中考数学试卷分类汇编:代数几何综合

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考全国100份试卷分类汇编

代数几何综合

1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2

关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭

⎫ ⎝⎛232,D 在抛物线上,直线是一次函数

()02≠-=k kx y 的图象,点O 是坐标原点.

(1)求抛物线的解析式;

(2)若直线平分四边形OBDC 的面积,求k 的值.

(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.

答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),

由点D(2,1.5)在抛物线上,所以⎩

⎨⎧=++=+-5.1240

c b a c b a ,所以3a+3b=1.5,即a+b=0.5,

又12=-

a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以2

3

212++-=x x y . (2)由(1)知2

3

212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,

令kx -2=1.5,得l 与CD 的交点F(23

,27k ),

令kx -2=0,得l 与x 轴的交点E(0,2

k

),

根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,

即:

,5

11),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(2

1

232122+--=++-=x x x y

所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为2

2

1x y -

=

假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1, 所以

1

1

11PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为

N

M

N M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以(t+2)(x M +x N )=2k x M x N,……(2) 把y=kx-2(k ≠0)代入2

2

1x y -

=中,整理得x 2+2kx-4=0, 所以x M +x N =-2k, x M x N =-4,代入(2)得t=2,符合条件,

故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称.

考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.

点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。问题设计富有梯度、由易到难层层推进,既考查了知识掌握,也考查了方法的灵活应用和数学思想的形成。

2、(绵阳市2013年)如图,二次函数y =ax 2+bx +c 的图象的顶点C 的坐标为(0,-2),交x 轴于A 、B 两点,其中A (-1,0),直线l :x =m (m >1)与x 轴交于D 。 (1)求二次函数的解析式和B 的坐标;

(2)在直线l 上找点P (P 在第一象限),使得以P 、D 、B 为顶点的三角形与以B 、C 、O 为顶点的三角形相似,求点P 的坐标(用含m 的代数式表示); (3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q ,使△BP Q 是以P 为直角顶点的等腰

直角三角形?如果存在,请求出点Q 的坐标;如果不

存在,请说明理由。

解:(1)①二次函数y=ax 2+bx+c 图象的顶点C 的坐

标为(0,-2),c = -2 , - b 2a = 0 , b=0 ,

点A(-1,0)、点B 是二次函数y=ax 2-2 的图象与x 轴的交点,a-2=0,a=2. 二次函数的解析式为y=2x 2-2;

②点B 与点A(-1,0)关于直线x=0对称,点B 的坐标为(1,0); (2)∠BOC=∠PDB=90º,点P 在直线x=m 上,

设点P 的坐标为(m,p ), OB=1, OC=2, DB= m-1 , DP=|p| ,

①当△BOC ∽△PDB 时,OB OC = DP DB ,12= |p|m-1 ,p= m-12 或p = 1- m

2

,

A B C D O

x y l

点P 的坐标为(m ,m-12 )或(m ,1- m

2 );

②当△BOC ∽△BDP 时,

OB OC = DB DP ,12= m-1

|p|

,p=2m-2或p=2-2m, 点P 的坐标为(m ,2m-2)或(m ,2-2m );

综上所述点P 的坐标为(m ,m-12 )、(m ,1- m

2 )、(m ,2m-2)或(m ,2-2m );

(3)不存在满足条件的点Q 。

点Q 在第一象限内的抛物线y=2x 2-2上,

令点Q 的坐标为(x, 2x 2-2),x>1, 过点Q 作QE ⊥直线l , 垂足为E ,△BPQ 为等腰直角三角形,PB=PQ ,∠PEQ=∠PDB , ∠EPQ=∠DBP ,△PEQ ≌△BDP ,QE=PD ,PE=BD ,

① 当P 的坐标为(m ,m-1

2 )时,

m-x = m-1

2 , m=0 m=1

2x 2-2- m-12 = m-1, x= 1

2 x=1

与x>1矛盾,此时点Q 不满足题设条件;

② 当P 的坐标为(m ,1- m

2

)时,

x-m= m-12 m=- 2

9 m=1

2x 2-2- 1- m 2 = m-1, x=- 56 x=1

与x>1矛盾,此时点Q 不满足题设条件;

③ 当P 的坐标为(m ,2m-2)时,

m-x =2m-2 m= 9

2 m=1

2x 2-2-(2m-2) = m-1, x=- 5

2 x=1

与x>1矛盾,此时点Q 不满足题设条件; ④当P 的坐标为(m ,2-2m )时,

x- m = 2m-2 m= 5

18 m=1

2x 2-2-(2-2m) = m-1 x=- 7

6 x=1

与x>1矛盾,此时点Q 不满足题设条件; 综上所述,不存在满足条件的点Q 。

相关文档
最新文档