理论力学复习级

合集下载

理论力学复习

理论力学复习
§1.1 理论力学基本概念
一.静力学公理
公理1 二力平衡公理
作用于刚体上的两个力,使刚体平衡的必要与充分条件是:
这两个力大小相等、方向相反、作用线共线,作用于同一
个物体上。 (简称等值、反向、共线) 注意: F1 F2
F 1 F 2
注意:①对刚体来说,上面的条件是充要的
②对变形体来说,上面的条件只是必要条件(或多体中)
③二力构件:只在两个力作用下平衡的刚体叫二力构件 (二力体)
二.力的投影和力的分力的区别
力的投影和力的分力是两个不同的概念,不得混淆: (1)力在轴上的投影是代数量,由力的投影X、Y、Z只能 求出力的大小和方向,不能确定其作用点的位置;而力的分
力是矢量,由力的分力完全可以确定力的大小和方向及作用
点的位置。 (2)力的投影是向轴作垂线而得,力的分力则是利用平行 四边形法则而得。在笛卡尔坐标系中关系式
约束物体绕固定端在该平面内转动,如
图悬臂梁所示。
阻碍被约束物体移动的约束力为两
个正交的分力,阻碍被约束物体转动的 为反力偶。 故平面固定端的约束反力又三个 。
§1-5 物体的受力分析和受力图
1.分离体(或脱离体):从周围物体中单独分离出来的研究 对象。 2.受力图:表示研究对象(既脱离体)所受全部力的图形。 主动力一般是先给定的,约束力则需要根据约束的性质来判 断。 3.画物体受力图主要步骤为: (1) 根据题意选取研究对象,并用尽可能简明的轮廓把它 单独画出,即解除约束、取分离体。 (2)在脱离体上画主动力。要画上其所受的全部的主动力,不 能漏掉,也不能把不是作用在该分离体上的力画在该分离体 上。主动力的作用点(线)和方向不能任意改变。
F
O
d
Fz

理论力学复习题(含答案)

理论力学复习题(含答案)

《理论力学》复习题A一、填空题1、二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是 二力平衡是作用在一个物体上,作用效果能抵消、作用力与反作用力是作用在两个物体上,作用效果不能抵消。

2、平面汇交力系平衡的几何条件是顺次将表示各个力Fi 的有向线段首尾相接,可以构成闭合n 边形;平衡的解析条件是 ∑Fxi=0;且∑Fyi=o 。

3、静滑动摩擦系数与摩擦角之间的关系为 tanφ=fs 。

4、点的切向加速度与其速度的 方向 变化率无关,而点的法向加速度与其速度 大小 的变化率无关。

5、点在运动过程中,满足0,0=≠n a a 的条件,则点作 牵连 运动。

6、动点相对于的 定系 运动称为动点的绝对运动;动点相对于 动系 的运动称为动点的相对运动;而 动系 相对于 定系 的运动称为牵连运动。

7、图示机构中,轮A (只滚不滑)作 平面 运动;杆DE 作 定轴转动 运动。

题7图 题8图8、图示均质圆盘,质量为m ,半径为R ,则其对O 轴的动量矩为 。

9、在惯性参考系中,不论初始条件如何变化,只要质点不受力的作用,则该质点应保持 静止或等速直线 运动状态。

10. 任意质点系(包括刚体)的动量可以用 其质心 的动量来表示。

二、选择题1. 在下述公理、规则、原理和定律中,对所有物体都完全适用的有( D )。

A.二力平衡公理B.力的平行四边形规则C.加减平衡力系原理D.力的可传性2. 分析图中画出的5个共面力偶,与图(a )所示的力偶等效的力偶是(B )。

A. 图(b ) B. 图(c ) C.图(d ) D. 图(e )题2图3. 平面力系向点1简化时,主矢0='RF ,主矩01≠M ,如将该力系向另一点2简化,则( D )。

A. 12,0M M F R≠≠' B. 12,0M M F R ≠='C. 12,0M M F R=≠' D. 12,0M M F R ==' 4. 将大小为100N 的力F 沿x 、y 方向分解,若F 在x 轴上的投影为86.6 N ,而沿x 方向的分力的大小为115.47 N ,则F 在y 轴上的投影为( B )。

