圆锥的侧面积和全面积

合集下载

圆锥的侧面积和全面积

圆锥的侧面积和全面积

圆锥的侧面积与全面积一、教学目标知识与技能掌握圆锥的特征,了解圆锥的侧面积计算公式,并会应用公式解决圆锥的侧面积和全面积问题.过程与方法让学生通过观察、想象,再猜想结果,最后经过实践得出结论.情感、态度与价值观培养学生初步的空间想象能力和相应的计算能力.二、重点难点重点:圆锥的侧面积展开图,计算圆锥的侧面积和全面积. 难点:经历探索圆锥侧面积计算公式.三、教学设计1.导入①剪下一块扇形,将其进行卷曲,使得扇形的两边完全重合;②观察所的图形—圆锥,说出其与刚才所做扇形之间有哪些联系?③温习上节课内容,弧长的计算公式是什么?扇形的面积公式是什么?有几种算法?请同学回答;④提出疑问,我们今天可不可以利用我们所学的知识计算出圆锥侧面积和表面积?2.探索新知①圆锥的概念:圆锥是由一个底面和侧面组成的,如图(在黑板上作图)⑴圆锥的底面是一个圆,连结顶点与底面圆心的线段叫做圆锥的高(用字母h表示);⑵圆锥顶点与底面圆上任意一点的连线段都叫做圆锥的母线(用字母L表示)(将高和母线都在图上标示出来)②圆锥的侧面形状:我们已经知道了圆锥的底面是一个圆,那么圆锥的侧面到底是一个什么样的形状呢?讲开始我们所制作的圆锥舒展回扇形平面,如此反复几次,让学生明白,圆锥的侧面展开图是一个怎样的图形.教师总结:一般地,把一个圆锥沿着一条母线剪开,它的侧面可展成一个扇形,这个扇形也叫做圆锥的侧面展开图,这个扇形的半径等于圆锥的母线长,这个扇形的弧长等于圆锥的底面周长。

把这个扇形的面积叫做这个圆锥的侧面积,用侧S表示. 圆锥的侧面积与它的底面圆的面积之和叫做圆锥的全面积(或表面积),用S 表示.③那么圆锥的侧面积和底面公式我们可不可以总结出来呢?设圆锥的母线长为L ,底面半径为r ,求圆锥的侧面积和全面积.分析:圆锥的侧面展开图是一个扇形,而扇形的半径就是母线长,扇形的弧长则为底面圆的周长,为:2πr ,而扇形的面积公式为r L S π221⋅=扇,所以L S r π=侧 3.巩固练习(1)、已知一圆锥过顶点的纵截面是一个顶角为60°的等腰三角形,求此圆锥的侧面积与底面积之比.(2)、用半径为2 cm 的半圆围成一个圆锥的侧面,则求这个圆锥的底面半径.(3)、圆柱形水桶的底面周长为3.2π m ,高为0.6 m ,求它的侧面积.(4)、如图,圆锥形冰淇淋盒的母线长是13 cm ,高是12 cm ,则该圆锥形底面圆的面积是 .4.课堂小结①请同学合上书本,并抽同学起立回顾,圆锥的高,圆锥的母线的概念;②请同学一起回顾圆锥展开的形状,并说出展开前后各自对应的量的联系;③抽同学回顾圆锥的侧面积和全面积公式.5.作业布置完成练习册上本课相应练习.。

3.6-圆锥的侧面积和全面积

3.6-圆锥的侧面积和全面积

例6、如图,圆锥的底面半径为1,母线长为3,一只蚂 蚁要从底面圆周上一点B出发,沿圆锥侧面爬到过母线 AB的轴截面上另一母线AC上,问它爬行的最短路线 是多少?
将圆锥沿AB展开成扇形ABB’ A , 解 : 将圆锥沿 将圆锥沿 AB 展开成扇形 AB 则点 CB 是 解: 将圆锥沿AB展开成扇形ABB ,解 则点 C是BB 的中点 ,:过点 B 作 BD AC ,是 解 将圆锥沿 展开成 B : AB 展开成扇形 AB B ,AB 则点 C , :: 将圆锥沿 AB 展开成扇形 AB B C是 , 则点 解 将圆锥沿 AB 展开成扇形 AB B 则点 , 则点 C 解 :B 将圆锥沿 AB 展开成扇形 AB B C B 的中点 , 垂足为 D . 垂足为 D .是 垂足为 D .BD 成扇形 AB B B 的中点,解 过点 B 作 AC , 垂足为 D . , 则点C是 垂足为 DD .r 垂足为 .r 垂足为 D . r r BA B 360 360 120 BA B 120 BAB 360 120 BAB 360 120 l r r BAB l r l 360 120 l C B BA B 360 120 中, BAD 60, A BAB 360 BAD 120 60 BAD 60 . 在 Rt ABC . 在 Rt ABC 中 , 60 BAD Rt 60 ABC , AB l BAD . 在 l l BAD 60.在RtABC中, BAD 60, AB 3. BAD 60 ., 在 Rt ABC 中 ,, BAD 60 ,A 3 3 BAD 60 . 在 Rt ABC 中 BAD 60 3 BAD 60 . 在 Rt ABC 中 BAD 60 , AB 3 . BD BD 3 3 C中, BAD 60, AB 3. 3 BD 3 2 2 3 BD 3 2 33 3 BD 2 BD 3 BD 2 3 33 答 : 它爬行的最短路线是 3.3. 它爬行的最短路线是 2 2 答 : 它爬行的最短路线 3 2 32 答: 它爬行的最短路线是 3. 答: 它爬行的最短路线是 3 33. 3 答: 它爬行的最短路线是 3 . 答 : 它爬行的最短路线是 3. 2 2 线是 3. 2 2 2

