二次函数解决销售问题
二次函数的应用大题专练(七大类型)-2023年中考数学压轴题(解析版)
二次函数的应用大题专练(七大类型)题型一:考向分析1类型一、销售问题1(2023·浙江湖州·统考一模)为鼓励大学毕业生自主创业,某市政府出台相关政策,本市企业提供产品给大学毕业生自主销售,政府还给予大学毕业生一定补贴.已知某种品牌服装的成本价为每件100元,每件政府补贴20元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-3x+900.(1)若第一个月将销售单价定为160元,政府这个月补贴多少元?(2)设获得的销售利润(不含政府补贴)为w(元),当销售单价为多少元时,每月可获得最大销售利润?(3)若每月获得的总收益(每月总收益=每月销售利润+每月政府补贴)不低于28800元,求该月销售单价的最小值.【答案】(1)8400元(2)200元(3)140元【解析】(1)解:在y=-3x+900中,令x=160,则y=420,∴政府这个月补贴420×20=8400元;(2)由题意可得:w=-3x+9002+30000,x-100=-3x-200∵a=-3<0,∴当x=200时,w有最大值30000.即当销售单价定为200元时,每月可获得最大利润30000元.(3)设每月获得的总收益为w ,由题意可得:w =-3x+9002+36300,=-3x-190x-100+20-3x+900令w =28800,则-3x-1902+36300=28800,解得:x=140或x=240,∵a=-3<0,则抛物线开口向下,对称轴为直线x=190,∴当140≤x≤240时,w≥28800,∴该月销售单价的最小值为140元.2类型二、图形面积问题2(2023春·湖北武汉·九年级校联考期中)春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是_____m2,花卉B的种植面积是______m2,花卉C的种植面积是_______m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.【答案】(1)(x2-60x+800);(-x2+30x);(-x2+20x),(2)32m或10m,(3)168000元【解析】(1)解:∵育苗区的边长为x m,活动区的边长为10m,∴花卉A的面积为:40-x20-x=(x2-60x+800)m2,花卉B的面积为:x40-x-10=(-x2+30x)m2,花卉C的面积为:x20-x=(-x2+20x)m2,故答案为:(x2-60x+800);(-x2+30x);(-x2+20x);(2)解:∵A,B花卉每平方米的产值分别是2百元、3百元,∴A,B两种花卉的总产值分别为2×x2-60x+800百元和3×-x2+30x百元,∵A,B两种花卉的总产值相等,∴200×x2-60x+800=300×-x2+30x,∴x2-42x+320=0,解方程得x=32或x=10,∴当育苗区的边长为32m或10m时,A,B两种花卉的总产值相等;(3)解:∵花卉A与B的种植面积之和为:x2-60x+800+-x2+30x=(-30x+800)m2,∴-30x+800≤560,∴x≥8,∵设A,B,C三种花卉的总产值之和y百元,∴y=2x2-60x+800+3-x2+30x,+4-x2+20x∴y=-5x2+50x+1600,∴y=-5(x-5)2+1725,∴当x≥8时,y随x的增加而减小,∴当x=8时,y最大,且y=-5(8-5)2+1725=1680(百元),故A,B,C三种花卉的总产值之和的最大值168000元.3类型三、拱桥问题3(2023·安徽黄山·统考一模)如图,国家会展中心大门的截面图是由抛物线ADB 和矩形OABC 构成.矩形OABC 的边OA =34米,OC =9米,以OC 所在的直线为x 轴,以OA 所在的直线为y 轴建立平面直角坐标系,抛物线顶点D 的坐标为92,245.(1)求此抛物线对应的函数表达式;(2)近期需对大门进行粉刷,工人师傅搭建一木板OM ,点M 正好在抛物线上,支撑MN ⊥x 轴,ON =7.5米,点E 是OM 上方抛物线上一动点,且点E 的横坐标为m ,过点E 作x 轴的垂线,交OM 于点F .①求EF 的最大值.