《理论力学》期末复习资料

《理论力学》期末复习资料

a
L
T k(2b cos b a)
L
L F k(2b x b a)
b
2L L
x
a
FL2 k b2
例16、试用牛顿方法和拉氏方法证明单摆的运动微分方程 g sin 0
l
其中为摆线与铅直线之间的夹角,l为摆线长度。
解: (1)用牛顿法:
l
ml mg sin
T
g sin 0
l
mg
3
3
33
v2 x2 y 2 an
v2
2 2m
9
11
例4、一质点受有心力 轨道的微分方程。
F
km r2
作用,列出求解其
解:
h2u
2
(
d 2u
d 2
u)
F (r) m
F km kmu2 r2
d 2u u k
d 2
h2
例5、如下图所示,船长为L=2a,质量为M的小船,在船头上站一质量为m的人,
cos3 d
L
o
x
mg
y
18
例12、如下图所示的机构,已知各杆长为L,弹簧的原长L,弹性系数 k,若忽略各处摩擦不计,各杆的重量忽略不计。试用虚功原理求平衡
时p的大小与角度之间的关系。
y
TT
解: 2TxD pyA 0
xD L cos xD L sin yA 2L sin yA 2L cos
x
(2TLsin 2 pLcos ) 0
o
2TLsin 2 pLcos 0
p T tan k(2L cos L) tan kL(2sin tan )
19
例13、如下图所示的机构,已知各杆长为L,弹簧的原长也L,弹性系数为 k,若忽略各处摩擦不计,各杆的重量也忽略不计。试用虚功原理求平衡时

大理论力学知识点总复习

大理论力学知识点总复习

大理论力学知识点总复习1.摩擦力:摩擦力是物体相互接触时发生的一种力。

根据接触面之间的压力大小和物体的粗糙程度,可以分为静摩擦力和动摩擦力。

2.牛顿第一定律:牛顿第一定律也称为惯性定律,它指出一个物体如果没有外力作用,将保持静止或匀速直线运动。

3. 牛顿第二定律:牛顿第二定律描述了物体在受到外力作用下的加速度与作用力的关系。

F=ma,其中F代表作用力,m代表物体的质量,a代表物体的加速度。

4.牛顿第三定律:牛顿第三定律指出,对于任何作用力都有相等大小、方向相反的反作用力。

这意味着作用力和反作用力总是成对存在的。

5.动量守恒定律:当物体间没有外力作用时,系统的总动量保持不变。

动量的大小等于物体的质量乘以其速度。

6.能量守恒定律:在一个封闭系统中,能量总量保持不变。

能量可以相互转化,但总能量不会减少或增加。

7. 动能与势能:动能是物体由于运动而具有的能量,公式为K=1/2mv²,其中m为物体的质量,v为物体的速度。

势能是物体由于位置变化而具有的能量,公式为E=mgh,其中m为物体的质量,g为重力加速度,h为高度。

8.弹性碰撞与非弹性碰撞:弹性碰撞指在碰撞过程中物体之间的动能守恒,且碰撞后物体之间没有能量损失。

非弹性碰撞指碰撞后物体之间有能量损失。

9.万有引力定律:万有引力定律描述了两个物体之间的引力与它们质量和距离的关系。

公式为F=G(m1m2/r²),其中F为引力,G为万有引力常量,m1和m2为两个物体的质量,r为它们之间的距离。

10.刚体力学:刚体力学研究刚体的运动和平衡条件。

刚体是指形状和大小在外力作用下不会改变的物体。

11.流体力学:流体力学研究流体(包括气体和液体)的运动和性质。

其中包括流体的压力、密度和流速等。

12.静力学:静力学研究物体处于平衡状态时的力学性质。

对于平衡物体,其力合为零,力矩合为零。

13.动力学:动力学研究物体运动时的力学性质。

通过牛顿第二定律可以描述物体的加速度。

理论力学复习资料

理论力学复习资料

力学复习选择:力系简化最后结果(平面,空间)牵连运动概念(运动参考系运动,牵连点运动) 平面运动刚体上的点的运动平面运动的动能计算(对瞬心,及柯里西算法) 质心运动定理(投影法x ,y ,z ,轨迹)惯性力系想一点简化计算:刚体系统平衡计算(多次取分能力体,一般为2次) 平面运动 速度的综合计算 动能定理应用动静法(其他方法不得分),已知运动求力(先用动能(动量)定理求运动,在用动静法求力)注意:1.功的单位是m WN ------∙2.注意检验fs N F f F ≤∙,判断是否是静摩擦,当为临界状态时max f s s N F F f F ==∙,纯滚动为静摩擦S F ,且只能根据平衡方程解出,与正压力无关。

动摩擦f NF f F =∙。

3. 动静法中惯性力简化()=-IC i i CIC c IC c F m a c F ma c M J α⎧⎫=-⎨⎬⎩⎭⎧⎫⎪⎪⇒⎨⎬=------⎪⎪⎩⎭∑质心过点到底惯性力绕点的惯性力偶二维刚体4.e c i i F ma m a ==∑∑, 22d ,d i i cc c m r r r a m t==∑eF ∑=0,则x v =常数=0(初始静止)则c x =常数=坐标系中所在位置,且c S 为直线。