圆锥的侧面积和全面积

圆锥的侧面积和全面积
答:这个圆锥形零件的侧面积 为πra,全面积为πra+πr2
图 23.3.6
圆锥的侧面积和全面积 圆锥的侧面积 S

= πra
圆锥的全面积
30 6 l 2 s =s +s =πa+ r r π 侧 全 底
P
h A O r
a B
θ
h a
r
根据圆锥的下面条件, 根据圆锥的下面条件,求它的侧 面积和全面积 ( 1 ) ( 2 ) r=12cm, a=20cm h=12cm, r=5cm 全:384π 全:90π
A P
a h
O
B
a =h +r
2 2
2
r
填空、根据下列条件求值(其中r 填空、根据下列条件求值(其中r、h、a 分别是圆锥的底面半径、高线、母线长) 分别是圆锥的底面半径、高线、母线长)
3 2, (1)a = 2,r=1 则 h=_______
(2) h =3, r=4 5 则 a=_______ 6 则r=_______ (3) a = 10, h = 8
P
l A O .
r
B
答:至少需 235.5 平方米的材料. 平方米的材料.
如图,圆锥的底面半径为1 如图,圆锥的底面半径为1,母线长 一只蚂蚁要从底面圆周上一点B 为6,一只蚂蚁要从底面圆周上一点B 出发, 出发,沿圆锥侧面爬行一圈再回到点 B,问它爬行的最短路线是多少? 问它爬行的最短路线是多少?
S h A O r B l
童心玩具厂欲生产一种圣诞 老人的帽子, 老人的帽子,其帽身是圆锥 如图)PB=15cm )PB=15cm, 形(如图)PB=15cm,底面半 r=5cm, 径r=5cm,生产这种帽身 10000个 10000个,你能帮玩具厂算 一算至少需多少平方米的材 料吗(不计接缝用料, 料吗(不计接缝用料,和余 3.14,)? 料,π取3.14,)?

24.4.2圆锥的侧面积和全面积

24.4.2圆锥的侧面积和全面积

(1)R = 2, r = 1
(2) h=3, r=4
则 r =________
则 r =__________
n
h
R
r
练习
1.. 一个圆柱形水池的底面 半径为4米,池深1.2米.在池的 内壁与底面抹上水泥,抹水泥 25.6π 平方米. 部分的面积是______
2..如果圆锥的底面周长是20π, 侧面展开后所得的扇形的圆心 角为120度,则该圆锥的侧面积 为_____,全面积为_______
1 圆锥的侧面积为 3.89 20.98 40.81 m 2 2
3.342 + 22 3.89 m
20 31.45 + 40.81 1445 m2
例1、已知:在RtΔABC,
C = 90 . AB = 13cm, BC = 5cm
0
求以AB为轴旋转一周所得到的几何体的全面积。 分析:以AB为轴旋转一周所得到的几何体是由 公共底面的两个圆锥所组成的几何体,因此求 全面积就是求两个圆锥的侧面积。
圆锥是由一个底面和一个侧面围成的.
我们把连接圆锥顶点和底面圆周上任意
一点的线段叫做圆锥的母线.
A 母线 B
底面
R
C
侧面
圆锥的认识 圆锥的底面半径、高线、 母线长三者之间的关系:
A
R
R = h
2
2
+ r
2
h
B O r 把圆锥模型沿着母线剪开,
C
观察圆锥的侧面展开图.
5.圆锥的侧面积和全面积
问题: 1、沿着圆锥的母线,把一个圆锥的侧面展开,得 到一个扇形,这个扇形的弧长与底面的周长有什 么关系? 相等 2、圆锥侧面展开图是扇形,这个扇形的半径与圆 锥中的哪一条线段相等? 母线

3.6-圆锥的侧面积和全面积

3.6-圆锥的侧面积和全面积

圆锥有一个顶点和一个底面, 底面是一个圆.
连结圆锥顶点和底面圆心 的线段和圆锥底面垂直,这 条线段叫做 圆锥的高线
用平行于圆锥底面的平面去 截圆锥,得到的截面是圆,在 不同位置所截得的圆的半径, 与底面半径均不等。
用过圆锥的高线的平面截圆 锥,得到的截面(圆锥的轴 截面)是等腰三角形 它的底边是圆锥底面的直径 底边上的高线就是圆锥的高线
(2) h =3, r=4

5 l =_______ 6 则r=_______
(3)
= 10, h = 8
l
图 23.3.6
合作学习:
(1) 将一个圆锥模型(纸制)的侧面沿它的一条母 线剪开,铺平.观察所得的平面图形是什么图形;
圆锥的侧面展开图是一个扇形
(2) 圆锥的底面周长与侧面展开图有什么关系? 圆锥的底面周长就是其侧面展开图扇形的弧长. (3) 圆锥的母线与侧面展开图有什么关系? 圆锥的母线就是其侧面展开图扇形的半径。
例6、如图,圆锥的底面半径为1,母线长为3,一只蚂 蚁要从底面圆周上一点B出发,沿圆锥侧面爬到过母线 AB的轴截面上另一母线AC上,问它爬行的最短路线 是多少?
将圆锥沿AB展开成扇形ABB’ A , 解 : 将圆锥沿 将圆锥沿 AB 展开成扇形 AB 则点 CB 是 解: 将圆锥沿AB展开成扇形ABB ,解 则点 C是BB 的中点 ,:过点 B 作 BD AC ,是 解 将圆锥沿 展开成 B : AB 展开成扇形 AB B ,AB 则点 C , :: 将圆锥沿 AB 展开成扇形 AB B C是 , 则点 解 将圆锥沿 AB 展开成扇形 AB B 则点 , 则点 C 解 :B 将圆锥沿 AB 展开成扇形 AB B C B 的中点 , 垂足为 D . 垂足为 D .是 垂足为 D .BD 成扇形 AB B B 的中点,解 过点 B 作 AC , 垂足为 D . , 则点C是 垂足为 DD .r 垂足为 .r 垂足为 D . r r BA B 360 360 120 BA B 120 BAB 360 120 BAB 360 120 l r r BAB l r l 360 120 l C B BA B 360 120 中, BAD 60, A BAB 360 BAD 120 60 BAD 60 . 在 Rt ABC . 在 Rt ABC 中 , 60 BAD Rt 60 ABC , AB l BAD . 在 l l BAD 60.在RtABC中, BAD 60, AB 3. BAD 60 ., 在 Rt ABC 中 ,, BAD 60 ,A 3 3 BAD 60 . 在 Rt ABC 中 BAD 60 3 BAD 60 . 在 Rt ABC 中 BAD 60 , AB 3 . BD BD 3 3 C中, BAD 60, AB 3. 3 BD 3 2 2 3 BD 3 2 33 3 BD 2 BD 3 BD 2 3 33 答 : 它爬行的最短路线是 3.3. 它爬行的最短路线是 2 2 答 : 它爬行的最短路线 3 2 32 答: 它爬行的最短路线是 3. 答: 它爬行的最短路线是 3 33. 3 答: 它爬行的最短路线是 3 . 答 : 它爬行的最短路线是 3. 2 2 线是 3. 2 2 2

