数字图像处理实验代码
数字图像处理实验报告
数字图像处理实验报告实验一数字图像处理编程基础一、实验目的1. 了解MATLAB图像处理工具箱;2. 掌握MATLAB的基本应用方法;3. 掌握MATLAB图像存储/图像数据类型/图像类型;4. 掌握图像文件的读/写/信息查询;5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法;6. 编程实现图像类型间的转换。
二、实验内容1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。
2. 运行图像处理程序,并保存处理结果图像。
三、源代码I=imread('cameraman.tif')imshow(I);subplot(221),title('图像1');imwrite('cameraman.tif')M=imread('pout.tif')imview(M)subplot(222),imshow(M);title('图像2');imread('pout.bmp')N=imread('eight.tif')imview(N)subplot(223),imshow(N);title('图像3');V=imread('circuit.tif')imview(V)subplot(224),imshow(V);title('图像4');N=imread('C:\Users\Administrator\Desktop\1.jpg')imshow(N);I=rgb2gary(GRB)[X.map]=gary2ind(N,2)RGB=ind2 rgb(X,map)[X.map]=gary2ind(I,2)I=ind2 gary(X,map)I=imread('C:\Users\dell\Desktop\111.jpg');subplot(231),imshow(I);title('原图');M=rgb2gray(I);subplot(232),imshow(M);[X,map]=gray2ind(M,100);subplot(233),imshow(X);RGB=ind2rgb(X,map);subplot(234),imshow(X);[X,map]=rbg2ind(I);subplot(235),imshow(X);四、实验效果实验二 图像几何变换实验一、实验目的1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果;2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现;3.掌握matlab 编程环境中基本的图像处理函数。
数字图像处理实验报告 (图像编码)
实验三图像编码一、实验内容:用Matlab语言、C语言或C++语言编制图像处理软件,对某幅图像进行时域和频域的编码压缩。
二、实验目的和意义:1. 掌握哈夫曼编码、香农-范诺编码、行程编码2.了解图像压缩国际标准三、实验原理与主要框架:3.1实验所用编程环境:Visual C++6.0(简称VC)3.2实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:(如图3.1)图3.1 位图的文件结构具体组成图:单色DIB 有2个表项16色DIB 有16个表项或更少 256色DIB 有256个表项或更少 真彩色DIB 没有调色板每个表项长度为4字节(32位) 像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍biSize biWidth biHeight biPlanes biBitCount biCompression biSizeImagebiXPelsPerMeter biYPelsPerMeter biClrUsedbiClrImportantbfType=”BM ” bfSizebfReserved1 bfReserved2 bfOffBits BITMAPFILEHEADER位图文件头 (只用于BMP 文件)BITMAPINFOHEADER位图信息头Palette 调色板DIB Pixels DIB 图像数据3.3 数字图像基本概念数字图像是连续图像(,)f x y 的一种近似表示,通常用由采样点的值所组成的矩阵来表示:(0,0)(0,1)...(0,1)(1,0)(1,1)...(1,1).........(1,0)(1,1)...(1,1)f f f M f f f M f N f N f N M -⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥----⎣⎦每一个采样单元叫做一个像素(pixel ),上式(2.1)中,M 、N 分别为数字图像在横(行)、纵(列)方向上的像素总数。
数字图像处理matlab代码
一、编写程序完成不同滤波器的图像频域降噪和边缘增强的算法并进行比较,得出结论。
1、不同滤波器的频域降噪1.1 理想低通滤波器(ILPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4)); %将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40; %初始化d0for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if d<=d0 %点(i,j)在通带内的情况h=1; %通带变换函数else %点(i,j)在阻带内的情况h=0; %阻带变换函数ends(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('ILPF滤波后的图像(d=40)');运行结果:1.2 二阶巴特沃斯低通滤波器(BLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n=2; %对n赋初值n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40; %初始化d0for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=1/(1+(d/d0)^(2*n)); %BLPF滤波函数s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('BLPF滤波后的图像(d=40)');实验结果:1.3 指数型低通滤波器(ELPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=exp(log(1/sqrt(2))*(d/d0)^2);s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('ELPF滤波后的图像(d=40)');运行结果:1.4 梯形低通滤波器(TLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=10;d1=160;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if (d<=d0)h=1;else if (d0<=d1)h=(d-d1)/(d0-d1);else h=0;endends(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('TLPF滤波后的图像'); %为图像添加标题运行结果:1.5 高斯低通滤波器(GLPF)I1=imread('eight.tif'); %读取图像I2=im2double(I1);I3=imnoise(I2,'gaussian',0.01);I4=imnoise(I3,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I2) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I4) %加入混合躁声后显示图像title('加噪后的图像');s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分移到频谱的中心[M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整d0=40;for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 h=1*exp(-1/2*(d^2/d0^2)); %GLPF滤波函数s(i,j)=h*s(i,j); %ILPF滤波后的频域表示endends=ifftshift(s); %对s进行反FFT移动s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复数的实部转化为无符号8位整数subplot(1,3,3); %创建图形图像对象imshow(s); %显示ILPF滤波后的图像title('GLPF滤波后的图像(d=40)');运行结果:1.6 维纳滤波器[B,Cmap]=imread('eight.tif'); %读取MATLAB中的名为eight的图像I1=im2double(B);I2=imnoise(I1,'gaussian',0.01);I3=imnoise(I2,'salt & pepper',0.01);figure,subplot(1,3,1);imshow(I1) %显示灰度图像title('原始图像'); %为图像添加标题subplot(1,3,2);imshow(I3) %加入混合躁声后显示图像title('加噪后的图像');I4=wiener2(I3);subplot(1,3,3);imshow(I4); %显示wiener滤波后的图像title('wiener滤波后的图像');运行结果:结论:理想低通滤波器,虽然有陡峭的截止频率,却不能产生良好的效果,图像由于高频分量的滤除而变得模糊,同时还产生振铃效应。
数字图像处理及matlab实现源代码【1】
% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-*%{% (一)图像文件的读/写A=imread('drum.jpg'); % 读入图像imshow(A); % 显示图像imwrite(A,'drum.jpg');info=imfinfo('drum.jpg') % 查询图像文件信息% 用colorbar函数将颜色条添加到坐标轴对象中RGB=imread('drum.jpg');I=rgb2gray(RGB); % 把RGB图像转换成灰度图像h=[1 2 1;0 0 0;-1 -2 -1];I2=filter2(h,I);imshow(I2,[]);colorbar('vert') % 将颜色条添加到坐标轴对象中% wrap函数将图像作为纹理进行映射A=imread('4.jpg');imshow(A);I=rgb2gray(RGB);[x,y,z]=sphere;warp(x,y,z,I); % 用warp函数将图像作为纹理进行映射%}% subimage函数实现一个图形窗口中显示多幅图像RGB=imread('drum.jpg');I=rgb2gray(RGB);subplot(1,2,1);subimage(RGB); % subimage函数实现一个图形窗口中显示多幅图像subplot(1,2,2),subimage(I);% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-*% (二)图像处理的基本操作% ----------------图像代数运算------------------%{% imadd函数实现两幅图像的相加或给一幅图像加上一个常数% 给图像每个像素都增加亮度I=imread('4.jpg');J=imadd(I,100); % 给图像增加亮度subplot(1,2,1),imshow(I);title('原图');subplot(1,2,2),imshow(J);title('增加亮度图');%% imsubtract函数实现将一幅图像从另一个图像中减去或减去一个常数I=imread('drum.jpg');J=imsubtract(I,100); % 给图像减去亮度subplot(1,2,1),imshow(I);%% immultiply实现两幅图像的相乘或者一幅图像的亮度缩放I=imread('drum.jpg');J=immultiply(I,2); % 进行亮度缩放subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%% imdivide函数实现两幅图像的除法或一幅图像的亮度缩放I=imread('4.jpg');J=imdivide(I,0.5); % 