②某工人师傅站在木板OM 上,他能刷到的最大垂直高度是125米,求他不能刷到大门顶部的对应点的横坐标的范围.【答案】(1)y =-15x -92 2+245;(2)①当m =72时,EF 有最大值165;②32<m <112.【解析】(1)解:由题意知,抛物线顶点D 的坐标为92,245,设抛物线的表达式为y =a x -92 2+245,将点A 0,34 代入抛物线解析式得34=a 0-92 2+245,解得a =-15,∴抛物线对应的函数的表达式为y =-15x -92 2+245;(2)解:①将x =7.5代入y =-15x -92 2+245中,得y =3,∴点M 152,3 ,∴设直线OM 的解析式为y =kx k ≠0 ,将点M 152,3 代入得152k =3,∴k =25,∴直线OM 的解析式为y =25x ,∴EF =-15m -92 2+245-25m =-15m 2+75m +34=-15m -72 2+165,∵-15<0,∴当m =72时,EF 有最大值,为165;②∵师傅能刷到的最大垂直高度是125米,∴当EF >125时,他就不能刷到大门顶部,令EF =125,即-15m -72 2+165=125,解得m 1=32,m 2=112,又∵EF 是关于m 的二次函数,且图象开口向下,∴他不能刷到大门顶部的对应点的横坐标m 的范围是32<m <112.4类型四、投球问题4(2023·浙江丽水·统考一模)某天,小明在足球场上练习“落叶球”(如图1),足球运动轨迹是抛物线的一部分,如图2,足球起点在A 处,正对一门柱CD ,距离AC =12m ,足球运动到B 的正上方,到达最高点2.5m ,此时AB =10m .球门宽DE =5m ,高CD =2m .(1)以水平方向为x 轴,A 为原点建立坐标系,求足球运动轨迹抛物线的函数表达式.(2)请判断足球能否进球网?并说明理由.(3)小明改变踢球方向,踢球时,保持足球运动轨迹抛物线形状不变的前提下,足球恰好在点E 处进入球网.若离A 点8m 处有人墙GH ,且GH ∥CF ,人起跳后最大高度为2.2m ,请探求此时足球能否越过人墙,并说明理由.【答案】(1)足球运动轨迹抛物线的函数表达式为y =-140x +10 2+2.5(2)足球不能进球网,理由见解析(3)足球能越过人墙,理由见解析【解析】(1)解:由题意得抛物线的顶点坐标为-10,2.5 ,设抛物线的函数表达式为y =a x +10 2+2.5,将0,0 代入得,0=100a +2.5,解得a =-140,∴足球运动轨迹抛物线的函数表达式为y =-140x +10 2+2.5;(2)解:足球不能进球网,理由如下:当x =-12时,y =-140-12+10 2+2.5=2.4,∵2.4>2,∴足球不能进球网.(3)解:足球能越过人墙,理由如下:∵足球运动轨迹抛物线形状不变,并经过点0,0 ,∴设抛物线的函数表达式为y =-140x 2+bx .如图,由题意知,四边形CDEF 是矩形,则CF =DE =5,在Rt △ACF 中,由勾股定理得AF =AC 2+CF 2=13,∵足球恰好在点E 处进入球网,∴抛物线经过点-13,2 ,将-13,2 代入得,2=-140×-13 2-13b ,解得b =-249520,∴y =-140x 2-249520x ,∵GH ∥CF ,∴△AGH ∽△ACF ,∴AH AF =AG AC ,即AH 13=812,解得AH =263,把x =-263代入得,y =-140×-263 2-249520×-263 =409180,∵409180>2.2,∴足球能越过人墙.5类型五、喷水问题5(2023·山东潍坊·统考一模)如图①,灌溉车沿着平行于绿化带底部边线l 的方向行驶,为绿化带浇水.喷水口H 离地竖直高度OH =1.5米.如图②,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG ,其水平宽度DE =2米,竖直高度EF =1米.下边缘抛物线可以看作由上边缘抛物线向左平移得到,上边缘抛物线最高点A 离喷水口的水平距离为2米,高出喷水口0.5米,灌溉车到l 的距离OD 为d 米.