40圆锥的侧面积和全面积教案

40圆锥的侧面积和全面积教案

圆锥的侧面积和全面积教案教学目标:1. 理解圆锥的侧面积和全面积的概念。

2. 学会计算圆锥的侧面积和全面积。

3. 能够应用圆锥的侧面积和全面积解决实际问题。

教学重点:1. 圆锥的侧面积和全面积的概念。

2. 计算圆锥的侧面积和全面积的方法。

教学难点:1. 圆锥的侧面积和全面积的计算方法。

教学准备:1. 圆锥模型。

2. 直尺、圆规等绘图工具。

教学过程:一、导入(5分钟)1. 引导学生观察圆锥模型,让学生尝试描述圆锥的特征。

2. 提问:圆锥的侧面积和全面积是什么意思?二、新课讲解(15分钟)1. 讲解圆锥的侧面积的概念:圆锥的侧面积是指圆锥的侧面展开后形成的扇形的面积。

2. 讲解圆锥的全面积的概念:圆锥的全面积是指圆锥的底面积和侧面积之和。

3. 讲解计算圆锥的侧面积的方法:利用圆锥的侧面展开图,计算扇形的面积。

4. 讲解计算圆锥的全面积的方法:将底面积和侧面积相加。

三、例题解析(15分钟)1. 给出一个圆锥的侧面展开图,让学生计算圆锥的侧面积。

2. 给出一个圆锥的底面和侧面,让学生计算圆锥的全面积。

四、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 解答学生提出的问题,给予及时的指导和帮助。

五、总结与反思(5分钟)1. 让学生总结本节课所学的内容,巩固知识点。

2. 提问学生:如何应用圆锥的侧面积和全面积解决实际问题?教学延伸:1. 引导学生进一步学习圆锥的体积计算。

2. 让学生尝试解决与圆锥侧面积和全面积相关的实际问题。

教学反思:本节课通过讲解、例题解析和课堂练习,让学生掌握了圆锥的侧面积和全面积的概念及计算方法。

在教学过程中,要注意引导学生观察实物,培养学生的空间想象能力。

通过课堂练习和教学延伸,让学生巩固所学知识,提高解决问题的能力。

六、圆锥侧面积和全面积的公式推导教学目标:1. 理解圆锥侧面积和全面积的公式推导过程。

2. 学会运用公式计算圆锥的侧面积和全面积。

教学重点:1. 圆锥侧面积和全面积的公式推导过程。

27.3.2圆锥的侧面积和全面积

27.3.2圆锥的侧面积和全面积

h2 r
例4.童心玩具厂欲生产一种圣诞老人的帽子,其 圆锥形帽身的母线长为15cm,底面半 径为5cm,生产这种帽身10000个,你 能帮玩具厂算一算至少需多少平方 米的材料吗(不计接缝用料和余料, π取3.14 )?
解:∵ l =15 cm,r=5 cm, 1 ∴S 圆锥侧 = ×2πrl 2 =π×15×5 ≈3.14×15×5 =235.5 (cm2) ∴ 235.5×10000=2355000 (cm2)
圆锥的底面半径、高线、母线长 三者之间的关系:
a h r
2 2
2
例如:已知一个圆锥的高为
h
a r
6cm,半径为8cm,则这个圆
锥的母长为_______ 10cm
练一练 填空: 根据下列条件求值(其中r、h、a 分别是圆 锥的底面半径、高线、母线长)。
5 (1) h =3, r=4 则 a =_______
27.3.2圆锥的侧 面积和全面积
学习目标
1、掌握圆锥的特征,了解圆锥的侧面积计算公式,并 会应用公式解决圆锥的侧面积和全面积问题。 2、让学生通过观察、想象、在猜想结果,最后讲过实 践得出结论。 3、培养学生初步的空间想象能力和相应的计算能力。
学习重点
圆锥的侧面展开图,计算圆锥的侧面积和全面积。
C. 28cm2
D. 15cm2
3、根据下列条件求圆锥侧面积展开图的圆心 角( θ r 、h 、 l 分别是圆锥的底面半径、高线、 母线长) (1 )
l=
l
h r
2,r = 1
180° 则 θ =________
(2) h=3, r=4
则 θ =__________ 288°
θ
h
l
r

2.8圆锥的侧面积(解析版)

2.8圆锥的侧面积(解析版)

2.8圆锥的侧面积一、圆锥的侧面积和全面积 连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线. 圆锥的母线长为,底面半径为r,侧面展开图中的扇形圆心角为n°,则 圆锥的侧面积2360lS rlpp=扇n=,圆锥的全面积.要点: 扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.A.25π3B.12π【答案】B【分析】由几何体的三视图可得出原几何体为圆锥,根据图中给定的数据由勾股定理求出母线用侧面积公式即可得出结论.【解析】解:由三视图可知,原几何体为圆锥,A.2cm B.22cm C.【答案】D【分析】先利用弧长公式得到圆心角为120°,半径为形,扇形的弧长等于圆锥的底面圆的周长,则可计算出圆锥的底面圆的半径为装需要用如图所示的等腰三角形AOB的材料,其中时,OD、OE恰好重合,其中弧DE与AB相切,求圆锥底面的直径.∵弧DE 与AB 相切,∴90OFB Ð=°,∵12cm AO BO ==,AOB Ð=A.2【答案】C【分析】利用圆锥的底面周长等于侧面展开图的扇形弧长,根据弧长公式计算.【解析】解:∵圆的半径A.120°B.135°A.(30529)p+米C.(30521)p+米2【答案】A【点睛】本题考查的是平面展开∵ 150351802 BCp××==∴设弧BC所对的圆心角的度数为55n p××..C.D.【答案】D【解析】因为MN为圆锥底面的直径,展开后D图中MN即为直径,也为所爬过的最短路线的痕迹,故选D.二、填空题【点睛】本题考查圆锥侧面的最短路径问题,掌握弧长公式,会利用弧长与圆锥底面圆的关系确定侧面展开图的圆心角,会用勾股定理求出最短路径是解题关键.一、单选题∵圆锥的底面半径为4cm ,∴圆锥的底面圆周长是28C r p p ==e ∵侧面展开图的面积为26cm p ,∴侧面展开图的面积1122S l C ==e g 侧面∴圆锥的母线长为32l =,A .35B 【答案】D 【分析】求得弧CE 的长即为圆锥的底面周长,求得底面半径再由勾股定理解答即可.【解析】解:过B 作BP∵正六边形的每个内角都是∴60ABP Ð=°, AC AE =∴22sin 60AC AP AB ==×∴60CAE Ð=°,A .4p【答案】C【解析】连接BC ,AO 由题意,得:90CAB Ð=∵,,A B C 在O e 上,∴BC 为O e 的直径,AO 在Rt ABO V 中, AB OB =即扇形的半径为:2R =【答案】225π【分析】先根据扇形的面积公式计算出扇形的面积40p【解析】解:∵扇形的面积=∴圆锥的侧面积为225π2cm,故答案为:225π.【答案】52【分析】连接BC,根据直径所对的圆周角为直角,得出弧长公式,求出 BC的长,然后根据圆锥的底面周长等于公式,即可求出该圆锥的底面半径.【点睛】本题考查了圆周角定理的推论,勾股定理,弧长公式,圆锥的底面半径,解题关键是掌握圆锥的侧面展开图是扇形,该扇形的弧长等于圆锥的底面周长.16.如图,圆锥的轴截面是边长为到P点的最短路线的长为.【答案】16π+162π.【分析】根据旋转得到若将该卡片绕直线上面去掉一个以CF为底面,高为【解析】∵AD=2 cm,DB【点睛】此题考查平面图形旋转得到几何体,考查空间想象能力,考查了圆的面积公式,圆锥的侧面面积公式,此题能根据图形利用空间想象能力得到旋转后的几何体为上面去掉一个圆锥的圆台由此进行计算是解题的关键.18.如图,在四边形ABCD 中,,2,AD BC AD =∥【答案】34/0.75【分析】由切线的性质可知ABE V 为直角三角形,由直角三角形,得45BAE Ð=°,DAE Ð1352 1.5p p =´=,易知弧长为圆锥的底面圆的周长,由半径等于周长除以(1)圆锥的底面半径;(2)圆锥的全面积.(1)求这个扇形的面积;(2)若将此扇形围成一个无底的圆锥(不计接头),求此圆锥底面圆的半径.【答案】(1)π(2)12∵扇形BAC 是圆心角为90∴90BAC Ð=°,AB AC =∴22BC =,由222AB AC BC +=得AB 290π2´(1)化简M ;(2)如图,a 、b 分别为圆锥的底面半径和母线的长度,若圆锥侧面积为1(1)请在图中确定该圆弧所在圆心(2)连接AD CD 、,则D e 的半径为(3)若扇形DAC 是某一个圆锥的侧面展开图,求该圆锥的底面半径.【答案】(1)画图见解析,(2(3)解:由题意得,该圆锥的底面半径为【点睛】本题考查了垂径定理的推论以及圆锥的有关计算,勾股定理和勾股定理得逆定理.用到的知识点(2)∵八边形ABCDEFGH是正八边形,360o。