图像的亮度缩放subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%}% ----------------图像的空间域操作------------------%{% imresize函数实现图像的缩放J=imread('4.jpg');subplot(1,2,1),imshow(J);title('原图');X1=imresize(J,0.2); % 对图像进行缩放subplot(1,2,2),imshow(X1);title('缩放图');%% imrotate函数实现图像的旋转I=imread('drum.jpg');J=imrotate(I,50,'bilinear'); % 对图像进行旋转subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%% imcrop函数实现图像的剪切I=imread('drum.jpg');I2=imcrop(I,[1 100 130 112]); % 对图像进行剪切subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(I2);%}% ----------------特定区域处理------------------%{% roipoly函数用于选择图像中的多边形区域I=imread('4.jpg');c=[200 250 278 248 199 172];r=[21 21 75 121 121 75];BW=roipoly(I,c,r); % roipoly函数选择图像中的多边形区域subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(BW);%% roicolor函数式对RGB图像和灰度图像实现按灰度或亮度值选择区域进行处理a=imread('4.jpg');subplot(2,2,1),imshow(a);I=rgb2gray(a);BW=roicolor(I,128,225); % 按灰度值选择的区域subplot(2,2,4),imshow(BW);%% ploy2mask 函数转化指定的多边形区域为二值掩模x=[63 186 54 190 63];y=[60 60 209 204 601];bw=poly2mask(x,y,256,256); % 转化指定的多边形区域为二值掩模imshow(bw);hold onplot(x,y,'r','LineWidth',2);hold off%% roifilt2函数实现区域滤波a=imread('4.jpg');I=rgb2gray(a);c=[200 250 278 248 199 172];r=[21 21 75 121 121 75];BW=roipoly(I,c,r); % roipoly函数选择图像中的多边形区域h=fspecial('unsharp');J=roifilt2(h,I,BW); % 区域滤波subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%% roifill函数实现对特定区域进行填充a=imread('4.jpg');I=rgb2gray(a);c=[200 250 278 248 199 172];r=[21 21 75 121 121 75];J=roifill(I,c,r); % 对特定区域进行填充subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);%}% ----------------图像变换------------------%{% fft2 和ifft2函数分别是计算二维的快速傅里叶变换和反变换f=zeros(100,100);subplot(1,2,1);imshow(f);f(20:70,40:60)=1;subplot(1,2,2);imshow(f);F=fft2(f); % 计算二维的快速傅里叶变换F2=log(abs(F));% 对幅值对对数figure;subplot(1,2,1),imshow(F),colorbar;subplot(1,2,2),imshow(F2),colorbar;%% fftsshift 函数实现了补零操作和改变图像显示象限f=zeros(100,100);subplot(2,2,1),imshow(f);title('f')f(10:70,40:60)=1;subplot(2,2,2),imshow(f);title('f取后')F=fft2(f,256,256);subplot(2,2,3),imshow(F);title('F')F2=fftshift(F); % 实现补零操作subplot(2,2,4),imshow(F2);title('F2')figure,imshow(log(abs(F2)));title('log(|F2|)')%% dct2 函数采用基于快速傅里叶变换的算法,用于实现较大输入矩阵的离散余弦变换% idct2 函数实现图像的二维逆离散余弦变换RGB=imread('drum.jpg');I=rgb2gray(RGB);J=dct2(I); % 对I进行离散余弦变换imshow(log(abs(J))),title('对原图离散后取对数'),colorbar;J(abs(J)<10)=0;K=idct2(J); % 图像的二维逆离散余弦变换figure,imshow(I),title('原灰度图')figure,imshow(K,[0,255]);title('逆离散变换');%% dctmtx 函数用于实现较小输入矩阵的离散余弦变figure;RGB=imread('4.jpg');I=rgb2gray(RGB);subplot(3,2,1),imshow(I),title('原灰度图');I=im2double(I);subplot(3,2,2),imshow(I),title('取双精度后');T=dctmtx(8); % 离散余弦变换subplot(3,2,3),imshow(I),title('离散余弦变换后');B=blkproc(I,[8,8],'P1*x*P2',T,T');subplot(3,2,4),imshow(B),title('blkproc作用I后的B');mask=[ 1 1 1 1 0 0 0 01 1 1 0 0 0 0 01 1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0 ];B2=blkproc(B,[8,8],'P1.*x',mask);subplot(3,2,5),imshow(B2),title('blkproc作用B后的B2');I2=blkproc(B2,[8,8],'P1*x*P2',T',T);subplot(3,2,6),imshow(I2),title('blkproc作用B2后的I2');%% edge函数用于提取图像的边缘RGB=imread('4.jpg');I=rgb2gray(RGB);BW=edge(I);imshow(I);figure,imshow(BW);%% radon 函数用来计算指定方向上图像矩阵的投影RGB=imread('4.jpg');I=rgb2gray(RGB);BW=edge(I);theta=0:179;[R,XP]=radon(BW,theta); % 图像矩阵的投影figure,imagesc(theta,XP,R);colormap(hot);xlabel('\theta(degrees)');ylabel('x\prime');title('R_{\theta}(x\prime)');colorbar;%}% ----------------图像增强、分割和编码------------------%{% imhist 函数产生图像的直方图A=imread('4.jpg');B=rgb2gray(A);subplot(2,1,1),imshow(B);subplot(2,1,2),imhist(B);%% histeq 函数用于对图像的直方图均衡化A=imread('4.jpg');B=rgb2gray(A);subplot(2,1,1),imshow(B);subplot(2,1,2),imhist(B);C=histeq(B); % 对图像B进行均衡化figure;subplot(2,1,1),imshow(C);subplot(2,1,2),imhist(C);%% filter2 函数实现均值滤波a=imread('4.jpg');I=rgb2gray(a);subplot(2,2,1),imshow(I);K1=filter2(fspecial('average',3),I)/255; % 3*3的均值滤波K2=filter2(fspecial('average',5),I)/255; % 5*5的均值滤波K3=filter2(fspecial('average',7),I)/255; % 7*7的均值滤波subplot(2,2,2),imshow(K1);subplot(2,2,3),imshow(K2);subplot(2,2,4),imshow(K3);%% wiener2 函数实现Wiener(维纳)滤波a=imread('4.jpg');I=rgb2gray(a);subplot(2,2,1),imshow(I);K1=wiener2(I,[3,3]); % 3*3 wiener滤波K2=wiener2(I,[5,5]); % 5*5 wiener滤波K3=wiener2(I,[7,7]); % 7*7 wiener滤波subplot(2,2,2),imshow(K1);subplot(2,2,3),imshow(K2);subplot(2,2,4),imshow(K3);%% medfilt2 函数实现中值滤波a=imread('4.jpg');I=rgb2gray(a);subplot(2,2,1),imshow(I);K1=medfilt2(I,[3,3]); % 3*3 中值滤波K2=medfilt2(I,[5,5]); % 5*5 中值滤波K3=medfilt2(I,[7,7]); % 7*7 中值滤波subplot(2,2,2),imshow(K1);subplot(2,2,3),imshow(K2);subplot(2,2,4),imshow(K3);%}% ----------------图像模糊及复原------------------%{% deconvwnr 函数:使用维纳滤波器I=imread('qier.jpg');imshow(I);% 对图像进行模糊处理LEN=31;THETA=11;PSF1=fspecial('motion',LEN,THETA); % 运动模糊PSF2=fspecial('gaussian',10,5); % 高斯模糊Blurred1=imfilter(I,PSF1,'circular','conv'); % 得到运动模糊图像Blurred2=imfilter(I,PSF2,'conv'); % 得到高斯噪声模糊图像figure;subplot(1,2,1);imshow(Blurred1);title('Blurred1--"motion"'); subplot(1,2,2);imshow(Blurred2);title('Blurred2--"gaussian"');% 对模糊图像加噪声V=0.002;BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); % 加高斯噪声BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); % 加高斯噪声figure;subplot(1,2,1);imshow(BlurredNoisy1);title('BlurredNoisy1'); subplot(1,2,2);imshow(BlurredNoisy2);title('BlurredNoisy2');% 进行维纳滤波wnr1=deconvwnr(Blurred1,PSF1); % 维纳滤波wnr2=deconvwnr(Blurred2,PSF2); % 维纳滤波figure;subplot(1,2,1);imshow(wnr1);title('Restored1,True PSF'); subplot(1,2,2);imshow(wnr2);title('Restored2,True PSF');%% deconvreg函数:使用约束最小二乘滤波器I=imread('qier.jpg');imshow(I);% 对图像进行模糊处理LEN=31;THETA=11;PSF1=fspecial('motion',LEN,THETA); % 运动模糊PSF2=fspecial('gaussian',10,5); % 高斯模糊Blurred1=imfilter(I,PSF1,'circular','conv'); % 得到运动模糊图像Blurred2=imfilter(I,PSF2,'conv'); % 得到高斯噪声模糊图像figure;subplot(1,2,1);imshow(Blurred1);title('Blurred1--"motion"');subplot(1,2,2);imshow(Blurred2);title('Blurred2--"gaussian"');% 