(1)求上边缘抛物线的函数表达式,并求喷出水的最大射程OC ;(2)求下边缘抛物线与x 轴的正半轴交点B 的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带(即矩形DEFC 位于上边缘抛物线和下边缘抛物线所夹区域内),求d 的取值范围.【答案】(1)6米(2)y=-18x+22+2,2,0(3)2≤d≤22【解析】(1)解:如图,由题意得A2,2是上边缘抛物线的顶点,则设y=a x-22+2.又∵抛物线经过点0,1.5,∴4a+2=1.5,∴a=-18.∴上边缘抛物线的函数解析式为y=-18x-22+2.当y=0时,-18x-22+2=0,∴x1=6,x2=-2(舍去).∴喷出水的最大射程OC为6m.(2)法一:∵上边缘抛物线对称轴为直线x=2,∴点0,1.5的对称点为4,1.5,∴下边缘抛物线是由上边缘抛物线向左平移4m得到的,∴将点C向左平移4m得到点B的坐标为2,0法二:∵下边缘抛物线可以看做是上边缘抛物线向左平移t个单位长度得到的,∴可设y=-18x+t-22+2,将点0,1.5代入得t1=4,t2=0(舍去)∴下边缘抛物线的关系式为y=-18x+22+2,∴当y=0时,0=-18x+22+2,解得x1=2,x2=-6(舍去),∴点B的坐标为2,0;(3)解:如图,先看上边缘抛物线,∵EF=1,∴点F的纵坐标为1.当抛物线恰好经过点F时,-18x-22+2=1.解得x=2±22,∵x>0,∴x=2+22.当x>0时,y随着x的增大而减小,∴当2≤x≤6时,要使y≥1,则x≤2+22.∵当0≤x<2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+22.∵DE=2,灌溉车喷出的水要浇灌到整个绿化带,∴d的最大值为2+22-2=22.再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是OB ≤d ,∴d 的最小值为2.综上所述,d 的取值范围是2≤d ≤22.6类型六、几何动点问题1例6.(2023·山东青岛·统考一模)如图,在四边形ABCD 中,AB ∥CD ,∠ABC =90°,AB =8cm ,BC =6cm ,AD =10cm ,点P 、Q 分别是线段CD 和AD 上的动点.点P 以2cm/s 的速度从点D 向点C 运动,同时点Q 以1cm s 的速度从点A 向点D 运动,当其中一点到达终点时,两点停止运动,将PQ 沿AD 翻折得到QP ,连接PP 交直线AD 于点E ,连接AC 、BQ .设运动时间为t s ,回答下列问题:(1)当t 为何值时,PQ ∥AC ?(2)求四边形BCPQ 的面积S cm 2 关于时间t s 的函数关系式;(3)是否存在某时刻t ,使点Q 在∠PP D 平分线上?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)t =409(2)S =35t 2-425t +72(3)存在,t =5【解析】(1)解:过点A 作AK ⊥CD 于点K ,∵∠ABC =90°,AB =8,BC =6,∴由勾股定理得AC =AB 2+BC 2=10,∵AD =10cm ,∴AC =AD ,∴△ACD 是等腰三角形,∴CD =2CK ,又∵AB ∥CD ,∴∠ABC =∠BCD =∠AKC =90°,∴四边形ABCK 是矩形,∴CK =AB =8,∴CD =16,若PQ ∥AC ,∴DP DC =DQ DA,由题意得,DP =2t ,AQ =t 则DQ =10-t ,∴2t 16=10-t 10,解得t =409,所以,t =409时,PQ ∥AC ;(2)过点Q 作QT ⊥CD ,交CD 于点T ,交AB 于点H ,∴AK =HT =BC =6,由(1)知CK =DK =8,AD =10,∴cos ∠D =DK AD =45,∴sin ∠D =AK AD=35=QT DQ =QT 10-t ,∴QT =6-35t ,∴QH =6-6-35t =35t ,∵四边形BCPQ 的面积=S ΔABC +S ΔACD -S ΔPQD -S ΔABQ =12⋅AB ⋅BC +12⋅CD ⋅AK -12⋅DP ⋅QT -12⋅AB ⋅QH ∴S =12×8×6+12×16×6-12⋅2t ⋅6-35t -12×8⋅35t ,整理得S =35t 2-425t +72,即四边形BCPQ 的面积S cm 2 关于时间t