3.6-圆锥的侧面积和全面积

3.6-圆锥的侧面积和全面积

英语培训机构
可以升至3级,请宿主再接再厉/""漂亮啊,流逊果真就是流逊/对咯,操作界面为甚么此次奖励君主点和经验那么多?"东舌在南阳收到大胜の消息,顿时拍手叫好."复兴宿主,因为此战难度极大,宿主能够打赢,实属否易,以是奖励增多/".逃到 城外の隋军,汤延昭心知再否走,怕是那壹万戎马都得交接在那咯."传我下令,人人否要慌,三军东撤/"汤延昭敕令壹下,总算军心稍微稳定咯壹些,叁军在荒野之中急忙逃奔."贼军哪里走,吐茂公在此/"正当汤延昭率兵急退之时,大江南北突然 出现壹群士兵,打着杜字旗号,为首壹人恰是钱塘王の首席谋士,吐茂公."否可能/那否可能,为甚么您们会有那么多の军队,那否可能/"汤延昭开始有点否敢信任眼前の壹幕,少说眼前至多有七千兵马.吐茂公抚扇壹笑,"您否信也得信,克期就 让您败个明白,半月前,我早知隋军欲意西伐,以是我并别有会到姜洲,而是去咯南方杜伏威の地皮,借兵七千,本日,您就受死吧/""叁军将士,冲啊/"吐茂公壹声令下,杜军横勇冲前.隋军刚刚稳定の军心瞬间再次被冲乱,汤延昭急忙下令"各人 快跑,快撤啊/"隋军真当丧家之犬壹般,连路逃跑,跑得及の狼狈否堪,跑否及の薄情被杀,再无反抗之力.壹番折腾下来,大军仅剩下壹万大军,没法只能在溪涧便暂行休息."贼军哪里走,淮南方士载在此!"刚刚逃过壹劫,突然杀气再起,四周树 林中再一次の戎马再现,为首壹人身挂青黑甲,手执壹柄狼牙大刀,此人恰是乱入の周艾.原来周艾熟读兵书,心知隋军否论取胜或者撤退,定走此路,所以早就潜藏咯叁千重甲兵在此伏击,今天别日果然否出所料,自己投上门.叁千重甲兵又是壹 冲,隋军再禁否起折腾,只得被无尽の屠杀.汤延昭提枪与周艾战成壹团,因为连番皆败,汤延昭心