(一直运动求力)5.平面运动刚体动能*222121122c c c J T mv J ωω⎧⎫⎪⎪⎪⎪=⎨⎬⎪⎪+⎪⎪⎩⎭瞬心法:柯里希法: 6.平面运动速度分析方法:a,基点法:,BA BA BA v v v v AB ω=+=,以Bv为对角线的平行四边形b,速度投影法:cos cos B B A A v v θθ=,,B A θθ是以AB 为基准。

c,速度瞬心法:***,*,0,0AB c c v v BC v a ACωω==∙=≠ 7.平面运动加速度分析:A.基点法:nB A BA BA a a a a τ=++,其中,多数情况下n A A A a a a τ=+,n B B B a a a τ=+注:当牵连运动为转动时,有科氏加速度k a ,2kr av ω=⨯大小:2kr a v ω=,方向:r v 向ω方向转90即可。

理论力学总复习

理论力学总复习
平面力系平衡的求解技巧:
(1)结构分析。看物系由几个构件组成,如何连接。
(2)特殊构件的分析。看各个单独的构件及整体是否 具备特殊性,从而优先判断出某些约束处的未知力方 向,确定最少的未知数数目;根据待求量的变化,确 定最少的方程数目。 (3)选对象并粗列方程。从未知数出发选择研究对象, 对各研究对象通过适当的取矩以避开不需要的未知数。 通过排列组合,确定列方程的方案。 (4)列方程求解。根据第三步的分析,具体列出所需 方程。
4 摩擦 5 点的合成运动 6 刚体的平面运动 7 动力学普遍定理 8 达朗贝尔原理 9 虚位移原理
5 点的合成运动
动点动系的选择原则
(1) 先选动点,后选动系。 (2) 动点的常见形式: 明显的动点。销钉等。 移动副: 销子。 高副中: 点-线接触高副:常触点。 线-线接触高副:圆盘的中心。 (3) 动系与动点之间要有相对运动。 (4) 选择的结果应该使得三种运动尽可能简单。
5 点的合成运动
速度合成定理
加速度合成定理
加速度
ac 2 e vr
目录
1 受力分析
2 平面力系的平衡
3 空间力系的平衡
4 摩擦 5 点的合成运动 6 刚体的平面运动 7 动力学普遍定理 8 达朗贝尔原理 9 虚位移原理
(2) 对第一种临界情况列平衡方程,同时追加库仑摩擦 定律。解出所求力的一个极值Fmin。
(3) 对第二种临界情况列平衡方程,同时追加库仑摩擦 定律。解出所求力的另一个极值Fmax。
(4) 总结,所求力属于上述范围 F [ Fmin , Fmax ]
目录
1 受力分析
2 平面力系的平衡
3 空间力系的平衡
例2 求固定端A及销钉B对AB,BC的作用力。

《理论力学总复习_总结的很好——强烈推荐》.doc

《理论力学总复习_总结的很好——强烈推荐》.doc

《理论力学总复习_总结的很好——强烈推荐》12 《平面力系》小结一、力的平移定理: 1( ) ( )nO R O iiM F M F二、合力矩定理:力力+力偶二矩式三、平面一般力系的平衡方程 00( )0xyOFFM F0( ) 0( ) 0xABFM FM FA,B 连线不 x 轴( ) 0( ) 0( ) 0ABCM FM FM FA,B,C 不共线一矩式三矩式四、静定与超静定独立方程数≧未知力数目为静定独立方程数未知力数目为超静定3 解题步骤①选研究对象②画受力图(受力分析)③选坐标、取矩点、列平衡方程。

④解方程求出未知数物体系平衡时,物体系中每个构件都平衡!五、解题步骤与技巧解题技巧①投影轴;②取矩点最好选在未知力的交叉点上;③充分发挥二力杆的直观性;④灵活使用合力矩定理。

六、注意问题力偶在坐标轴上投影不存在;力偶矩M = 常数,它与坐标轴与取矩点的选择无关。

4 《摩擦》小结①①当滑动没发生时 F s f s F N (F s =P 外力) ②②当滑动即将发生时 F max =f s F N ③③当滑动已经发生时 F d =f d F N (一般 f d f s ) 1 、摩擦力----是切向阻力,方向与物体运动趋势方向相反。

①①全约束力F R (即F max 与F N 的合力)②②当时,物体不动(平衡)。

③③当时自锁。

一、概念: 2 、全约束力与摩擦角 f f5 二、考虑摩擦时的求解问题: 1 、列平衡方程时要将摩擦力考虑在内; 2 、解题方法:①解析法②几何法; 3 、除平衡方程外,增加补充方程( 一般在临界平衡 4 、解题步骤同前。