s 的函数关系式为S =35t 2-425t +72;(3)如图,设PP 交AD 于点E ,过点Q 作QF ⊥DP 于点F ,由折叠的性质得∠ADP =∠ADP ,PP ⊥AD ,∵AD 平分∠PDP ,QT ⊥PD ,QF ⊥P D ,∴QT =QF =6-35t ,∵点Q 在∠PP D 平分线上,PP ⊥AD ,QF ⊥P D ,∴QF =QE =6-35t ,∴DE =DQ +EQ =10-t +6-35t =16-85t ,∵cos ∠EDP =DE DP=45,即16-85t 2t =45,解得t =5,经检验t =5是分式方程的解且符合题意,所以t =5时,点Q 在∠PP D 平分线上.7类型七、图形运动问题7(2023·天津·校联考一模)在平面直角坐标系中,O 为原点,四边形AOBC 是正方形,顶点A -4,0 ,点B 在y 轴正半轴上,点C 在第二象限,△MON 的顶点M 0,5 ,点N 5,0 .(1)如图①,求点B ,C 的坐标;(2)将正方形AOBC 沿x 轴向右平移,得到正方形A O B C ,点A ,O ,B ,C 的对应点分别为A ,O ,B ,C .设OO =t ,正方形A O B C 与△MON 重合部分的面积为S .①如图②,当1<t ≤4时,正方形A O B C 与△MON 重合部分为五边形,直线B C 分别与y 轴,MN 交于点E ,F ,O B 与MN 交于点H ,试用含t 的式子表示S ;②若平移后重合部分的面积为92,则t 的值是_______(请直接写出结果即可).【答案】【答案】(1)B 0,4 ,C -4,4(2)①S =-12t 2+5t -12;②5-15或6【解析】(1)解:由A -4,0 ,得AO =4,∵四边形AOBC 正方形,∴OB =BC =4.∴B 0,4 ,C -4,4 ;(2)解:①∵M 0,5 ,N 5,0 ,∠MON =90°,∴OM =ON =5,∠OMN =∠ONM =45°.由平移知,四边形A O B C 是正方形,得B C =4,∠B =∠B O O =90°.∴四边形OO B E 是矩形.∴B E =OO =t ,OE =B O =4,∠B EM =90°.∴∠EFM =45°,∴EF =ME =1,B F =t -1.∵∠B FH =∠EFM =45°,∴∠B HF =45°.∴B H =B F =t -1.当1<t ≤4时,S =OO ⋅OE -12B H ⋅B F =4t -12(t -1)2=-12t 2+5t -12.②当1<t ≤4时,由题意得S =-12t 2+5t -12=92,解得t=5-15或5+15(舍去);当t=5时,点O 与点N重合,此时S=12×4×4=8>92,∴5<t<9,∴A N=A F=9-t,由题意得129-t2=92,解得t=6或t=12(舍去);综上,t的值是5-15或6.故答案为:5-15或6.题型二:压轴题速练1一.解答题(共24小题)1(2023•宁波一模)抗击疫情期间,某商店购进了一种消毒用品,进价为每件8元,销售过程中发现,该商品每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数),部分对应值如下表:每件售价(元)91113每天的销售量(件)1059585(1)求y与x的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元.(3)设该商店销售这种消毒用品每天获利w(元),问:当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)y=-5x+150(8≤x≤15);(2)13元;(3)当每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.【解析】解:(1)设y与x的函数关系式为y=kx+b,(8≤x≤15),将(9,105),(11,95)代入得105=9k+b95=11k+b,解得k=-5b=150,∴y=-5x+150,∴y与x的函数关系式为y=-5x+150(8≤x≤15);(2)由题意知,利润w=(x-8)(-5x+150)=-5(x-19)2+605,令w=425,则-5(x-19)2+605=425,解得x=13或x=25(不合题意,舍去),∴每件消毒用品的售价为13元;(3)由(2)知w=-5(x-19)2+605(8≤x≤15),∵-5<0,∴当8≤x≤15时,w随着x的增大而增大,∴当x=15时,w=525,此时利润最大,∴当每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.2(2023•莱西市一模)某公司电商平台经销一种益智玩具,先用3000元购进一批.