3.6-圆锥的侧面积和全面积

3.6-圆锥的侧面积和全面积

; / 硅藻泥加盟
猪猪爬还要难看!爷居然要模仿那种字体,实在是有失颜面!可是为咯婉然,他全都忍下咯。现在他才晓得,她の字居然那么漂亮,居然能让他误以为是字帖!第壹卷 第533章 倩兮看着那清新秀丽又别失力道の字体,他真是越看越喜欢,字如其人,像她那样娇娇柔柔、小小巧巧の人,选择那种字体真是太适合她咯,怪别得能写得那么好。相反,无论是 颜体大楷还是米芾狂草,气势都太过大气滂沱,她那么娇弱の人实在是撑别起来,选择倪瓒の簪花小楷作为她の首选主攻方向真是选得太对咯。在心中暗暗夸赞完水清の字体,王 爷又禁别住欣赏起她の文采。虽然只是事无巨细地记忆咯每壹天府里发生の大大小小事情,但是就算仅仅只是壹各流水账,就算水清只是随意地写写而已,可是呈现在他面前の那 各汇报,遣词造句甚为得体,字斟句酌,言简意赅,又极富文采,读起来朗朗上口、壹气呵成,就好像那些事情就真切地发生在他の眼前似の。特别是再跟小福子の那各语句别通、 错字连篇,他要连蒙带猜才能读懂の汇报两相比较,那各如字帖般の汇报别晓得要好上好些倍,完全就是云泥之别。那就是他の侧福晋?娶回府里当咯他五年の侧福晋,居然才华 是那么出众?以前他只晓得她の“诡计多端”,她の桀骜别驯,她の倔强冷漠,今天他真是第壹次充分地领略到她の另壹面。更重要の是,从她汇报の内容上来看,与小福子の内 容壹模壹样,说明她没什么丝毫の隐瞒和做假,尽职尽责地履行着她の职责。原本留下小福子是为咯防范她有啥啊别轨企图,现在却变成咯有力地证明咯她是多么の忠于职守,多 么の诚实无欺。既有出众の文采,又有坦诚の心灵,简直就是壹块稀世珍宝,静静地陪伴咯他五年の时光,可是他怎么就壹点儿也没什么发现呢?是啥啊蒙蔽咯他の双眼,让他别 但没什么珍视她の美好,反而屡屡产生误会,甚至是令她蒙受咯别白之冤?可是他壹贯自诩看人の眼光既独到又老辣,几乎从来就没什么看错过人,可是那壹次,他有点儿心虚气 短起来,竟然败在咯排字琦の手下。假设别是排字琦壹意孤行,极力地推荐水清,那块稀世珍宝别晓得还要被蒙蔽多久才会放射出它璀璨而夺目の光芒?壹时理别出头绪の他禁别 住提起笔,另寻咯壹页纸,在上面无意识地写咯起来,壹边写壹边苦苦地思索着,企图寻找出答案。满脑子浮想联翩,使他竟别知刚刚落笔都写咯些啥啊,所以待他回过神儿来之 后,定睛壹看,才惊讶地发现他刚刚写在纸上の,居然是壹句诗:手如柔荑,肤如凝脂,领如蝤蛴,齿如瓠犀,螓首蛾眉,巧笑倩兮!美目盼兮!望着自己无意识地写下の,出自 《诗经•卫风•硕人》の诗句,完全就是心之所想,跃然纸上,他の眼前别禁浮现出水清那娇俏の模样:时而天真、时而倔强、时而温顺、时而愤怒、时而骄傲、时而冷漠、时而 ……各式各样表情の水清,轮番地出现在他の眼前,令他の眉头锁得更紧。第壹卷 第534章 心乱想着想着,他有些自我解嘲地笑咯笑,“巧笑倩兮,美目盼兮”,他有那么多の 公文别看,居然还有闲功夫胡思乱想啥啊呢?于是随手就将那页胡乱写咯些诗句の纸,连带着那四十三页纸の管家汇报,壹并随手塞进咯书桌の抽屉里。虽然他将那些纸页放进咯 抽屉里,虽然他开始专心致志地看起咯公文,可是破天荒地,竟又莫名其妙地心烦气燥起来。在他の诸人中,除咯淑清以外,全都大字别识壹各,即使是识字の淑清,也仅仅是只 识得别到百十来各字。可就是那区区别到百十来各字,也使她在壹众女眷中立即脱颖而出,卓而别群。而他又是壹各汉学造诣极深の人,即刻视淑清为知己。所以,虽然她持宠而 骄、小脾气别断,仍然能够独享二十年专房独宠。那也是排字琦空有高贵の出身、纯正の血统、尊贵の地位,空有嫡福晋の名分,最终也未能与他修成正果の最主要の原因。而他 现在才发现,那各被他别情别愿地娶进府里已经有五年の侧福晋,别仅仅是能读书会写字,更是写得壹手好文章,即使是每日の小小の管家汇报全都当作壹篇大作来对待,字字珠 玑、条理清晰、文字流畅、用语准确,读起来简直就是栩栩如生、畅快淋漓。那四十三页纸の管家汇报,搅得他心绪别宁、坐立别安,如此强烈地冲击着他の大脑。那是壹各啥啊 样の诸人?才华横溢,聪明伶俐,饱读诗书,足智多谋、模样秀美,淡定从容,谦虚谨慎,怎么她身上の那些美德全都是他喜欢の?壹想到那里,他の眼前别由自主地浮现出她の 模样,昨日里她怀抱着五小格对他和十三小格笑吟吟の模样。眼看着日头有些偏斜咯,他才发现,计划中要完成の事情壹件也没什么办完,满脑子里想の全是她!再那样下去,公 务全要被耽搁咯。可是,即使公文全要被耽误咯,也无法阻挡住他迫别急待地想要晓得他娶回府中の那各宝藏中,还埋藏着好些奇珍异宝の念头。根本无法踏实下心来の他于是索 性将公文壹推,吩咐秦顺儿,去怡然居。“回爷,奴才跟怡然居说您啥啊时候到?”“别用传口信儿咯,现在就去。”没什么得到提前通报,怡然居里无论是主子还是奴才们都各 自忙着自己手中の事情,以至于作为全府之中最高领导到来の时候,竟然没什么壹各奴才在大门口恭迎他の大驾光临。对于怡然居从主子到奴才壹贯如此懒散の局面,他已经见惯 别怪咯。平心而论,那样の结果也别能完全算是水清の责任,他几乎从别过来,那五、六年来,他才

圆锥的侧面积和全面积上

圆锥的侧面积和全面积上
3.4.2 圆锥的侧面积和全面积
一、知识回顾 1、弧长计算公式
2、扇形面积计算公式
l nR
180
s nR2
360
或s 1 lR 2
图片欣赏
1.经历探索圆锥侧(全)面积计算公式的过程,发展学生 的实践探索能力. 2.了解圆锥的侧(全)面积计算公式后,能用公式进行计 算,训练学生的数学应用能力.
180
4
4
显然OC SO 因此马强的说法正确.
O′
A′
6.已知:在RtΔABC,∠C=90°,AB=13cm, BC=5cm. CD⊥AB于点D.求以AB为轴旋转一周所得到的几何体的全 面积.
A
旋转得到怎样的几何体?
D
C
B
分析:以AB为轴旋转一周所得到的几何体 是由公共底面的两个圆锥所组成的几何体, 因此求全面积就是求两个圆锥的侧面积.
a
h
24π cm2
A
O r
B 答:圆锥形零件的侧面积是ቤተ መጻሕፍቲ ባይዱ24cm2 .
1.根据圆锥的下面条件,求它的侧面积和全面积
(1)r=12cm, l=20cm
240π 384π
(2)h=12cm, r=5cm
65π 90π
2.一个圆锥的侧面展开图是半径为18cm,圆心角为240
度的扇形.则这个圆锥的底面半径为__1_2_c_m__
的侧面积为_1_2_0__c_m__2_.
(3)已知圆锥底面圆的半径为2cm,高为 5cm,则这个
圆锥的侧面积为_6__c_m_.2
5
2
圆锥的侧面积
S扇形
na2
360
S侧 ra
na 2
ra
360
n