状态计算)三、解题中注意的问题: 1 、摩擦力的方向不能假设,要根据物体运动趋势来判断。

(只有在摩擦力是待求未知数时,可以假设其方向) 2 、由于摩擦情况下,常常有一个平衡范围,所以解也常常是力、尺寸或角度的一个平衡范围。

(原因是和) max s NF f F f ss NF f F s s NF f F 系统不动,总有6 1. 一点、二系、三运动点的绝对运动为点的相对运动与牵连运动的合成. 2. 速度合成定理 3. 加速度合成定理牵连运动为平动时牵连运动为转动时 r e av v v r e a a a a 点的合成运动》小结 ) 2 ( r k k r e a v a a a a a 一.概念及公式7 二.解题步骤 1. 选择动点、动系、静系,进行运动分析。

(完整版)理论力学复习总结(知识点)

(完整版)理论力学复习总结(知识点)

第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。

F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。

公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。

推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。

公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。

推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。

公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。

公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。

对处于平衡状态的变形体,总可以把它视为刚体来研究。

1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即FR=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。

3.力对刚体的作用效应分为移动和转动。

力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。

(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。

(完整版)哈工大版理论力学复习

(完整版)哈工大版理论力学复习

第一章静力学的基本概念与公理一、重点及难点1.力的概念力是物体间的相互机械作用,其作用效果可使物体的运动状态发生改变和使物体产生变形。

前者称为力的运动效应或外效应,后者称为力的变形效应或内效应。

力对物体的作用效果,取决于三个要素:①力的大小:②力的方向;⑧力的作用点。

力是定位矢量。

2.刚体的概念所谓刚体,是指在力的作用下形状和大小都始终保持不变的物体;或者说,刚体内任意两点间的距离保持不变。

刚体是实际物体抽象化的一种力学模型。

3.平衡的概念在静力学中,平衡是指物体相对惯性坐标系(地球)处于静止或作匀速直线运动的状态。

它是机械运动的特殊情况。

4.静力学公理静力学公理概括了力的基本性质,是静力学的理论基础。

公理一(二力平衡原理):作用在刚体上的两个力,使刚体处于平衡的必要和充分条件是:这两个力的大小相等。

方向相反,作用在同一直线上。

公理二(加减平衡力系原理):可以在作用于刚体的任何一个力系上加上或去掉几个互成平衡的力,而不改变原力系对刚体的作用效果。

推论(力在刚体广的可传性):作用在刚体上的力可沿其作用线在刚体内移动,而不改变它对该刚体的作用效果。

公理三(力的平行四边形法则):作用于物体上任一点的两个力可合成为作用于同一点的一个力,即合力。

合力的矢由原两力的矢为邻边而作出的力平行四边形的对角矢来表示。

即合力为原两力的矢量和。

推论(三力平衡汇交定理):作用于刚体上3个相互平衡的力,若其中两个力的作用线汇交于—点,则此3个力必在同一平面内,且第3个力的作用线通过汇交点。

公理四(作用和反作用定律)任何两个物体相互作用的力,总是大小相等,方向相反,沿同一直线,并分别作用在这两个物体上。

公理五(刚化原理):变形体在某一力系作用下处于平衡时,如将此变形体刚化为刚体,则平衡状态保持不变。

应当注意这些公理中有些是对刚体,而有些是对物体而言。

5.约束与约束反力限制物体运动的条件称为约束。

构成约束的物体称为约束体,也称为约束。

理论力学总复习

理论力学总复习

1 a a 2 ( J p ) 0 m g( ) 2 2 2
式中:
a 2 1 a 2 5 2 J p J c m( ) ma m( ) ma 2 2 6 2 12 3.12 解得: rad/s a
感谢大家的支持与配合
祝期末考试取得优异成绩!
图6
解: A的速度水平向右,B的速度竖直向下,AB杆的速
度瞬心为P点。
所以: AB PA VA
而:AB PC VC
因为 PC=PA=1m
所以: VC VA 2 PC 1 2m / s PA 1
所以:OC VC / OC 2 / 1 2rad / s
答案:B
二、填空题 1. 一质量为m的质点从距地面高h处自由下落(初速度为零),
如不考虑空气阻力,则该质点从开始下落至落到地面这一过程
中,质点所受冲量的大小为( )。
答案:m 2gh
2. 小小的螺旋千斤顶之所以能支撑起庞大重量的物体,在于 利用了螺纹斜面上存在的 现象,亦即斜面上的主动力
合力作用线位于斜面的
MaC Fi
(e )
动量矩定理 1、质点系的动量矩 2.定轴转动刚体的动量矩
Lz J z
3.质点系的动量矩定理
dLO (e ) (e) mO ( Fi ) M O dt
(e) dLx (e) m x ( Fi ) M x dt
4、刚体定轴转动微分方程
J z M z
明确的运动(比如平动、定轴转动或平面运动)。
3 速度合成定理:三种速度间的关系。
va ve vr
绝对速度是平行四边形的对角线。
动力学
动量定理
1.质点系的动量:质点系中所有各质点的动量的矢量和。