售完后,第二次购进时,每件的进价提高了20%,同样用3000元购进益智玩具的数量比第一次少了25件.销售时经市场调查发现,该种益智玩具的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x(元/件),周销售量y(件)的三组对应值数据.x407090y1809030(1)求第一次每件玩具的进价;(2)求y关于x的函数解析式;(3)售价x为多少时,第一周的销售利润W最大?并求出此时的最大利润.【答案】(1)第一次每件玩具的进价为20元(2)y=-3x+300(3)当x=60时,第一周的销售利润W最大,此时的最大利润为4800元【解析】解:(1)设第一次每件玩具的进价为m元,则第二次每件玩具的进价为(1+20%)m元,由题意得,3000 m -3000(1+20%)m=25,解得m=20,经检验m=20是原方程的解且符合题意,答:第一次每件玩具的进价为20元;(2)设y=kx+b,把x=40,y=180;x=70,y=9分别代入得,40k+b=180 70k+b=90,解得k=-3b=300,∴y=-3x+300,即y关于x的函数解析式是y=-3x+300;(3)W=y(x-20)=(-3x+300)(x-20)=-3x2+360x-6000=-3(x-60)2+4800,∵a=-3<0,抛物线开口向下,∴当x=60时,第一周的销售利润W最大,此时的最大利润为4800.3(2023•天山区一模)一名高校毕业生响应国家创业号召,回乡承包了一个果园,并引进先进技术种植一种优质水果,经核算这批水果的种植成本为16元/千克、设销售时间为x(天),通过一个月(30天)的试销,该种水果的售价P(元/千克)与销售时间x(天)满足如图所示的函数关系(其中0≤x≤30,且x为整数).已知该种水果第一天销量为60千克,以后每天比前一天多售出4千克.(1)直接写出售价P(元/千克)与销售时间x(天)的函数关系式;(2)求试销第几天时,当天所获利润最大,最大利润是多少?【答案】(1)P=-12x+3424(20<x≤30) ;(2)试销第30天时,当天所获利润最大,最大利润是1408元.【解析】解:(1)当0≤x≤20时,设售价P(元/千克)与销售时间x(天)的函数关系式为P=kx+b,把(0,34),(20,24)代入得20k+b=24b=34,j解得k=-12b=34,∴P=-12x+34;由函数图象可知当20<x≤30时,P=24;综上所述,P=-12x+3424(20<x≤30) ;(2)设第x天的利润为W,∵该种水果第一天销量为60千克,以后每天比前一天多售出4千克,∴第x天的销售量为60+4(x-1)=(4x+56)千克,当0≤x≤20时,∴W=-12x+34-16(4x+56)=-2x2+72x-28x+1008=-2x2+44x+1008=-2(x-11)2+1250∵-2<0,∴当x=11时,W最大,最大为1250;当20<x≤30时,W=(24-16)(4x+56)=32x+448,∵32>0,∴当x=30时,W最大,最大为32×30+448=1408;∵1408>1250,∴试销第30天时,当天所获利润最大,最大利润是1408元.4(2023•武汉模拟)某市新建了一座室内滑雪场,该滑雪场地面积雪厚达40cm,整个赛道长150m,全天共可容纳约3300人滑雪嬉戏.小明和小华相约去体验滑雪,小明从赛道顶端A处下滑,测得小明离A处的距离s(单位:m)随运动时间x(单位:s)变化的数据,整理得下表.滑行时间x/s01234滑行距离s/m06142436经验证小明离A 处的距离s 与运动时间x 之间是二次函数关系.小明出发的同时,小华在距赛道终点30m 的B 处操控一个无人机沿着赛道方向以2m/s 的速度飞向小明,无人机离A 处的距离y (单位:m )与运动时间x (单位:s )之间是一次函数关系.