圆锥的侧面积和全面积

圆锥的侧面积和全面积

A
O
C
B
Hale Waihona Puke 议一议蒙古包可以近似地看成由圆锥和圆 柱组成的.如果想在某个牧区搭建15 个底面积为33m2,高为10m(其中圆锥 形顶子的高度为2m)的蒙古包.那么 至少需要用多少m2的帆布?(结果精 确到0.1m2).
先独立思考,再与同伴交流.
如图,圆锥的底面半径为1,母线长为3,一只 蚂蚁要从底面圆周上一点B出发,沿圆锥侧面爬 到过母线AB的轴截面上另一母线AC上,问它爬 行的最短路线是多少?
A
D
B
C
回顾与思考
•你的收获和困惑有哪些?
结束寄语
下课了!
•数学使人聪明,数学使人 陶醉,数学的美陶冶着你 、我、他.
l


n 180
πR
S扇形

n 360
πR2
1 lR 2
看一看
认识圆锥:
生活中的圆锥
圆锥可以看做是一个直角三 角形绕它的一条直角边旋转 A 一周所成的图形
C
O
B
想一想P133 2
圆锥知识知多少
O
母 线
侧面 高
h
B
A r 底面半径
1A
A2
底面
做一做
圆锥的侧面积和全面积
圆锥的侧面展开图是什么图形? 是一个扇形.
例2 :已知一个圆锥的轴截面△ABC是 等边三角形,它的表面积为75 πcm2, 求这个圆锥的底面半径和母线的长。
A
B
O
C
做一做
•已知圆锥的底面直径为12cm, 母线长10cm, 求它的侧面展开图的圆心角和 表面积.
C
A OB
P88.课内练习2.
想一想

3.6-圆锥的侧面积和全面积

3.6-圆锥的侧面积和全面积
试一试:以直角三角形一条直角边所在的直线 为轴,其余各边旋转一周而成的面所围成的几何 体是……?
侧 面
圆锥可以看成是直角三角形以它的一条直 角边所在的直线为轴,其余各边旋转一周 而成的面所围成的几何体.
斜边旋转而成的曲面叫做圆锥的侧面

线
无论转到什么位置,这条斜边都叫做 圆锥的母线 另一条直角边旋转而成的面叫做圆锥的 底面
圆锥有一个顶点和一个底面, 底面是一个圆.
连结圆锥顶点和底面圆心 的线段和圆锥底面垂直,这 条线段叫做 圆锥的高线
用平行于圆锥底面的平面去 截圆锥,得到的截面是圆,在 不同位置所截得的圆的半径, 与底面半径均不等。
用过圆锥的高线的平面截圆 锥,得到的截面(圆锥的轴 截面)是等腰三角形 它的底边是圆锥底面的直径 底边上的高线就是圆锥的高线
图 23.3.6
l
2.圆锥形烟囱帽的母线长为80cm, 高为38.7cm,求这个烟囱帽的面积 ( 取3.14,结果保留2个有效数 字)
3.已知一个圆锥的轴截面△ABC是等边三角形,它的表 面积为75 cm2,求这个圆锥的底面半径和母线的长.
解:∵轴截面△ABC是等边三角形 ∴AC=2OC 由题意,得
; https:///brands/3765.html 米多面多 米多面多加盟;
区の方圆十里左右,全部用白色の材料密封掉了,只有壹个小小の出口.而在这个空间の外面,圆球形建筑の内部,却人为の用大量の灵石,铺就了复杂の纹路,在这里竟然布成了传说中の九龙回肠阵.九龙回肠阵,顾名思义,便是将灵石以特殊の手法,布置成为九条龙壹样の灵脉,然后以特别 の手法结成阵法.这样可以最大限度の提升内部の灵气浓度,可以大幅度の提升修士提升修为の速度,而这里便拥有这样の壹个九龙回肠阵.之所以称他为传说中の,是因为这个法阵不是壹般の难布置,

圆锥的侧面积和全面积全面版

圆锥的侧面积和全面积全面版
新课导入
大家见过圆锥吗?你能举出实例吗?
教学目标
• 了解母线的意义,体会母线、高与底面圆 的半径的关系. • 理解掌握圆锥的侧面积和全面积的计算公 式,并会运用它解决相关问题. • 进一步培养学生分析,解决问题的能力.
圆锥是由一个底面和一个侧面围成的图形.
母线 连接圆锥顶点和底面圆周上任意一点的线段.
AB 13 13
∴ S 表 rB C A C 1 6 3 0 1 25
1020 cm2
13
课堂小结
1. 母线
连接圆锥顶点和底面圆周上任意一点的线段.
2. 圆锥的表面 圆面(底面) 曲面(侧面)
3. 圆锥的侧面积S侧 = r l 4. 圆锥的全面积S全 = r(l r)
所以,至少需要12777边AB=13cm,一条直角边 AC=5cm,以直线AB为轴旋转一周得一个几何体。 求这个几何体的表面积。
解:在Rt△ABC中, AB=13cm,AC=5cm, ∴BC=12cm ∵OC·AB=BC·AC ∴ rO C BC AC 51 260
圆锥的侧面积S侧
= 扇形的面积S扇
=
1 2
2 r
l
S扇形

n R 2
360
1 lr 2
lh
r
= rl
探究
圆锥的全面积S全
= 侧面(扇形)的面积 + 底面圆周的面积
= 1 2 r l + r 2
2
= rl + r 2
= r(l r)
lh r
例题
圣诞节将近,某家商店正在制作圣诞节的圆 锥形纸帽。已知纸帽的底面周长为58cm,高为 20cm,要制作20顶这样的纸帽至少要用多少平

圆锥基础知识

圆锥基础知识

圆锥基础知识圆锥也称为圆锥体,是一种三维几何体,是平面上一个圆以及它的所有切线和平面外的一个定点确定的平面围成的形体。

那么你对圆锥了解多少呢?以下是由店铺整理关于圆锥知识的内容,希望大家喜欢!圆锥的概念圆锥的高:圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离。

圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。

圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形侧面展开图是扇形。

圆锥侧面展开是一个扇形,已知扇形面积为二分之一rl。

所以圆锥侧面积为二分之一母线长×弧长(即底面周长)。

另外,母线长等于底面圆直径的圆锥,展开的扇形就是半圆。

所有圆锥展开的扇形角度等于(底面直径÷母线)×180度。

圆锥的绘制方法圆锥体展开图的绘制十分简单。

通过绘制展开图可以精确求出圆锥体的侧面积。

体展开图圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。

在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径) ∵弧AB=⊙O的周长∴弧AB=πd∵弧AB=2πa(∠1/360°)∴2πa(∠1/360°)=πd∴2a(∠1/360°)=d将a,d带入2a(∠1/360°)=d得到∠1的值。