理论力学复习题精品PPT课件

理论力学复习题精品PPT课件

r CD a60° C
ar
a aa 60° c
at
e
an
e
14
例4:平面机构中,半径为R的半圆环OC与固定直杆AB 交点处套有小环M。半圆环OC绕垂直于图面的水平轴O 匀角速度转动,从而带动小环M运动。图示瞬时,OC 连线垂直于AB杆,求该瞬时小环M的绝对速度和加速度。
A
M
O
C
B
15
解: 取小环M为动点,动系固定在杆OC。
大小 :aC = 2ωevrsinθ
方向:垂直于 ωe 和 v r
指向按右手法则确定。
当θ = 90°时(ωe ⊥vr ), aC = 2ωevr
当θ = 0°或180°时(ωe // vr ),aC = 0
4
当牵连运动为平移时,ωe=0,因此aC=0,此时有
aa = ae + ar
因为点的绝对运动轨迹和相对运动轨迹可能都是曲线, 因此点的加速度合成定理一般可写成如下形式:
点的简单运动
1 矢量法:
1. 运动方程 2. 速度 3. 加速度
r r(t)
lim v
r dr
t0 t dt
a lim v dv d2r t0 t dt dt 2
avr
2直角坐标法 3弧坐标
1. 运动方程 x f t y f t z f t
1
2
3
2.速度
v r xi yj zk vxi vy j vzk
aat + aan = aet + aen + art + arn + aC(牵连运动为转动) aat + aan = aet + aen + art + arn (牵连运动为平移)

理论力学复习.

理论力学复习.

都改变,而a r
改变a, 中的r
中r的r
只反映了vr 本身大小的
只是v 本身大小的改变。
事实上,横向速度方向的改变会引起径向速度大
小的改变 ,r2 就是反映这种改变的加速度分量;
经向速度的方向改变也引起横向速度的大小改
变,另一个 r 即为反映这种改变的加速度分
量,故 ar r r2 ,a r 2r.。这表示质点的径
答:动量矩守恒意味着外力矩为零,但并不意味着外力 也为零,故动量矩守恒并不意味着动量也守恒。如 质点受有心力作用而运动动量矩守恒.
1.4 细杆绕点以角速转动,并推动小环C在固定的钢丝 上滑动。图中的为已知常数,试求小球的速度及加 速度的量值。
解:
L
x dtg x d sec2
t,


sec
x2 d 2

d
Ax
B
d
C
O
第1.4题图
x2 d 2
2x2 x22
1.6 一质点沿位失及垂直于位失的速度分别
为r及,式中 及 是常数。试证其
沿位矢及垂直于位失的加速度为
2r 2 2 ,
r
r
1.25 滑轮上系一不可伸长的绳,绳上悬一弹 簧,弹簧另一端挂一重为W 的物体。当滑 轮以匀速转动时,物体以匀速 v0下降。如
将滑轮突然停住,试求弹簧的最大伸长及 最大张力。假定弹簧受 W 的作用时的静伸 长为 0 。
向与横向运动在相互影响,它们一起才能完 整地描述质点的运动变化情况.
1.4 在怎样的运动中只有 a 而无 an ?在怎样 的运动中又只有 an 而无 a ?在怎样的运动 中既有 a 又有 an ?

理论力学 动力学复习

理论力学 动力学复习
(P为速度瞬心,
3.质点系动能定理
1 或 T J P 2 2 2 J P J C md )
T2 T1 W i
四、达朗贝尔原理
Fi FIi 0
(e )
MO (Fi )MO (FIi )0
(e )
刚体惯性力系的简化 1、刚体作平动 2、刚体绕定轴转动
FIR maC
构件的自重与各处摩擦,试应用虚位移原理,求当机构 在图示位置平衡时,力F1与F2的关系。
F1 B
,
解:虚功方程(几何法)
δrB
C
F2
F1δrBcos45 F2δrC 0
45° 45° A
δrC
δrB δrC cos45
F1 F2 2
[例] 质量为m的均质球半径为R,放在墙与AB杆之间,B端用 水平绳索BD拉住,杆长为l ,杆重不计,各处摩擦不计。 试用虚位移原理求绳子的拉力。 解:虚功方程(解析法)
解:研究对象:整体
受力分析: Fx
(e )
P
0 , 运动分析:
vC
mg FN mg FN
初始静止,所以水平方向质心位置守恒。
1 2 2 vA 1 2 T1 0 ,T2 ( J B ) 2 ml 2 3 1 2 vC l T2 mvC 3 h mg W12 mg 2 mgh 2
4
2h ( ) R1
R2
C
11 2 2 Mh mvC 3mgh 4 R1
11 mvC aC ( 2 M 3mg ) dh 2 R1 dt
2( M 3mgR 2 ) aC 11mR 2
(2)O轮子,动量矩定理(定轴转动微分方程)
J O O M O