对模糊图像加噪声V=0.002;BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); % 加高斯噪声BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); % 加高斯噪声figure;subplot(1,2,1);imshow(BlurredNoisy1);title('BlurredNoisy1');subplot(1,2,2);imshow(BlurredNoisy2);title('BlurredNoisy2');NP=V*prod(size(I));reg1=deconvreg(BlurredNoisy1,PSF1,NP); % 约束最小二乘滤波reg2=deconvreg(BlurredNoisy2,PSF2,NP); % 约束最小二乘滤波figure;subplot(1,2,1);imshow(reg1);title('Restored1 with NP');subplot(1,2,2);imshow(reg2);title('Restored2 with NP');%% deconvlucy函数:使用Lucy-Richardson滤波器I=imread('qier.jpg');imshow(I);% 对图像进行模糊处理LEN=31;THETA=11;PSF1=fspecial('motion',LEN,THETA); % 运动模糊PSF2=fspecial('gaussian',10,5); % 高斯模糊Blurred1=imfilter(I,PSF1,'circular','conv'); % 得到运动模糊图像Blurred2=imfilter(I,PSF2,'conv'); % 得到高斯噪声模糊图像figure;subplot(1,2,1);imshow(Blurred1);title('Blurred1--"motion"');subplot(1,2,2);imshow(Blurred2);title('Blurred2--"gaussian"');% 对模糊图像加噪声V=0.002;BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); % 加高斯噪声BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); % 加高斯噪声figure;subplot(1,2,1);imshow(BlurredNoisy1);title('BlurredNoisy1');subplot(1,2,2);imshow(BlurredNoisy2);title('BlurredNoisy2');luc1=deconvlucy(BlurredNoisy1,PSF1,5); % 使用Lucy-Richardson滤波luc2=deconvlucy(BlurredNoisy1,PSF1,15); % 使用Lucy-Richardson滤波figure;subplot(1,2,1);imshow(luc1);title('Restored Image,NUMIT=5'); subplot(1,2,2);imshow(luc2);title('Restored Image,NUMIT=15');%}% deconvblind 函数:使用盲卷积算法a=imread('4.jpg');I=rgb2gray(a);figure;imshow(I);title('Original Image');PSF=fspecial('motion',13,45); % 运动模糊figure;imshow(PSF);Blurred=imfilter(I,PSF,'circ','conv'); % 得到运动模糊图像figure;imshow(Blurred);title('Blurred Image');INITPSF=ones(size(PSF));[J,P]=deconvblind(Blurred,INITPSF,30); % 使用盲卷积figure;imshow(J);figure;imshow(P,[],'notruesize');% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-* %{% 对图像进行减采样a=imread('lena.jpg');%subplot(1,4,1);figure;imshow(a);title('原图');b=rgb2gray(a);%subplot(1,4,2);figure;imshow(b);title('原图的灰度图');[wid,hei]=size(b);%---4倍减采样----quartimg=zeros(wid/2+1,hei/2+1);i1=1;j1=1;for i=1:2:widfor j=1:2:heiquartimg(i1,j1)=b(i,j);j1=j1+1;endi1=i1+1;j1=1;end%subplot(1,4,3);figure;imshow(uint8(quartimg));title('4倍减采样')% ---16倍减采样---quanrtimg=zeros(wid/4+1,hei/4+1);i1=1;j1=1;for i=1:4:widfor j=1:4:heiquanrtimg(i1,j1)=b(i,j);j1=j1+1;endi1=i1+1;j1=1;end%subplot(1,4,4);.figure;imshow(uint8(quanrtimg));title('16倍减采样');%}% 图像类型% 将图像转换为256级灰度图像,64级灰度图像,32级灰度图像,8级灰度图像,2级灰度图像a=imread('4.jpg');%figure;subplot(2,3,1);imshow(a);title('原图');b=rgb2gray(a); % 这是256灰度级的图像%figure;subplot(2,3,2);imshow(b);title('原图的灰度图像');[wid,hei]=size(b);img64=zeros(wid,hei);img32=zeros(wid,hei);img8=zeros(wid,hei);img2=zeros(wid,hei);for i=1:widfor j=j:heiimg64(i,j)=floor(b(i,j)/4); % 转化为64灰度级endend%figure;subplot(2,3,3);imshow(uint8(img64),[0,63]);title('64级灰度图像');for i=1:widfor j=1:heiimg32(i,j)=floor(b(i,j)/8);% 转化为32灰度级endend%figure;subplot(2,3,4);imshow(uint8(img32),[0,31]);title('32级灰度图像');for i=1:widfor j=1:heiimg8(i,j)=floor(b(i,j)/32);% 转化为8灰度级endend%figure;subplot(2,3,5);imshow(uint8(img8),[0,7]);title('8级灰度图像');for i=1:widfor j=1:heiimg2(i,j)=floor(b(i,j)/128);% 转化为2灰度级endend%figure;subplot(2,3,6);imshow(uint8(img2),[0,1]);title('2级灰度图像');% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-* %{% ------------------ 图像的点运算------------------I=imread('lena.jpg');figure;subplot(1,3,1);imshow(I);title('原图的灰度图');J=imadjust(I,[0.3;0.6],[0.1;0.9]); % 设置灰度变换的范围subplot(1,3,2);imshow(J);title('线性扩展');I1=double(I); % 将图像转换为double类型I2=I1/255; % 归一化此图像C=2; % 非线性扩展函数的参数K=C*log(1+I2); % 对图像的对数变换subplot(1,3,3);imshow(K);title('非线性扩展');M=255-I;figure;subplot(1,3,1);imshow(M);title('灰度倒置');N1=im2bw(I,0.4); % 将此图像二值化,阈值为0.4N2=im2bw(I,0.7); % 将此图像二值化,阈值为0.7 subplot(1,3,2);imshow(N1);title('二值化阈值0.4');subplot(1,3,3);imshow(N2);title('二值化阈值0.7');%}%{% ------------------ 图像的代数运算------------------% 将两幅图像进行加法运算I=imread('lena.jpg');I=rgb2gray(I);J=imread('rice.png');% 以下把两幅图转化为大小一样for i=1:size(I)for j=size(J):size(I)J(i,j)=0;endendI=im2double(I); % 将图像转化为double型J=im2double(J);% imshow(I);figure;imshow(J);K=I+0.3*J; % 将两幅图像相加subplot(1,3,1);imshow(I);title('人物图');subplot(1,3,2);imshow(J);title('背景图');subplot(1,3,3);imshow(K);title('相加后的图');imwrite(K,'i_lena1.jpg');%%% 将两幅图像做减运算,分离背景与原图A=imread('i_lena1.jpg');B=imread('rice.png');% 以下把两幅图转化为大小一样for i=1:size(A)for j=size(B):size(A)B(i,j)=0;endendC=A-0.3*B;a=imread('lena.jpg');subplot(2,2,1);imshow(a);title('原图图');subplot(2,2,2);imshow(A);title('混合图');subplot(2,2,3);imshow(B);title('背景图');subplot(2,2,4);imshow(C);title('分离后的图');%% 设置掩模,需要保留下来的区域,掩模图像的值为1,否则为0 A=imread('drum.jpg');A=rgb2gray(A);A=im2double(A);sizeA=size(A);subplot(1,2,1);imshow(A);title('原图');B=zeros(sizeA(1),sizeA(2)); % 设置模板B(100:400,100:500)=1;K=A.*B; % 两幅图像相乘subplot(1,2,2);imshow(K);title('局部图');%}%{% ------------------ 图像的缩放------------------A=imread('drum.jpg');B1=imresize(A,1.5); % 比例放大1.5杯,默认采用的是最近邻法进行线性插值B2=imresize(A,[420 384]); % 非比例放大到420:384C1=imresize(A,0.7); % 比例缩小0.7倍C2=imresize(A,[150 180]); % 非比例缩小到150:180figure;imshow(B1);title('比例放大图');figure;imshow(B2);title('非比例放大图');figure;imshow(C1);title('比例缩小图');figure;imshow(C2);title('非比例缩小图');% 检测非比例缩放得到的图片是否能还原到原图a=size(A)d=imresize(C2,[a(1),a(2)]);figure;imshow(d);%}% ------------------ 图像的旋转------------------I=imread('drum.jpg');J=imrotate(I,45); % 图像进行逆时针旋转,默认采用最近邻插值法进行插值处理K=imrotate(I,90); % 默认旋转出界的部分不被截出subplot(1,3,1);imshow(I);subplot(1,3,2);imshow(J);subplot(1,3,3);imshow(K);% 检测旋转后的图像是否失真P=imrotate(K,270);figure;imshow(P);。
东北大学matlab计算机图像处理实验报告