这样绘制展开图的所有所需数据都求出来了。

根据数据即可画出圆锥的展开图。

表面积一个圆锥表面的面积叫做这个圆锥的表面积 .圆锥的表面积由侧面积和底面积两部分组成。

S=πRx2(n/360)+πrx2或(1/2)αRx2+πrx2(此n为角度制,α为弧度制,α=π(n/180)圆锥的计算公式S侧=πrl=(nπl^2)/360(r:底面半径,l:母线长,n:圆心角度数)底面周长(C)=2πr=(nπl)/180(r:底面半径,n:圆心角度数,l:母线长)h=根号(l^2-r^2)(l:母线长,r:底面半径)全面积(S)=S侧+S底V=1/3Sh=1/3πr·2h(S:底面积,r:底面半径,h:高)V(圆锥)=1/3·V(圆柱)=1/3·Sh =1/3·πr2h(S:底面积,r:底面半径,h:高)。

圆锥的侧面积和全面积

圆锥的侧面积和全面积

圆锥的侧面积和全面积教学目标1、经历探索圆锥侧面积计算公式的过程2、了解圆锥侧面积计算公式,并会应用公式解决问题教学重、难点重点:圆锥的侧面积公式的推导与应用难点:综合弧长与扇形面积的计算公式计算圆锥的侧面积教学过程:一、 复习回顾1. 弧长的计算公式2.扇形面积计算公式二、探索活动1、圆锥的基本概念在右图的圆锥中,连结圆锥的顶点S 和底面圆上任意一点的线段SA 、SA 1……叫做圆锥的母线,连接顶点S 与底面圆的圆心O 的线段叫做圆锥的高。

2、圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系右图中,将圆锥的侧面沿母线l 剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r的弧长等于什么?3、圆锥侧面积计算公式从右图中可以看出,圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样,S 圆锥侧=S 扇形=21·2πr · l = πrl 4、圆锥全面积计算公式S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r )A 1三、应用【例1】(1)已知圆锥的底面半径是3cm,母线长为6cm,则侧面积为________cm2.(2)已知圆锥的高是30cm,母线长是50cm,则圆锥的侧面积是. 全面积是________ 【例2】根据下列条件求圆锥侧面积展开图的圆心角(r、h、a分别是圆锥的底面半径、高线、母线长)(1)a = 2,r = 1 则n =________(2) h=3, r=4 则n =__________【例3】已知圆锥底面半径为10cm,母线长为40cm. 求它的侧面展开图的圆心角和全面积【练习】1.已知圆锥的底面半径为6,母线长为10,则这个圆锥的高为_______2.已知一个圆锥的底面半径为12cm,母线长为20cm,则这个圆锥的侧面积为_________,全面积_________3.已知圆锥侧面展开图的扇形面积为65c㎡,扇形的弧长为10㎝,则圆锥的母线长是_____【中考链接】1.如图,圆锥的底面半径为1,母线长为6,一只蚂蚁要从底面圆周上一点B出发,沿圆锥侧面爬行一圈再回到点B,问它爬行的最短路线是多少?2.如图,圆锥的底面半径为1,母线长为3,一只蚂蚁要从底面圆周上一点B出发,沿圆锥侧面爬到过母线AB的轴截面上另一母线AC上,问它爬行的最短路线是多少?四、课堂小结圆锥的侧面积公式与全面积公式。

39圆锥的侧面积和全面积教案

39圆锥的侧面积和全面积教案

圆锥的侧面积和全面积一、教学目标(一)知识与技能:1.了解圆锥母线的概念;2.理解圆锥侧面面积计算公式,理解圆锥全面积的计算方法,并会应用.(二)过程与方法:过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解诀现实生活中的一些实际问题.(三)情感态度与价值观:培养学生的观察、想象、实践能力,获得数学学习经验,懂得数学与生活的密切联系.二、教学重点、难点重点:圆锥侧面积和全面积的计算公式的探索与运用.难点:探索圆锥侧面积计算公式.三、教学过程知识回顾1.弧长计算公式:2.扇形面积计算公式:S 扇形=或S 扇形=生活中的圆锥创设情境小明想要给斗笠的侧面贴上一层油纸进行保护,你能帮他计算出所需要的油纸吗?圆锥的相关概念圆锥是由一个底面和一个侧面围成的几何体,它的底面是一个圆面,它的侧面是一个曲面.我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线,连接圆锥顶点和底面圆心的线段叫做圆锥的高.母线有无数条,且都相等.圆锥的底面半径、高、母线长三者之间的关系:h 2+r 2=l 2思考180Rn l π=3602R n πlR 21圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?如图,沿一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形. 设圆圆锥的母线长为l ,底面圆的半径为r ,那么这个扇形的半径为___,扇形的弧长为_____,因此圆锥的侧面积为_____,圆锥的全面积为___________.S 侧面=πrl =π×20×30=600π(cm 2)例3 蒙古包可以近似地看作由圆锥和圆柱组成.如果想用毛毡搭建20个底面积为12m 2,高为3.2m ,外围高1.8m 的蒙古包,至少需要多少平方米的毛毡(π取3.142,结果取整数)?解:右图是一个蒙古包的示意图.根据题意,下部圆柱的底面积为12m 2,高h 2=1.8m ;上部圆锥的高h 1=3.2-1.8=1.4(m ).圆柱的底面圆的半径(m )侧面积为 2π×1.954×1.8≈22.10(m 2)圆锥的母线长(m )侧面展开扇形的弧长为 2π×1.954≈12.28(m )圆锥的侧面积为×2.404×12.28≈14.76(m 2)因此,搭建20个这样的蒙古包至少需要毛毡20×(22.10+14.76)≈738(m 2).练习1.圆锥的底面直径是80cm ,母线长90cm ,求它的侧面展开图的圆心角和圆锥的全面积.解:根据题意得,圆锥的底面周长是80πcm ,底面积是1600πcm2.因此圆锥的侧面展开图的圆心角为圆锥的侧面积为×80π×90=3600π(cm 2)圆锥的全面积为 1600π+3600π=5200π(cm 2)2.如图,圆锥形的烟囱帽的底面圆的直径是80cm ,母线长是50cm ,制作100个这样的烟囱帽至少需要多少平方米的铁皮?解:圆锥的底面周长是80πcm954.112≈=πr 404.24.1954.122≈+=l 21 1609080180=⨯ππ21侧面积是×80π×50=2000π(cm 2)因此,制作100个这样的烟囱帽至少需要铁皮100×2000π=200000π(cm 2)=20π(m 2)课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调学生应熟练掌握相关公式并会灵活运用. 要充分发挥空间想象力,把立体图形与展开后的平面图形各个量准确对应起来.21。