理论力学总复习(1)

理论力学总复习(1)


一、是非题 1.力有两种作用效果,即力可以使物体的运动状态发生变化, 也可以使物体发生变形。 ( ) 2.在理论力学中只研究力的外效应。 ( ) ∨ 3.两端用光滑铰链连接的构件是二力构件。 ( ) ∨ 4.作用在一个刚体上的任意两个力成平衡的必要与充分条件 × 是:两个力的作用线相同,大小相等,方向相反。 ( ) 5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运 ∨ 效应。 ( ) ∨ 6.三力平衡定理指出:三力汇交于一点,则这三个力必然互
一、基本概念: 1、力: 2、力系: 3、平衡: 二、主要研究内容: 1、物体的受力分析: 2、力系的等效替换(简化): 3、建立各种力系的平衡条件: 三、力系的分类:
共线力系 平行力系 平面力系 汇交力系 任意力系 空间力系
第一章
静力学公理和物体的受力分析
1.一个力沿任一组坐标轴分解所得的分力的大小和这力在该坐标轴 上的投影的大小相等。 ( ) 2.在空间问题中,力对轴的矩是代数量,而对点的矩是矢量。 ( ×) 3.力对于一点的矩在一轴上投影等于该力对于该轴的矩。 (∨ ) 4.某一力偶系,若其力偶矩矢构成等于零,主矩也一定等于零。 ( ) ∨ 5.某空间力系由两个力构成,此二力既不平行,又不相交,则该 力

平衡。 ( ) 7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作 图 时力的顺序可以不同。
∨ ( )
×
第二章
一、基本概念:
平面力系
1、力矩 (顺正逆负) 2、力偶 3、力偶矩 4、静定问题、超静定问题 5、桁架
二、基本定理: 1、合力矩定理 2、同平面内力偶的等效定理(任意移转、可同时改变) 3、力的平移定理 4、平面任意力系的简化原则

《理论力学》期末复习资料

《理论力学》期末复习资料

2、拉氏方程:
d d tq T q T Q ,1,2,s
解题步骤:
dLL0,1,2,s
dtq q
① 选研究系统 ② 取广义坐标 ③ 求 Q 或 L (LTV)
④ 列出拉氏方程 ⑤ 解出结果
a
6
6
概念举例:
• 1、判断一个力场是不是保守力场的判据是? • 力场存在势能的充要条件是?保守力做功特点?
• 9、在光滑的水平面上放一半径为r,质量为m1的 圆环,有一质量为m2的甲虫沿此环爬行,则由甲 虫和圆环组成的系统所受的外力矢量和为?质心 加速度为?
a
8
8
计算题举例:
例1、已知质点的运动方程:r aebt, 1ct
2
求轨道、速度、加速度的大小。
解:
t 2 c
2b
轨道方程为: r ae c
rabbet
F i m mcca an
i i
Fin Fi
i
I圆 盘 1 2 m 2 , RI杆 1 1m 2 2 , l I球 5 2 m 2R
动能定理:
d ( 1 2 m c 2 1 2 I v c2 ) d W 机 械 1 2 m 能 c 2 1 2 I 守 v c2 V 恒 E
h2u2(dd2u2 u)Fm (r)
1 . 2 .
a v a v ' ' a 0 v 0 d d r r t ' ' ( r ') 2 v '比耐公式
3 . m a ' F m a 0 m d d r ' t m ( r ') 2 m v '
2 2m
9
a
11
11
例4、一质点受有心力 轨道的微分方程。

理论力学复习.doc

理论力学复习.doc

《理论力学》复习题一、是非题1.合力不一定比分力大。

-------------------------------------------------- ()2.平动刚体上的点的运动轨迹也可能是空间曲线。

----------------------------- ()3.某平面力系向一点简化的结果与简化中心无关,则该力系一定平衡。

----------- ()4.约束反力的方向一定与被约束体所限制的运动方向相反。

---------------------- ()5.如果作用在刚体上的三个力共面且汇交于一点,则刚体一定平衡。

-------------- ()6.力偶可以用一个合力来平衡。

---------------------------------------------- ()7.若点的法向加速度为零,则该点轨迹的曲率必为零。

-------------------------- ()8.经过的时间越长,变力的冲量也一定越大。

---------------------------------- ()9. 在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。