计算机图像处理实验报告学院:信息学院班级:姓名:学号:实验内容:数字图像处理1、应用MATLAB语言编写显示一幅灰度图像、二值图像、索引图像及彩色图像的程序,并进行相互之间的转换;(1)、显示一副真彩RGB图像代码:I=imread('mikasa.jpg');>>imshow(I);效果:(2)、RGB转灰度图像代码:graycat=rgb2gray(I);>> subplot(1,2,1);>> subimage(I);>> subplot(1,2,2);>> subimage(graycat);效果:(3)、RGB转索引图像代码:[indcat,map]=rgb2ind(I,0.7);>> subplot(1,2,1);>> subimage(I);>> subplot(1,2,2);>> subimage(indcat,map);效果:(4)、索引图像转RGB代码:I1=ind2rgb(indcat,map);>>subplot(1,2,1);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(I1);效果:(5)、索引转灰度图像代码:i2gcat=ind2gray(indcat,map);>>subplot(1,2,1);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(i2gcat);效果:(6)、灰度转索引图像代码:[g2icat,map]=gray2ind(graycat,64);>>subplot(1,2,1);>>subimage(graycat);>>subimage(g2icat,map);效果:(7)、RGB转二值图像代码:r2bwcat=im2bw(I,0.5);>>subplot(1,2,1);>>subimage(I);>>subplot(1,2,2);>>subimage(r2bwcat);效果:(8)灰度转二值图像代码:g2bwcat=im2bw(graycat,0.5); subplot(1,2,1);>>subimage(graycat);>>subplot(1,2,2);>>subimage(g2bwcat);效果:(9)、索引转二值图像代码:>> i2bwcat=im2bw(indcat,map,0.7);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(i2bwcat);效果:2、应用MATLAB工具箱演示一幅图像的傅里叶变换、离散余弦变换,观察其频谱图。
(完整版)数字图像处理MATLAB程序【完整版】
第一部分数字图像处理实验一图像的点运算实验1.1 直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察图像matlab环境下的直方图分布。
(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码;2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
实验1.2 灰度均衡一.实验目的1.熟悉matlab图像处理工具箱中灰度均衡函数的使用;2.理解和掌握灰度均衡原理和实现方法;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(2,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(2,2,3),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题a=histeq(I,256); %直方图均衡化,灰度级为256subplot(2,2,2),imshow(a) %输出均衡化后图像title('均衡化后图像') %在均衡化后图像中加标题subplot(2,2,4),imhist(a) %输出均衡化后直方图title('均衡化后图像直方图') %在均衡化后直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
matabl数字图像处理
实验:1.实验目的1、理解图像退化模型。
2、掌握逆滤波器,维纳滤波器的使用。
2.实验内容1、任选一幅图像,模拟图像降质的过程。
2、给该图像加上任意一种噪声。
3、给这幅已经降质的图像利用逆滤波器,维纳滤波器分别进行复原。
3.程序代码和观察结果1.代码如下:I = imread('01.jpg');figure;imshow(I);title('原图像');运行后显示下图:对图像进行降质处理:PSF=fspecial('motion',40,75);MF=imfilter(I,PSF,'circular');noise=imnoise(zeros(size(I)),'gaussian',0,0.001);MFN=imadd(MF,im2uint8(noise));figure(2);imshow(MFN,[]);title('运动模糊图像');figure(2);imshow(MFN,[]);title('运动模糊图像')运行结果如下图:2.给图像加上噪声:模拟给原图加上高斯噪声:J = imnoise(I,'gaussian',0.02);imshow(J); title('高斯噪声后的图像');运行结果如下:3.1逆滤波处理:NSR=sum(noise(:).^2)/sum(MFN(:).^2);figure(3);imshow(deconvwnr(MFN,PSF,NSR),[]);title('逆滤波复原');运行结果如下:3.2 维纳滤波复原处理:imshow(deconvwnr(MFN,PSF,NSR),[]);title('维纳滤波复原');。
VB数字图像处理代码
Dim r, g, b, c As Long
For i = 0 To Picture1.ScaleWidth - 1
Hale Waihona Puke For j = 0 To Picture1.ScaleHeight - 1
c = Picture1.Point(i, j)
For j = 0 To Picture1.ScaleWidth - 1
c = Picture1.Point(j, i)
r = (c And &HFF) '将16进制的图像信息转换成10进制数
'g = (c And 65280) \ 256&
Next j
Next i
For i = 0 To Picture1.ScaleHeight - 1
For j = 0 To Picture1.ScaleWidth - 1
c = RGB1(i * Picture1.ScaleWidth + j)
Picture2.PSet (j, i), RGB(c, c, c)
Else: Picture2.PSet (j, i), RGB(255, 255, 255)
End If
Next j
Next i
ElseIf a = 4 Then
Picture2.Cls
For i = 0 To Picture1.ScaleHeight - 1
Exit For
End If
Next k
Next j
Next i
ElseIf a = 32 Then
Picture2.Cls
Lab
《数字图像处理》实验一、图像操作1、 MATLAB的图像输入输出和显示函数imread()和imwrite()可以读写bmp、jpg/jpeg、gif、tif/tiff、png、hdf、pcx、xwd、ico格式文件。
读索引文件,还可以得到相应的调色板数据。
auread()、auwrite()、wavread()和wavwrite()可以方便地读写au和wav文件,并可以控制其中的位及频率。
image()、imagesc()、imshow()和imview()显示图像。
imfinfo()可以得到读入图像的信息,如文件的大小、格式、格式版本号、图像的高度、宽度、颜色类型等。
2、图像文件信息可以通过调用imfinfo函数获得与图像文件有关的信息,其调用格式如下: INFO=imfinfo(FILENAME, ‘FMT’)INFO=imfinfo(FILENAME)其中,INFO是一个结构体,包含与文件的具体类型有关的文件信息,对于每一种类型的文件,INFO都包含这样一些信息:文件名、文件格式、文件格式版本号、文件的修正数据、文件的字节大小、图像宽度(以像素为单位)、图像高度(以像素为单位)。
每个像素所占的位数、图像类型等。
例如:info=imfinfo('Lenna.bmp') 或info=imfinfo('Lenna.bmp','bmp')。
而info.Width表示图像的宽度;info.Height表示图像的高度,等等。
3、读取图像函数imread()可以从任何MATLAB支持的图形图像文件格式中以任意位深度读取一幅图像,其基本调用格式如下:A=imread(FILENAME)[A, MAP]=imread(FILENAME, ‘FMT’)其中,FILENAME为需要读入的图像文件名。
FMT为图像格式(可以是BMP、JPG/JPEG、GIF、TIF/TIFF、PNG、HDF、PCX、XWD、CUR和ICO),如果不指定FMT参数,那么系统将根据文件名自动判断图像类型。
数字图像处理实验报告
《数字图像处理》实验报告专业:软件工程*名:***学号: S********* 指导老师:***2019年 12 月 28 日信息学部软件学院目录实验一、BMP文件的读写 (1)1 实验目的与实验内容 (1)2 实验原理 (1)3 实验关键代码 (1)4 实验运行结果 (3)5 总结 (4)实验二、图像缩放 (4)1 实验目的及内容 (4)2 实验原理 (5)3 实验关键代码和运行结果 (6)4 结果分析 (8)实验三、直方图均衡 (9)1 实验目的及内容 (9)2 实验原理 (9)3 实验关键代码和实验结果 (10)4 思考题 (11)5结果分析 (12)实验四、图像滤波 (12)1 实验目的及内容 (12)2 图像滤波的原理 (12)3 实验关键代码及结果 (13)实验五、图像的灰度映射 (17)1 实验目的及内容 (17)2 实验关键代码及结果 (17)3 不同参数的变换结果 (20)附录一 (17)实验要求:用 c/c++语言编程实现以下功能实验环境:Windows10开发工具:CodeBlocks实验一、BMP文件的读写1 实验目的与实验内容1.1灰度 BMP 图像的读写:(1) 读入 lena.bmp 文件;(2) 通过文件内容得出文件大小,位图数据起始字节,图像长、宽以及每像素的位数等信息;(3) 提取出原图像中的位图数据,另存为 lena.raw, 并通过 photoshop 打开该文件,查看所读取的数据。
(4)仅取原始图像左上角 1/4 的数据,另存一个 lenas.bmp 图像,在photoshop 中打开查看效果。
1.2 彩色 BMP 图像读写(1) 读入文件 lena_C.bmp 文件;(2) 通过文件内容得出文件大小,位图数据起始字节,图像长、宽以及每像素的位数等信息;(3) 提取出原图像中的位图数据,另存为 lena_C.raw, 并通过 photoshop 打开该文件,查看所读取的数据。
数字图像处理 实验代码
subplot(2,2,3),imshow(J);
title('线性变换图像[0.1 0.5]');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1]
%g(mx+1:m,my+1:n,1:x)=f(1:m-mx,1:n-my ,1:x); g(1:m-mx,1:n-my ,1:x)=f(mx+1:m,my+1:n,1:x); figure; imshow(uint8(g));
end
3. f=imread('hehua1.bmp'); [m,n]=size(f); for i=50:10:200 m=i; n=i; f2=imcrop(f,[n,n,m,m]); figure; imshow(uint8(f2)); end
(4) 图像旋转imrotate函数,语法格式为: B = imrotate(A,angle,’crop’),参数crop用于指定裁剪旋转后超出图像的部分。
三、实验内容 (1) 将图像hehua.bmp裁剪成200X200大小 (2) 制作动画,将一幅图像逐渐向左上角平移移出图像区域,空白的地方用白色 填充 (3) 利用剪切图像函数制作动画 (4) 将图像分别放大1.5倍和缩小0.8倍,插值方法使用双线性插值法,分别显 示图像。 (5) 将图像水平镜像,再顺时针旋转45度,显示旋转后的图像。 (6) 将图像分别进行水平方向30度错切,垂直方向45度错切,分别显示结果 四、 实验环境 Windows下matlab编程环境
(完整版)数字图像处理代码大全