(1)直接写出s 关于x 的函数解析式和y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)小明滑完整个赛道需要耗时多久?(3)小明出发多久后与无人机相遇?【答案】(1)s 关于x 的函数解析式为s =x 2+5x ,y 关于x 的函数解析式为y =-2x +120;(2)小明滑完整个赛道需要耗时10s ;(3)小明出发8s 与无人机相遇.【解析】解:(1)设s 关于x 的函数解析式为s =ax 2+bx +c ,将(0,0),(1,6),(2,14)代入得:c =0a +b +c =64a +2b +c =14 ,解得a =1b =5c =0,∴s =x 2+5x ;根据题意得y =150-30-2x =-2x +120,∴s 关于x 的函数解析式为s =x 2+5x ,y 关于x 的函数解析式为y =-2x +120;(2)在s =x 2+5x 中,令s =150得:150=x 2+5x ,解得x =10或x =-15(舍去),∴小明滑完整个赛道需要耗时10s ;(3)由x 2+5x =-2x +120得:x =8或x =-15,∴小明出发8s 与无人机相遇.5(2023•邯郸模拟)将小球(看作一点)以速度v 1竖直上抛,上升速度随时间推移逐渐减少直至为0,此时小球达到最大高度,小球相对于抛出点的高度y (m )与时间t (s )的函数解析式为两部分之和,其中一部分为速度v 1(m/s )与时间t (s )的积,另一部分与时间t (s )的平方成正比.若上升的初始速度v 1=10m/s ,且当t =1s 时,小球达到最大高度.(1)求小球上升的高度y 与时间t 的函数关系式(不必写范围),并写出小球上升的最大高度;(2)如图,平面直角坐标系中,y 轴表示小球相对于抛出点的高度,x 轴表示小球距抛出点的水平距离,向上抛出小球时再给小球一个水平向前的均匀速度v 2(m/s ),发现小球运动的路线为一抛物线,其相对于抛出点的高度y (m )与时间t (s )的函数解析式与(1)中的解析式相同.①若v 2=5m/s ,当t =32s 时,小球的坐标为 152,154 ,小球上升的最高点坐标为(5,5);求小球上升的高度y 与小球距抛出点的水平距离x 之间的函数关系式;②在小球的正前方的墙上有一高3536m 的小窗户PQ ,其上沿P 的坐标为6,154,若小球恰好能从窗户中穿过(不包括恰好去中点P ,Q ,墙厚度不计),请直接写出小球的水平速度v 2的取值范围.【答案】(1)y =-5t 2+10t ,小球上升的最大高度是5m ;(2)①152,154 ;(5,5);y =-15x 2+2x ;②185<v 2<4.【解析】解:(1)根据题意可设y =at 2+10t ,∵当t =1s 时,小球达到最大高度,∴抛物线y =at 2+10t 的对称轴为直线t =1,即-102a=1,解得a =-5,∴上升的高度y 与时间t 的函数关系式为y =-5t 2+10t ,在y =-5t 2+10t 中,令t =1得y =5,∴小球上升的最大高度是5m ;(2)①当t =32s 时,y =-5×32 2+10×32=154,x =v 2t =5×32=152,∴小球的坐标为152,154;由(1)可知,t =1s 时,取得最大高度,x =v 2t =5×1=5,∴小球上升的最高点坐标为(5,5);由题意可知,x =v 2t ,∴t =x v 2=x 5,∴y =-5×x 5 2+10×x 5=-15x 2+2x ;∴小球上升的高度y 与小球距抛出点的水平距离x 之间的函数关系式是y =-15x 2+2x ;故答案为:152,154 ;(5,5);②∵PQ =3536m ,P 的坐标为6,154 ,∴Q 6,259;当小球刚好击中P 点时,-5t 2+10t =154,解得t =1.5或t =0.5,∵t >1,∴t =1.5,此时v 2=6t=4m/s ,当小球刚好击中Q 点时,-5t 2+10t =259,解得t =53或t =13,∵t >1,∴t =53,此时v 2=6t =185m/s ,∴v 2的取值范围为:185<v 2<4.6(2023•崂山区一模)跳台滑雪简称“跳雪”,选手不借助任何外力、从起滑台P 处起滑,在助滑道PE 上加速,从跳台E 处起跳,最后落在山坡MN 或者水平地面上.