()10.牛顿第一定律适用于任何参照系。

------------------------------------------ ()二、选择题1.已知F1、F2、F3、F4为作用于刚体上的平面汇交力系,其力多边形如图所示,由此可知()A:力系的合力为零,力系平衡;B:力系可合成为一个力;C:力系可简化为一个力和一个力偶;D:力系可合成一个力偶。

2.如图所示,物块 A 重P=200N,放在与水平面成30 的粗糙斜面上,物块 A 与斜面间的静摩擦系数为f=1,则摩擦力的大小为()A:0 B:86.6N C:150N D:100N3.平面一般力系的二力矩式平衡方程的附加使用条件是( )。

A:二个矩心的连线和投影轴不能垂直B:二个矩心的连线和投影轴可以垂直C:没有什么条件限制4.既限制物体任何方向移动,但不限制物体转动的支座称()支座。

理论力学复习理论力学A总复习

理论力学复习理论力学A总复习
1、刚体系由几个刚体构成。识别二力杆。
由几个刚体构成(不包括二力杆),需要取几次研究对象。 2、验证静定性。方程数是否等于未知数个数。 3、寻找3未知或4未知3汇交(可解部分未知数)的研究对象。 4、画受力图(受力图要分离)
1)正确的识别约束类型(6种) 2)正确画受力图,特别注意作用力和反作用力需要同名反向。 不要漏画主动力。分布力在画受力图时不简化为集中力。
2、刚体平面运动加速度分析
刚体平面运动两个点的多重身份。
ω
A
O
45º
45º
B
C
B
ω
A
ω
45º D
加速度分析及解题步骤
1、速度分析:首选速度瞬心法(不选择速度投影 法),求平面运动刚体的角速度。
2、加速度分析:基点法。弄清点的运动是直线还是
曲线.画加速度分析图。未知加速度方向可以假设。
法向加速度方向可确定。
平行四边形的 对角线。
矢量性:上式是平面矢量方程,共有 6个要素,知道四个 方能求另外两个,一般用几何法,作出速度平行四边形, 利用三角形求解。
四、加速度分析 牵连运动为平动
牵连运动为定轴转动
ava = ave + avr
ava = ave + avr + avC
最一般的形式
avan + avat = aven + avet + avrn + avrt + avC
ω1 = ve / BC = 1.534rad/s
avan + avat = aven + avet + avr + avC
avr 垂直方向投影 aan cos 30° + aat sin 30° = −aen sin 30° + aet cos 30° + aC

理论力学期末考试复习资料

理论力学期末考试复习资料

理论力学期末考试复习资料题型及比例填空题(20%选择题(20%证明题(10%简答题(10%计算题(40% 第一章:质点力学(20~25%一•质点的运动学 I :(重点考查)非相对运动学 1、描述质点的运动需要确定参照系和坐标系。

参照系:没特别声明,一般以地球为参照系, 且认为地球是不动的, 即以静止坐标系为运动 的参考。

坐标系:根据问题的方便,通常选择直角坐标系(适用于三维,二维,一维的运动),极坐标系(适用于二维运动,题中明显有极径,极角等字眼或者有心力作用下质点的运动时采用极坐 标系),自然坐标系(适用于二维运动, 题中明显有曲率半径, 切向等字眼时,或者圆周曲线运动, 抛物线运动等通常采用自然坐标系)。

2、描述质点运动的基本物理量是位移(坐标)、速度、加速度,明确速度、加速度,轨道方程在三种坐标系下的求解,直角坐标系下步骤:(1) ,建立好坐标系(2) ,表示出质点的坐标(可能借助于中间变量,如直角坐标系中借助于角度)(3)对坐标求一阶导得速度,二阶导得加速度,涉及的未知量要利用题中所给的已知信 息求得。

若求轨道方程,先求得 x 、y 、z 随时间或其他共同变量(参数)的函数关系,消去共同 变量即可,其它坐标系下是一个道理。

若是采用处理二维运动的极坐标系和自然坐标系: 明确怎么建立这两种坐标系及速度、加速度表的达式和各项的意义(a ) 极坐标系:极轴(不变的),极角与极径(质点对质点的位矢大小)则随质点不断发生变化,特别需要明确的径向、横向的单位矢量i,j 的确定,径向即沿径矢延长方向,横向是垂直径向,指向极角增加的一侧,它们的方向随质点的运动不断发生变化,称为是活动坐标系; 我们只需应用相应的公式计算,并理解每一项的意义即可:速度: 径向,v r r 横向,v r加速度:径向a r r r 2 ,明确第一项是由于径向速度得大小改变而引起,第二项则是横向速度得方向发生改变而引起; 横向a , 2 r 第一项是混合项,其中之一表由横向速度得大小改变而引起,其中之二表由径向速度得方向改变而引起,而第二项则表示由横向速 度得大小变化而引起(b )自然坐标系:明确是把矢量分为切向和法向,活动坐标系的单位矢量i 沿切向,法向,并指向轨道弯曲的一侧:2法向a n v 描述速度方向随时间的变化率,只有运动轨迹为曲线就一定不为零。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