1.图像反转MATLAB程序实现如下:I=imread('xian.bmp');J=double(I);J=-J+(256-1); %图像反转线性变换H=uint8(J);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(H);2.灰度线性变换MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);axis on; %显示坐标系I1=rgb2gray(I);subplot(2,2,2),imshow(I1);title('灰度图像');axis([50,250,50,200]);axis on; %显示坐标系J=imadjust(I1,[0.1 0.5],[]); %局部拉伸,把[0.1 0.5]内的灰度拉伸为[0 1]subplot(2,2,3),imshow(J);title('线性变换图像[0.1 0.5]');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1]subplot(2,2,4),imshow(K);title('线性变换图像[0.3 0.7]');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系3.非线性变换MATLAB程序实现如下:I=imread('xian.bmp');I1=rgb2gray(I);subplot(1,2,1),imshow(I1);title('灰度图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系J=double(I1);J=40*(log(J+1));H=uint8(J);subplot(1,2,2),imshow(H);title('对数变换图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系4.直方图均衡化MATLAB程序实现如下:I=imread('xian.bmp');I=rgb2gray(I);figure;subplot(2,2,1);imshow(I);subplot(2,2,2);imhist(I);I1=histeq(I);figure;subplot(2,2,1);imshow(I1);subplot(2,2,2);imhist(I1);5.线性平滑滤波器用MATLAB实现领域平均法抑制噪声程序:I=imread('xian.bmp');subplot(231)imshow(I)title('原始图像')I=rgb2gray(I);I1=imnoise(I,'salt & pepper',0.02);subplot(232)imshow(I1)title('添加椒盐噪声的图像')k1=filter2(fspecial('average',3),I1)/255; %进行3*3模板平滑滤波k2=filter2(fspecial('average',5),I1)/255; %进行5*5模板平滑滤波k3=filter2(fspecial('average',7),I1)/255; %进行7*7模板平滑滤波k4=filter2(fspecial('average',9),I1)/255; %进行9*9模板平滑滤波subplot(233),imshow(k1);title('3*3模板平滑滤波');subplot(234),imshow(k2);title('5*5模板平滑滤波');subplot(235),imshow(k3);title('7*7模板平滑滤波');subplot(236),imshow(k4);title('9*9模板平滑滤波'); 6.中值滤波器用MATLAB实现中值滤波程序如下:I=imread('xian.bmp');I=rgb2gray(I);J=imnoise(I,'salt&pepper',0.02);subplot(231),imshow(I);title('原图像');subplot(232),imshow(J);title('添加椒盐噪声图像');k1=medfilt2(J); %进行3*3模板中值滤波k2=medfilt2(J,[5,5]); %进行5*5模板中值滤波k3=medfilt2(J,[7,7]); %进行7*7模板中值滤波k4=medfilt2(J,[9,9]); %进行9*9模板中值滤波subplot(233),imshow(k1);title('3*3模板中值滤波'); subplot(234),imshow(k2);title('5*5模板中值滤波'); subplot(235),imshow(k3);title('7*7模板中值滤波'); subplot(236),imshow(k4);title('9*9模板中值滤波'); 7.用Sobel算子和拉普拉斯对图像锐化:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(2,2,2),imshow(I1);title('二值图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系H=fspecial('sobel'); %选择sobel算子J=filter2(H,I1); %卷积运算subplot(2,2,3),imshow(J);title('sobel算子锐化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系h=[0 1 0,1 -4 1,0 1 0]; %拉普拉斯算子J1=conv2(I1,h,'same'); %卷积运算subplot(2,2,4),imshow(J1);title('拉普拉斯算子锐化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系8.梯度算子检测边缘用MATLAB实现如下:I=imread('xian.bmp');subplot(2,3,1);imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(2,3,2);imshow(I1);title('二值图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I2=edge(I1,'roberts');figure;subplot(2,3,3);imshow(I2);title('roberts算子分割结果');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I3=edge(I1,'sobel');subplot(2,3,4);imshow(I3);title('sobel算子分割结果');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I4=edge(I1,'Prewitt');subplot(2,3,5);imshow(I4);title('Prewitt算子分割结果');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系9.LOG算子检测边缘用MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1);imshow(I);title('原始图像');I1=rgb2gray(I);subplot(2,2,2);imshow(I1);title('灰度图像');I2=edge(I1,'log');subplot(2,2,3);imshow(I2);title('log算子分割结果'); 10.Canny算子检测边缘用MATLAB程序实现如下:I=imread('xian.bmp'); subplot(2,2,1);imshow(I);title('原始图像')I1=rgb2gray(I);subplot(2,2,2);imshow(I1);title('灰度图像');I2=edge(I1,'canny'); subplot(2,2,3);imshow(I2);title('canny算子分割结果');11.边界跟踪(bwtraceboundary函数)clcclear allI=imread('xian.bmp');figureimshow(I);title('原始图像');I1=rgb2gray(I); %将彩色图像转化灰度图像threshold=graythresh(I1); %计算将灰度图像转化为二值图像所需的门限BW=im2bw(I1, threshold); %将灰度图像转化为二值图像figureimshow(BW);title('二值图像');dim=size(BW);col=round(dim(2)/2)-90; %计算起始点列坐标row=find(BW(:,col),1); %计算起始点行坐标connectivity=8;num_points=180;contour=bwtraceboundary(BW,[row,col],'N',connectivity,num_p oints);%提取边界figureimshow(I1);hold on;plot(contour(:,2),contour(:,1), 'g','LineWidth' ,2); title('边界跟踪图像');12.Hough变换I= imread('xian.bmp');rotI=rgb2gray(I);subplot(2,2,1);imshow(rotI);title('灰度图像');axis([50,250,50,200]);grid on;axis on;BW=edge(rotI,'prewitt');subplot(2,2,2);imshow(BW);title('prewitt算子边缘检测后图像');axis([50,250,50,200]);grid on;axis on;[H,T,R]=hough(BW);subplot(2,2,3);imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit'); title('霍夫变换图');xlabel('\theta'),ylabel('\rho');axis on , axis normal, hold on;P=houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));x=T(P(:,2));y=R(P(:,1));plot(x,y,'s','color','white');lines=houghlines(BW,T,R,P,'FillGap',5,'MinLength',7); subplot(2,2,4);,imshow(rotI);title('霍夫变换图像检测');axis([50,250,50,200]);grid on;axis on;hold on;max_len=0;for k=1:length(lines)xy=[lines(k).point1;lines(k).point2];plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');len=norm(lines(k).point1-lines(k).point2);if(len>max_len)max_len=len;xy_long=xy;endendplot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan'); 13.直方图阈值法用MATLAB实现直方图阈值法:I=imread('xian.bmp');I1=rgb2gray(I);figure;subplot(2,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系[m,n]=size(I1); %测量图像尺寸参数GP=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255GP(k+1)=length(find(I1==k))/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置endsubplot(2,2,2),bar(0:255,GP,'g') %绘制直方图title('灰度直方图')xlabel('灰度值')ylabel('出现概率')I2=im2bw(I,150/255);subplot(2,2,3),imshow(I2);title('阈值150的分割图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I3=im2bw(I,200/255); %subplot(2,2,4),imshow(I3);title('阈值200的分割图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系14. 自动阈值法:Otsu法用MATLAB实现Otsu算法:clcclear allI=imread('xian.bmp');subplot(1,2,1),imshow(I);title('原始图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系level=graythresh(I); %确定灰度阈值BW=im2bw(I,level);subplot(1,2,2),imshow(BW);title('Otsu法阈值分割图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系15.