圆锥的全面积的公式

圆锥的全面积的公式

圆锥的全面积的公式圆锥是一种常见的几何体,它由一个圆形底面和一个顶点连接而成。

圆锥的全面积是指圆锥的底面积和所有的侧面积之和。

下面我们将详细介绍圆锥的全面积的计算方法。

我们来计算圆锥的底面积。

圆锥的底面是一个圆形,其面积的计算公式是πr^2,其中π是一个常数,约等于3.14159,r是圆的半径。

所以圆锥的底面积等于底面圆的半径的平方乘以π。

接下来,我们来计算圆锥的侧面积。

圆锥的侧面是由圆锥的底面到顶点的直线形成的,可以将侧面展开成一个扇形。

扇形的面积计算公式是1/2rθ,其中r是扇形的半径,θ是扇形的中心角的大小。

由于圆锥的底面是一个圆形,所以扇形的半径就是圆锥的斜高,而中心角的大小可以通过三角函数来计算。

根据三角形的正弦定理,我们可以得到斜高的长度等于底面半径除以正弦角的值。

因此,我们可以将扇形的面积计算公式改写为1/2r(2π-2π/3)=πr^2/3。

我们将圆锥的底面积和侧面积相加,就可以得到圆锥的全面积。

即全面积=底面积+侧面积=πr^2+πr^2/3=4πr^2/3。

通过上述计算过程,我们可以得到圆锥全面积的计算公式为4πr^2/3。

这个公式可以应用于任意大小的圆锥,只需要知道圆锥的底面半径即可计算出它的全面积。

需要注意的是,这个公式只适用于圆锥,不适用于其他形状的锥体。

如果是其他形状的锥体,计算全面积的方法会有所不同。

在实际应用中,计算圆锥的全面积可以帮助我们解决一些几何问题。

例如,在建筑工程中,如果我们知道了圆锥的底面半径和高度,就可以通过计算全面积来确定圆锥的表面积,从而帮助我们估计所需的材料量。

在数学教育中,计算圆锥的全面积也是培养学生几何思维和推理能力的重要内容之一。

圆锥的全面积可以通过圆锥的底面积和侧面积之和来计算。

底面积是圆的面积,可以通过πr^2来计算;侧面积是由底面到顶点的直线形成的扇形的面积,可以通过πr^2/3来计算。

将底面积和侧面积相加,就可以得到圆锥的全面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥的侧面积和全面积
设圆锥的母线长l ,底面圆半径r ,则侧S =_________,全S =_______________。

1.在边长为20的等边ΔABC 纸片中,以C 为圆心,高为半径画弧分别交AC,BC 于点D,E ,则扇形CDE 所围成圆锥底面圆的半径为_________。

2.圆锥底面圆直径为16,高为6,则侧S =_________,侧面展开图的圆心角为_________°。

3.若圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的圆心角为_________°。

4.用半径为30的半圆做成圆锥的侧面,则圆锥的锥角为_________°。

5.如图,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成圆锥,设圆半径为r ,扇形半径为R ,则R 和r 之间关系为____________。

6.以周长为20,一角为60°的菱形较长的对角线为轴将菱形旋转一周,所得几何体的表面积
7.如图,同底等高的圆柱和圆锥,它们的底面直径和高相等,则圆锥和圆柱的侧面积比为____
8.如图,将圆桶中的水倒入一个直径为40,高55的圆口容器,圆桶放置的角度与平面线的夹角为45°,若将容器的水面与圆桶相接触,则容器中水的深度至少为_________。

9.农村经常搭建横截面为半圆的全封闭塑料薄膜蔬菜大棚,如图,需要薄膜面积为_________ 10.如图,是锥角为90°的圆锥形灯罩AOB ,,若灯泡O 距地面2
米,则光束照到地面面积是
11.小虫从点P 绕圆锥侧面爬行回到点P 的最短路线的痕迹如图,若沿OM 展开侧面,得到
A B C D
12.如图,EF=OE=OF=10,FA=2,蚂蚁从E 沿圆锥侧面爬到A 的最短距离是_________。

13.用矩形纸板做一个高为4,底面周长为6 的圆锥形漏斗,则至少需要纸板面积为______。

14.一个圆锥的高为33,侧面展开图是半圆。

求: (1)圆锥的母线与底面半径之比; (2)锥角的大小; (3)圆锥的表面积。

15.如图,圆锥的高PO=103,母线PA=PB=105,ΔPAB 是过圆锥顶点P 的截面,此截面把圆锥底面的圆周截成1:3.求:(1)底面圆的半径;(2)截面PAB 的面积。

16.问题:要将一块直径为2的半圆形铁皮加工成一圆柱的两底面和一圆锥的底面。

操作:方案一:设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(画出图形)。

探究:(1)求方案一中圆锥底面的半径;
(2)求方案二中圆锥底面及圆柱底面的半径;
(3)设方案二中半圆圆心为O ,圆柱两个底面的圆心为21,O O 圆锥底面圆心为3O ,则四边形231O O OO 是_____________。

(直接填出,不需要证明)
17.工人师傅要充分利用一块边长为100
的正三角形薄铁皮材料制作一个圆锥体模型。

(1)这块三角形铁皮的面积为__________;
(2)假如圆锥是无底模型,且三角形铁皮利用率最高,请你画出裁剪方案的图形,并求出铁皮的利用率;
(3)假如要用这块铁皮裁一圆形和一扇形,恰好做成圆锥,且三角形铁皮利用率最高,请你画出裁剪方案的图形,并求出铁皮的利用率;
C
A
B
E
F M N 图①
C
A
B
E M
N 图②
18.如图1,长4米的梯子AB 斜靠在与地面OM 垂直的墙ON 上,∠B=60° (1)AO=_________米;BO=_________米;
(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行。

如图2,当A 点下滑到A',B 点向右滑行到B',梯子AB 的中点P 也随之运动到P'点,量得PP'=(2232-)米,此时梯子的中点P 走过的路程是多少米?
19.如图,正ΔABC 的中心恰好为扇形ODE 的圆心,且点B 在扇形内,要使扇形ODE 绕点O 无论怎样转动,ΔABC 与扇形重叠部分的面积总等于ΔABC 的面积的3
1
,扇形的圆心角应为多少度?说明你的理由。

20.已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .
(Ⅰ)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图①,求证:222
BN AM MN +=;
思路点拨:考虑222
BN AM MN
+=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM
沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以了.
请你完成证明过程:
(Ⅱ)当扇形CEF 绕点C 旋转至图②的位置时,关系式222
BN AM MN +=是否仍然成立?若成立,
请证明;若不成立,请说明理由.。

相关文档
最新文档