特 (N.Nyquist)在1932 年基于极坐标图 阐述了反馈系统 稳定性 奈奎斯特曲线, 简称奈氏图
2. 幅,相频率特性 它是将 A(ω) 和 (ω) 分别表示在以 为横坐标,以 A(ω) 分别表示在以ω 坐标, 坐标的平面上. 或 (ω) 为纵坐标的平面上.
A(ω)
ω单位为弧度/秒 单位为弧度 秒 单位为弧度
ω
(ω)
A(ω) 无量纲
ω
(ω) 单位为度 单位为度
3. 对数幅,相频率特性 对数幅,相频率特性——Bode图 图 纵坐标
幅频: L(ω ) = 20 lg A(ω ) 单位:分贝(dB) 单位:度 相频: (ω )
横坐标 以 lg ω 来分度,标注 ω ,单位:弧度 秒(rad/s) 分度, 单位:弧度/秒
本章需要掌握的主要内容:
典型环节 环节的频率特性 (1)典型环节的频率特性 系统开环频率特性的绘制 (2)系统开环频率特性的绘制 (3)利用频率特性分析系统的稳定性 利用频率特性分析系统的稳定性 (4)系统的稳态性能与动态性能分析 系统的稳态性能与动态性能分析 实验法求取元件或系统的 求取元件或系统的数学模型 (5)实验法求取元件或系统的数学模型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理第五章
现代控制理论基础
20世纪50年代诞生,60年代发展。

标志和基础:状态空间法。

特点:揭示系统内部的关系和特性,研究和采用优良和复杂的控制方法。

适用范围:单变量系统,多变量系统,线性定常系统,线性时变系统,非线性系统。

状态:时间域中系统的运动信息。

状态变量:确定系统状态的一组独立(数目最少的)变量。

能完全确定系统运动状态而个数又最少的一组变量。

知道初始时刻一组状态变量的值及此后的输入变量,可以确定此后全部状态(或变量)的值。

n阶微分方程描述的n阶系统,状态变量的个数是n。

状态变量的选取不是唯一的。

状态向量:由n个状态变量组成的向量。

状态空间:以状态变量为坐标构成的n维空间。

状态方程:描述系统状态变量之间及其和输入之间的函数关系的一阶微分方程组。

输出方程:描述系统输出变量与状态变量(有时包括输入)之间的函数关系的代数方程。

状态空间表达式:状态方程与输出方程的组合。

线性定常系统状态空间表达式的建立
根据工作原理建立状态空间表达式
选择状态变量:与独立储能元件能量有关的变量,或试选与输出及其导数有关的变量,或任意n个相互独立的变量。

由微分方程和传递函数求状态空间表达式
1.方程不含输入的导数,传递函数无零点
2.方程含有输入的导数,传递函数有零点
根据传函实数极点建状态空间表达式
状态变量个数一定,选取方法很多,系数矩阵多样。

z=Px(│P│≠0)是状态向量。

│sI-A│:系统或矩阵的特征多项式。

│sI-A│=0:特征值或特征根,传递函数极点。

同一个系统特征值不变。

状态变量图包括积分器,加法器,比例器。

表示状态变量、输入、输出的关系。

n阶系统有n个积分器。

状态变量图↔状态空间表达式
李雅普诺夫稳定性
李雅普诺夫稳定性的定
线性系统的可控性与可观测性线性系统的可控性与可控性判据。

相关文档
最新文档