膨胀操作I=imread('xian.bmp'); %载入图像I1=rgb2gray(I);subplot(1,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系se=strel('disk',1); %生成圆形结构元素I2=imdilate(I1,se); %用生成的结构元素对图像进行膨胀subplot(1,2,2);imshow(I2);title('膨胀后图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系16.腐蚀操作MATLAB实现腐蚀操作I=imread('xian.bmp'); %载入图像I1=rgb2gray(I);subplot(1,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系se=strel('disk',1); %生成圆形结构元素I2=imerode(I1,se); %用生成的结构元素对图像进行腐蚀subplot(1,2,2);imshow(I2);title('腐蚀后图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系17.开启和闭合操作用MATLAB实现开启和闭合操作I=imread('xian.bmp'); %载入图像subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);axis on; %显示坐标系I1=rgb2gray(I);subplot(2,2,2),imshow(I1);title('灰度图像');axis([50,250,50,200]);axis on; %显示坐标系se=strel('disk',1); %采用半径为1的圆作为结构元素I3=imclose(I1,se); %闭合操作subplot(2,2,3),imshow(I2);title('开启运算后图像');axis([50,250,50,200]);axis on; %显示坐标系subplot(2,2,4),imshow(I3);title('闭合运算后图像');axis([50,250,50,200]);axis on; %显示坐标系18.开启和闭合组合操作I=imread('xian.bmp'); %载入图像subplot(3,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);axis on; %显示坐标系I1=rgb2gray(I);subplot(3,2,2),imshow(I1);title('灰度图像');axis([50,250,50,200]);axis on; %显示坐标系se=strel('disk',1);I3=imclose(I1,se); %闭合操作subplot(3,2,3),imshow(I2);title('开启运算后图像');axis([50,250,50,200]);axis on; %显示坐标系subplot(3,2,4),imshow(I3);title('闭合运算后图像');axis([50,250,50,200]);axis on; %显示坐标系se=strel('disk',1);I4=imopen(I1,se);I5=imclose(I4,se);subplot(3,2,5),imshow(I5); %开—闭运算图像title('开—闭运算图像');axis([50,250,50,200]);axis on; %显示坐标系I6=imclose(I1,se);I7=imopen(I6,se);subplot(3,2,6),imshow(I7); %闭—开运算图像title('闭—开运算图像');axis([50,250,50,200]);axis on; %显示坐标系19.形态学边界提取利用MATLAB实现如下:I=imread('xian.bmp'); %载入图像subplot(1,3,1),imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(1,3,2),imshow(I1);title('二值化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I2=bwperim(I1); %获取区域的周长subplot(1,3,3),imshow(I2);title('边界周长的二值图像');axis([50,250,50,200]);grid on;axis on;20.形态学骨架提取利用MATLAB实现如下:I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像');axis([50,250,50,200]); axis on;I1=im2bw(I);subplot(2,2,2),imshow(I1); title('二值图像');axis([50,250,50,200]); axis on;I2=bwmorph(I1,'skel',1); subplot(2,2,3),imshow(I2); title('1次骨架提取');axis([50,250,50,200]); axis on;I3=bwmorph(I1,'skel',2); subplot(2,2,4),imshow(I3); title('2次骨架提取');axis([50,250,50,200]); axis on;21.直接提取四个顶点坐标I = imread('xian.bmp');I = I(:,:,1);BW=im2bw(I);figureimshow(~BW)[x,y]=getpts。
数字图像处理 实验报告(完整版).doc
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
河北工业大学数字图像处理之matlab实验报告
实验一一、实验要求1、熟悉MATLAB软件的开发环境、基本操作以及图像处理工具箱,为编写图像处理程序奠定基础。
2、掌握二进制(黑白)图像、灰度图像、彩色图像读、写和显示的基本方法,分别选择以上几种类型的图像,观察其图像类型参数。
3、说明以下程序的显示结果为何是一幅几乎全黑的图像。
clear; close all;myi=zeros(20,20);myi(2:2:18,2:2:18)=1;myi=uint8(myi);figure, imshow(myi,'notruesize');编写程序将图一中orangutan_1.tif图片拉伸一倍后形成orangutan_2.tif所示的图片。
4、应用MATLAB(或C)语言编写一幅灰度图像直方图统计程序,并选择一幅图像显示其直方图,将结果与MATLAB图像处理工具箱中提供的灰度直方图函数imhist的处理结果进行比较。
5、利用以上编写的程序,估算图一所示图像iris.tif中的瞳孔半径(以像素为单位)。
orangutan_1.tif orangutan_2.tif iris.tif图一二、实验内容1,通过安装matlab软件,熟悉MATLAB软件的开发环境、基本操作以及图像处理工具箱2,图像的读、写、显示和图像类型参数查看通过 I= imread(FILENAME),读取图像,注意FILENAME=‘图像文件所在的位置+文件名’;1)通过imwrite(a,FILENAME,fmt),可以把a图像写进FILENAME图像,即是替换掉FILENAME,但是文件图像格式不替换。
2)通过imshow(I),可以把I图像显示出来。
3)例如:在matlab软件中,运行如下命令:I = imread('E:\orangutan_2.tif');figure,imshow(I)I1 = imread('E:\iris.tif');figure,imshow(I1)imwrite(I,'E:\iris.tif','tif')I2 = imread('E:\iris.tif');figure,imshow(I2)原图:orangutan_2.tif iris.tif运行结果:可以看到orangutan_2.tif已成功写入 iris.tif中。
遥感数字图像处理实习报告含Matlab处理代码
辽宁工程技术大学《数字图像处理》上机实习报告教学单位辽宁工程技术大学专业摄影测量与遥感实习名称遥感数字图像处理班级测绘研11-3班学生姓名路聚峰学号*********指导教师孙华生实习1 读取BIP 、BIL、BSQ文件一、实验目的用Matlab读取BIP 、BIL、BSQ文件,并将结果显示出来。
遥感图像包括多个波段,有多种存储格式,但基本的通用格式有3种,即BSQ、BIL和BIP格式。
通过这三种格式,遥感图像处理系统可以对不同传感器获取的图像数据进行转换。
BSQ是像素按波段顺序依次排列的数据格式。
BIL 格式中,像素先以行为单位块,在每个块内,按照波段顺序排列像素。
BIP格式中,以像素为核心,像素的各个波段数据保存在一起,打破了像素空间位置的连续性。
用Matlab读取各个格式的遥感数据,是图像处理的前提条件,只有将图像读入Matlab工作空间,才能进行后续的图像处理工作。
二、算法描述1.调用fopen函数用指定的方式打开文件。
2.在for循环中调用fread函数,用指定的格式读取各个像素。
3.用reshape函数,重置图像的行数列数。
4.用imadjust函数调整像素的范围,使其有一定对比度。
5.用imshow显示读取的图像。
三、Matlab源代码1.读取BSQ的源代码:clear allclclines=400;samples=640;N=6;img=fopen('D:\sample_BSQ','rb');for i=1:Nbi=fread(img,lines*samples,'uint8');band_cov=reshape(bi,samples,lines);band_cov2=band_cov'; band_uint8=uint8(band_cov2);tif=imadjust(band_uint8);mkdir('D:\MATLAB','tifbands1')name=['D:\MATLAB\tifbands1\tif',int2str(i),'.tif'];imwrite(tif,name,'tif');tilt=['波段',int2str(i)];subplot(3,2,i),imshow(tif);title(tilt);endfclose(img);2.读取BIP源代码clear allclclines=400;samples=640;N=6;for i=1:Nimg=fopen('D:\MATLAB\sample_BIP','rb');b0=fread(img,i-1,'uint8');b=fread(img,lines*samples,'uint8',(N-1));band_cov=reshape(b,samples,lines);band_cov2=band_cov';%תÖÃband_uint8=uint8(band_cov2);tif=imadjust(band_uint8);mkdir('E:\MATLAB','tifbands')name=['E:\MATLAB\tifbands\tif',int2str(i),'.tif'];imwrite(tif,name,'tif'); %imwrite(A,filename,fmt)tilt=['波段',int2str(i)];subplot(3,2,i),imshow(tif);title(tilt);fclose(img);end3.读取BIL的源代码clear allclclines=400;samples=640;N=6;for i=1:Nbi=zeros(lines,samples);for j=1:samplesimg=fopen('D:\MATLAB\sample_BIL','rb');bb=fread(img,(i-1)*640,'uint8');b0=fread(img,1*(j-1),'uint8');bandi_linej=fread(img,lines,'uint8',1*(N*samples-1));fclose(img);bi(:,j)=bandi_linej;endband_uint8=uint8(bi);tif=imadjust(band_uint8);mkdir('D:\MATLAB','tifbands')name=['D:\MATLAB\tifbands\tif',int2str(i),'.tif'];imwrite(tif,name,'tif');tilt=['²¨¶Î',int2str(i)];subplot(3,2,i),imshow(tif);title(tilt);end四、运行结果图1:读取文件的六个波段图实习2 均值/中值滤波、边缘信息提取一、实验目的与原理各种图像滤波算子可以实现图像的增强,去噪,边缘提取等。