yj
yj, xi
yj
v

(x

y)i

(
y
x)
j
a

(x

y

x
2

2
y)i

( y

x

y
2

2x)
j
dA

d * A



A
dt dt
r r 2r
a

ao

d
dt

r



(

r)

a

2


y P rx
r
平面转动参照系
o 0 xi yj





k
xi

yj

z
o

ao

0,



k ,



k ,
dt a

xi

r

xi
1 Ml 2 4Ml
3
M
v0
mv
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受
到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也是在此期间,欧阳修在滁州留下了不逊
于《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导
学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世

R M
(P3)m若 a 空 F间(转m若r动 a)oO系d与tmS(O以重r2匀R)合角r, 2(速m则转)m动a, o=方0 程为:
r

MP 2 2R
O
例恒定1: 角在速一度光滑绕水通平过直管管子中一,有端一的质竖量直为轴m转的动小,球如,果此起管始以时,
m 2r

2mj

m
xi
2
xi
2mxk
4.列动力学方程
ma

F

R

Qt

Qc
投影方程为
mx m2x
1
my Ry mg 0 2
mz 2mx Rz 0 3
5. 解方程
方程(1)的通解为:x Aet Bet
例1、一质量为m的子弹以水平速度射入一静止悬于顶端长棒的下端,穿出
后速度损失3/4,求子弹穿出后棒的角速度。已知棒长为l,质量为M 。
解:棒和子弹之间的作用力为内力,对系统的力矩为零,所以棒和子弹系 统的角动量守恒
ml v 0

ml
1 4
v0

1 3
Ml
2
解此方程,得


3 4
mlv0

9mv0
Cl
4
7
Nl 轴
N
A
Ntl
O
·
/4
θ·C
l
,
m
B ω
mg
aC t

l
4

3 7
g
cos
N 13 mg sin ,
l
7
(6)
aCl
aCt
N 4 mg cos
t
7
例题
质量为m长为L的均质杆,其B端放在桌面上,A端用手支住,使 杆成水平.突然释放A端,在此瞬时,求: (1)杆质心的加速度, (2)杆B端所受的力.
r
2r A (B C) B(AC) C(A B)
讨论ma: (F1)方若程Ft: Fmc(0aS系F为 平 m动a系 o )
(2)m若aS系F 为 (平m面d转 动r系) ,m方程 2r为 :2m
20
4
I 1 ml 2 m( l )2 7 ml 2 (2)
0 12
4
48
,
m
B
ω
2 6g sin
求转轴处的力
N

mg7l
maC
mg sin N ma
l
Cl
(3)
mg cos N ma (4)
t
Ct
a l 2 6 g sin (5)
球距转动轴的距离为a,球相对于管子的速度为零,求小球 沿管的运动规律及管对小球的约束反作用力。
解: 1.研究对象:小球
y
2.参考系: S系-地面
S系-oxyz平面转动参照系
3.受力分析
主动力:mg

mgj
z
Ry Rz


Qt
x
Qc mg

约 科 牵束 里 连反 奥 惯作 利 性用 力 力 力 : ::QQctR=Rm2ymjddtRzk0r
选择题、填空题: 概念性题目,力系,(角)速度(角)加速度 计算题: 定点(动点)运动问题(基点法 瞬心法) 转动参考系、非惯性系(约束反力、惯性(离心)力、 科氏力、相对平衡) 刚体平衡问题、运动问题(质心运动定理 转动定理 角 动量 机械能 约束力)
哈密顿正则方程 拉格朗日方程
空间转o动t参照系r
x xt
Ry mg Rz 2mx
x Aet Bet
根据初始条件,t 0, x a, x 0 得到 A B a
2
小球沿管的运动规律为
a x
et et
x a et et
2
2
小球所受的约束反作用力
RRyz

2mx
mg

m 2a
et
et
z R
Rz
j i
r
mg
例 如图的均匀杆质量为m,长为l,可绕水平光滑轴在竖
直平面内转动,其中, AO l / 4 . 初始时水平静止。求:

杆下摆到 θ角时杆的角速度ω和轴对杆的作用力
解: 求角速度 0 0 1 I 2 mg l sin (1)
相关文档
最新文档