数字图像处理-边缘检测算子与锐化算子(含MATLAB代码)
数字图像处理实验五15生医一、实验内容对某一灰度图像,进行如下处理:(1)分别用Roberts、Prewitt和Sobel边缘检测算子进行边缘检测;(2)将Roberts、Prewitt和Sobel边缘检测算子修改为锐化算子,对原图像进行锐化,同屏显示原图像、边缘检测结果和锐化后图像,说明三者之间的关系。
一灰度图像的二值化。
二、运行环境MATLAB R2014a三、运行结果及分析运行结果如图所示:可以观察出原图像、边缘检测结果和锐化后图像三者之间的关系为:原图像+边缘检测结果=锐化后图像四、心得体会通过MATLAB编程更加熟悉了课本上关于锐化与边缘检测的相关知识点,对二者的关系也有了具体的认识。
同时,对MATLAB图像导入函数、图像边缘检测函数、锐化窗口矩阵卷积函数的调用及实现机理也有所掌握,比如后边附的程序中会提到的“%”标注的思考。
五、具体程序size=512;Img_rgb=imread('E:\lena.jpg'); %读取图像Img_gray=rgb2gray(Img_rgb); %进行RGB到灰度图像的转换(虽然原来在网上下载的lena就是黑白图像,但是这一步必须要有!否则处理结果不正确)figure(1);subplot(2,3,1);imshow(Img_gray);title('原图像');Img_edge=zeros(size);a={'roberts','prewitt','sobel'};for i=1:3Img_edge=edge(Img_gray,a{i});figure(1);subplot(2,3,i+1);imshow(Img_edge);axis image;title(a(i));endA=imread('E:\lena.jpg');B=rgb2gray(A);B=double(B);Window=[-1-1-1;-19-1;-1-1-1]; %八邻域拉普拉斯锐化算子(α取1)C=conv2(B,Window,'same');Img_sharp=uint8(C);subplot(2,3,5);imshow(Img_sharp);title('sharp');THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
数字图像处理第二版MatLab代码大全
4.3
空域滤波增强
Matlab 实现的邻域平均法抑制噪声的程序: I=imread('eight.tif'); J=imnoise(I,'salt & pepper', 0.02); subplot(231),imshow(I);title('原图像'); subplot(232),imshow(J);title('添加椒盐噪声图像') k1=filter2(fspecial('average',3),J); %进行 3×3 模板平滑滤波 k2=filter2(fspecial('average',5),J); %进行 5×5 模板平滑滤波 k3=filter2(fspecial('average',7),J); %进行 7×7 模板平滑滤波 k4=filter2(fspecial('average',9),J); %进行 9×9 模板平滑滤波 subplot(233),imshow(uint8(k1));title('3×3 模板平滑滤波'); subplot(234),imshow(uint8(k2));title('5×5 模板平滑滤波'); subplot(235),imshow(uint8(k3));title('7×7 模板平滑滤波'); subplot(236),imshow(uint8(k4));title('9×9 模板平滑滤波') 例 4.10:使用中值滤波降低图像噪声
9
xlabel(‘\theta (degrees)’); ylabel(‘X\prime’); set(gca,’Xtick’,0:20:180); colormap(hot); colorbar;
数字图像处理实验报告图像增强处理与几何变换
实验图像增强处理与几何变换一、实验目的利用Matlab图像处理工具箱中的函数实现图像点处理、空间域平滑和锐化处理、彩色图像处理、几何处理,巩固其原理与计算方法学习,深化课程理论认知。
二、实验内容1、图像点处理:灰度变换、直方图均衡化和直方图规定处理;2、图像均值滤波和中值滤波、图像锐化处理;3、图像几何变换处理;4、图像彩色合成和彩色变换处理;三、实验步骤1、图像点处理:灰度变换、直方图均衡化和直方图规定处理;1.1图像的灰度变换启用MATLAB,输入以下代码运行I= imread('cameraman-8.bmp','bmp');figure; subplot(2,2,1), imshow(I);%获取图像直方图subplot(2,2,2),imhist(I);[counts1,x1] = imhist(I);%观察Counts,x的值subplot(2,2,3),stem(x1,counts1);%图像灰度变换J=imadjust(I,[0.1 0.7],[0.0 0.9]);subplot(2,2,4), imshow (J);%对比灰度变换前后的图像及其直方图figure;subplot(2,3,1),imshow(I);subplot(2,3,2),imshow(J);subplot(2,3,4),imhist(I);subplot(2,3,5),imhist(J);[counts2,x2] = imhist(J);subplot(2,3,6), stem(x2,counts2);图 1.1.1图 1.1.21.2图像直方图均衡化启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp') ;%直方图均衡化处理J=histeq(I) ;%对比均衡化处理前后的图像及其直方图figure(1),subplot(2,2,1),imshow(I),subplot(2,2,2),imshow(J); figure(1),subplot(2,2,3),imhist(I),subplot(2,2,4),imhist(J);图 1.2 1.3直方图规定化启用MATLAB,输入以下代码运行I1=imread('TM5.bmp','bmp');I2=imread('TM3.bmp','bmp');%直方图规定化处理K1=histeq(I1,imhist(I2));%对比规定化处理前后的图像及其直方图figure;subplot(3,2,1),imshow(I1);subplot(3,2,2), imhist(I1);subplot(3,2,3),imshow(I2);subplot(3,2,4), imhist(I2);subplot(3,2,5),imshow(K1);subplot(3,2,6), imhist(K1);图 1.32、图像空间域平滑2.1 用均值滤波器实现图像空间域的平滑启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp');J=imnoise(I,'gaussian'); %添加高斯噪声K=imnoise(I,'salt & pepper'); %添加椒盐噪声M=imnoise(I,'speckle'); %添加乘性噪声H=ones(3,3)/9; %3*3的均值去噪模板%滤波去噪处理I1=imfilter(I,H);J1=imfilter(J,H);K1=imfilter(K,H);M1=imfilter(M,H) ;%对比线性滤波去噪处理前后的图像figure;subplot(2,4,1),imshow(I);title('原图');subplot(2,4,2),imshow(J); title('高斯噪声图像'); subplot(2,4,3),imshow(K); title('椒盐噪声图像'); subplot(2,4,4),imshow(M); title('乘性噪声图像'); subplot(2,4,6),imshow(J1); title('高斯噪声滤波图像'); subplot(2,4,7),imshow(K1); title('椒盐噪声滤波图像'); subplot(2,4,8),imshow(M1) ; title('乘性噪声滤波图像') ; 输出图像如下图 2.12.2 用中值滤波器实现图像空间域的平滑启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp');I1=imnoise(I,'gaussian');I2=imnoise(I,'salt & pepper',0.02);I3=imnoise(I,'speckle');%3×3中值滤波模板J=medfilt2(I,[3,3]);J1=medfilt2(I1,[3,3]);J2=medfilt2(I2,[3,3]);J3=medfilt2(I3,[3,3]);figure,subplot(2,4,1),imshow(I) ; title('原图') ;subplot(2,4,2),imshow(I1) ; title('添加高斯噪声') ;subplot(2,4,3),imshow(I2) ; title('添加椒盐噪声') ;subplot(2,4,4),imshow(I3) ; title('添加乘性噪声') ;subplot(2,4,6),imshow(J1) ;title('高斯噪声3*3中值滤波') ; subplot(2,4,7),imshow(J2) ;title('椒盐噪声3*3中值滤波') ; subplot(2,4,8),imshow(J3) ;title('乘性噪声3*3中值滤波') ;K=medfilt2(I, [5,5]); %5×5中值滤波模板K1=medfilt2(I1,[5,5]);K2=medfilt2(I2,[5,5]);K3=medfilt2(I3,[5,5]);figure;subplot(2,2,1),imshow(K); title('原图5*5中值滤波'); subplot(2,2,2),imshow(K1) ; title('高斯噪声5*5中值滤波') ; subplot(2,2,3),imshow(K2); title('椒盐噪声5*5中值滤波'); subplot(2,2,4),imshow(K3) ; title('乘性噪声5*5中值滤波'); 输出结果如下图 2.2.1图 2.2.22.3 图像空间域锐化启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp')H=fspecial('sobel')%用sobel算子做模板%锐化处理J=imfilter(I,H)%锐化处理前后图像对比figure,subplot(1,2,1),imshow(I),subplot(1,2,2),imshow(J); 输出图像如下图 2.33、图像几何变换3.1 缩放启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp', 'bmp') ;%放大图像J=imresize(I,2) ;%缩小图像K=imresize(I,0.5) ;%图像对比figure(1),subplot(),imshow(I),title('原图'),figure(2),subplot(),imshow(J),title('放大两倍的图'),figure(3),subplot(),imshow(K),title('缩小0.5倍的图') ;输出图像如下图 3.1.1 图3.1.2图 3.1.33.2旋转启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp', 'bmp') ;%旋转图像M=imrotate(I,45) ;%图像对比figure;subplot(1,2,1),imshow(I),subplot(1,2,2),imshow(M) ;输出图像如下图 3.24、彩色图像处理4.1彩色合成启用MATLAB,输入以下代码运行I=imread('peppers.bmp','bmp');J1=I; J2=I;J3=I; J4=I;J5=I;%改变J1、J2、J3、J4、J5中的波段次序,组合成新的波段合成J1(:,:,1)=I(:,:,2); J1(:,:,2)=I(:,:,3); J1(:,:,3)=I(:,:,1) ;J2(:,:,1)=I(:,:,1); J2(:,:,2)=I(:,:,3); J2(:,:,3)=I(:,:,2) ;J3(:,:,1)=I(:,:,2); J3(:,:,2)=I(:,:,1); J3(:,:,3)=I(:,:,3) ;J4(:,:,1)=I(:,:,3); J4(:,:,2)=I(:,:,2); J4(:,:,3)=I(:,:,1) ;J5(:,:,1)=I(:,:,3); J5(:,:,2)=I(:,:,1); J5(:,:,3)=I(:,:,2) ;%对比原图像I与新图像J1、J2、J3、J4、J5的彩色差异,理解假彩色合成figure,subplot(2,3,1),imshow(I),title('原图');subplot(2,3,2),imshow(J1),title('变换一') ;subplot(2,3,3),imshow(J2),title('变换二') ;subplot(2,3,4),imshow(J3),title('变换三') ;subplot(2,3,5),imshow(J4),title('变换四') ;subplot(2,3,6),imshow(J5),title('变换五');输出图像如下图4.1 4.2彩色变换启用MATLAB,输入以下代码运行I=imread('peppers.bmp','bmp');HSV=rgb2hsv(I) ;RGB=hsv2rgb(HSV) ;%对比彩色变换前后的图像figure;subplot(1,3,1),imshow(I),title('原图'),subplot(1,3,2),imshow(HSV),title('HSV图像'); subplot(1,3,3),imshow(RGB),title('RGB图像') ;输出结果如下图 4.2四、实验算法要点总结1、图像点处理直方图修正法通常分为直方图均衡化和直方图规定化两类2、图像均值滤波和中值滤波、图像锐化处理3、图像几何变换处理4、图像彩色合成和彩色变换处理通过映射函数将彩色图像或多光谱图像变换成新的三基色分量线性假彩色映射表示为:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
// RawToBmpDlg.cpp : 实现文件//#include "stdafx.h"#include "RawToBmp.h"#include "RawToBmpDlg.h"#include "afxdialogex.h"#include "iostream"using namespace std;#ifdef _DEBUG#define new DEBUG_NEW#endif#define MAX 64// 用于应用程序“关于”菜单项的CAboutDlg 对话框class CAboutDlg : public CDialogEx{public:CAboutDlg();// 对话框数据enum { IDD = IDD_ABOUTBOX };protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV 支持// 实现protected:DECLARE_MESSAGE_MAP()};CAboutDlg::CAboutDlg() : CDialogEx(CAboutDlg::IDD){}void CAboutDlg::DoDataExchange(CDataExchange* pDX){CDialogEx::DoDataExchange(pDX);}BEGIN_MESSAGE_MAP(CAboutDlg, CDialogEx)END_MESSAGE_MAP()// CRawToBmpDlg 对话框CRawToBmpDlg::CRawToBmpDlg(CWnd* pParent /*=NULL*/): CDialogEx(CRawToBmpDlg::IDD, pParent){m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);}void CRawToBmpDlg::DoDataExchange(CDataExchange* pDX){CDialogEx::DoDataExchange(pDX);DDX_Control(pDX, IDC_EDIT_RAW, m_EditRaw);DDX_Control(pDX, IDC_EDIT_BMP, m_EditBmp);}BEGIN_MESSAGE_MAP(CRawToBmpDlg, CDialogEx)ON_WM_SYSCOMMAND()ON_WM_PAINT()ON_WM_QUERYDRAGICON()ON_BN_CLICKED(ID_CONVERT, &CRawToBmpDlg::OnBnClickedConvert) END_MESSAGE_MAP()// CRawToBmpDlg 消息处理程序BOOL CRawToBmpDlg::OnInitDialog(){CDialogEx::OnInitDialog();// 将“关于...”菜单项添加到系统菜单中。
// IDM_ABOUTBOX 必须在系统命令范围内。
ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);ASSERT(IDM_ABOUTBOX < 0xF000);CMenu* pSysMenu = GetSystemMenu(FALSE);if (pSysMenu != NULL){BOOL bNameValid;CString strAboutMenu;bNameValid = strAboutMenu.LoadString(IDS_ABOUTBOX);ASSERT(bNameValid);if (!strAboutMenu.IsEmpty()){pSysMenu->AppendMenu(MF_SEPARATOR);pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);}}// 设置此对话框的图标。
当应用程序主窗口不是对话框时,框架将自动// 执行此操作SetIcon(m_hIcon, TRUE); // 设置大图标SetIcon(m_hIcon, FALSE); // 设置小图标// TODO: 在此添加额外的初始化代码return TRUE; // 除非将焦点设置到控件,否则返回TRUE}void CRawToBmpDlg::OnSysCommand(UINT nID, LPARAM lParam){if ((nID & 0xFFF0) == IDM_ABOUTBOX){CAboutDlg dlgAbout;dlgAbout.DoModal();}else{CDialogEx::OnSysCommand(nID, lParam);}}// 如果向对话框添加最小化按钮,则需要下面的代码// 来绘制该图标。
对于使用文档/视图模型的MFC 应用程序,// 这将由框架自动完成。
void CRawToBmpDlg::OnPaint(){if (IsIconic()){CPaintDC dc(this); // 用于绘制的设备上下文SendMessage(WM_ICONERASEBKGND,reinterpret_cast<WPARAM>(dc.GetSafeHdc()), 0);// 使图标在工作区矩形中居中int cxIcon = GetSystemMetrics(SM_CXICON);int cyIcon = GetSystemMetrics(SM_CYICON);CRect rect;GetClientRect(&rect);int x = (rect.Width() - cxIcon + 1) / 2;int y = (rect.Height() - cyIcon + 1) / 2;// 绘制图标dc.DrawIcon(x, y, m_hIcon);}else{CDialogEx::OnPaint();}}//当用户拖动最小化窗口时系统调用此函数取得光标//显示。
HCURSOR CRawToBmpDlg::OnQueryDragIcon(){return static_cast<HCURSOR>(m_hIcon);}void CRawToBmpDlg::OnBnClickedConvert() //点击转换按钮,触发此函数{CString strBmp;CString strRaw;FILE* FileRaw;char* RawImage[1000];int i = 0;int ImageWidth = 512;int ImageHeight = 512;int iTemp = ImageWidth;int iReturn = 0;HANDLE hFileBmp = NULL;RGBQUAD rgb;char* Rawpathchar = NULL;WCHAR* Rawpathwchar = NULL;char* Bmppathchar = NULL;WCHAR* Bmppathwchar = NULL;BITMAPFILEHEADER BmpFileHeader;BITMAPINFOHEADER BmpInfoHeader;m_EditRaw.GetWindowText(strRaw); //获得RAW编辑框写入内容即将m_EditRaw 条目写入缓冲区即RAW文件路径m_EditBmp.GetWindowText(strBmp); //获得BMP编辑框写入内容即将m_EditBmp 条目写入缓冲区即BMP文件路径Rawpathwchar = strRaw.GetBuffer(0);Rawpathchar = WcharToChar(Rawpathwchar); //格式转化Bmppathwchar = strBmp.GetBuffer(0);Bmppathchar = WcharToChar(Bmppathwchar);FileRaw = fopen(Rawpathchar,"rb"); //打开文件if (FileRaw == NULL){MessageBox(L"RAW文件路径错误",L"Error",MB_ICONERROR | MB_OK);return;}for (i=0;i<512;i++){RawImage[i] = (char*)malloc(512); //申请内存memset(RawImage[i],0,512); //初始化内存iReturn = fread(RawImage[i],1,512,FileRaw); //获取raw文件信息if (iReturn == 0){MessageBox(L"读取失败",L"Error",MB_ICONERROR | MB_OK);for (int j=0;j<i+1;j++){free(RawImage[i]); //释放内存}fclose(FileRaw); //关闭Raw文件return;}}fclose(FileRaw); //关闭RAW文件if (iTemp%4 != 0) //被四整除{iTemp = iTemp + (4-iTemp%4);}//创建BMP文件hFileBmp = CreateFile(strBmp,GENERIC_READ | GENERIC_WRITE,FILE_SHARE_READ|FILE_SHARE_WRITE,NULL,OPEN_ALWAYS,FIL E_ATTRIBUTE_NORMAL,NULL);if (hFileBmp == NULL){MessageBox(L"创建失败",L"Error",MB_ICONERROR | MB_OK);return;}//设置文件头BmpFileHeader.bfType = ((WORD)('M'<<8)|'B');BmpFileHeader.bfReserved1=0;//保留BmpFileHeader.bfReserved2=0;//保留BmpFileHeader.bfSize=sizeof(BITMAPFILEHEADER)+sizeof(BITMAPINFOHEADER)+s izeof(RGBQUAD)*256 + iTemp*ImageHeight; //文件大小BmpFileHeader.bfOffBits=sizeof(BITMAPFILEHEADER)+sizeof(BITMAPINFOHEADER )+sizeof(RGBQUAD)*256;BmpInfoHeader.biSize=sizeof(BITMAPINFOHEADER); //说明BITMAPINFOHEADER 结构所需的字数BmpInfoHeader.biWidth = ImageWidth; //图像宽度,以像素为单位BmpInfoHeader.biHeight = ImageHeight; //图像高度,以像素为单位BmpInfoHeader.biPlanes=1; //为目标设备说明位面数,其中总是被设为1BmpInfoHeader.biBitCount=8; //说明比特数/像素的颜色深度,值为0,1,4,8,16,24或32,256灰度级的颜色深度为8,因为2^8=256BmpInfoHeader.biCompression=BI_RGB; //说明图像数据压缩类型BmpInfoHeader.biSizeImage=iTemp*ImageHeight; //说明图像的大小,一字节为单位,BmpInfoHeader.biXPelsPerMeter=0; //水平分辨率,可以设为0BmpInfoHeader.biYPelsPerMeter=0; //垂直分辨率,可以设为0BmpInfoHeader.biClrUsed=256; //说明位图实际使用的彩色表中颜色索引数BmpInfoHeader.biClrImportant=0; //说明对图像显示有重要影响的颜色索引数目,为0表示都重要。