运动员从P 点起滑,沿滑道加速,到达高度OE =42m 的E 点后起跳,运动员在空中的运动轨迹是一条抛物线.建立如图所示平面直角坐标系,OM =38m ,ON =114m ,设MN 所在直线关系式为y =kx +b .甲运动员起跳后,与跳台OE 水平距离xm 、竖直高度ym 之间的几组对应数据如下:水平距离x /m 010203040竖直高度y /m4248504842(1)求甲运动员空中运动轨迹抛物线的关系式;(2)运动员得分由距离得分+动作分+风速得分组成距离得分:运动员着陆点到跳台OE 水平距离为50m ,即得到60分,每比50m 远1米多得2分;反之,当运动员着陆点每比50m 近1米扣2分.距离分计算采取“2舍3入法”,如60.2米计为60米,60.3米则计为60.5米.动作得分:由裁判根据运动员空中动作的优美程度打分.风速得分:由逆风或者顺风决定.甲运动员动作分、风速加分如下表:距离分动作分风速加分50-2.5请你计算甲运动员本次比赛得分.【答案】(1)y =-150x 2+45x +42;(2)甲运动员本次比赛得分为147.5分.【解析】解:(1)∵抛物线经过点(10,48),(30,48),∴对称轴是:直线x =10+302=20,∴顶点坐标为(20,50),设甲运动员空中运动轨迹抛物线的关系式为:y =a (x -20)2+50,将(0,42)代入得:a (0-20)2+50=42,∴a =-150,∴甲运动员空中运动轨迹抛物线的关系式为:y =-150(x -20)2+50=-150x 2+45x +42;(2)根据题意可得,当y =0时,即-150(x -20)2+50=0,解得:x 1=70,x 2=-30(舍),则60+2×(70-50)+50+(-2.5)=147.5,所以甲运动员本次比赛得分为147.5分.7(2023•镇平县模拟)为培养学生劳动实践能力,某学校在校西南角开辟出一块劳动实践基地.如图①是其中蔬菜大棚的横截面,它由抛物线AED 和矩形ABCD 构成.已知矩形的长BC =12米,宽AB =3米,抛物线最高点E 到地面BC 的距离为6米.(1)按图①所示建立平面直角坐标系,求抛物线AED 的解析式;(2)冬季到来,为防止大雪对大棚造成损坏,学校决定在大棚两侧安装两根垂直于地面且关于y 轴对称的支撑柱PQ 和NM ,如图②所示.①若两根支撑柱的高度均为5.25米,求两根支撑柱之间的水平距离;②为了进一步固定大棚,准备在两根支撑柱上架横梁PN ,搭建成一个矩形“脚手架”PQMN ,为了筹备材料,需求出“脚手架”三根支杆PQ ,PN ,MN 的长度之和w 的最大值,请你帮管理处计算一下.【答案】(1)抛物线AED 的解析式为:y =-112x 2+6;(2)①两根支撑柱之间的水平距离为6米;②“脚手架”三根支杆PQ ,PN ,MN 的长度之和w 的最大值为18米.【解析】解:(1)∵四边形ABCD 是矩形,∴AD =BC =12(米),∴点A (-6,3),点D (6,3),根据题意和图象可得,顶点E 的坐标为(0,6),∴可设抛物线AED 的解析式为:y =ax 2+6,把点A (-6,3)代入解析式可得:36a +6=3,解得:a =-112,∴抛物线AED 的解析式为:y =-112x 2+6;(2)①当y =5.25时,-112x 2+6=5.25,解得x =±3,3-(-3)=3+3=6(米),∴两根支撑柱之间的水平距离为6米;②设N点坐标为m,-112m2+6,则MQ=2m,MN=-112m2+6,∴w=2m+2-112m2+6=-16m2+2m+12=-16(m-6)2+18,∵-16<0,∴当m=6时,w有最大值,最大值为18,∴“脚手架”三根支杆PQ,PN,MN的长度之和w的最大值为18米.8(2023•宝应县一模)科学研究表明:一般情况下,在一节45分钟的课堂中,学生的注意力随教师讲课的时间变化而变化.经过实验分析,在0≤x≤8时,学生的注意力呈直线上升,学生的注意力指数y与时间x(分钟)满足关系y=2x+68,8分钟以后,学生的注意力指数y与时间x(分钟)的图象呈抛物线形,到第16分钟时学生的注意力指数y达到最大值92,而后学生的注意力开始分散,直至下课结束.(1)当x=8时,注意力指数y为84,8分钟以后,学生的注意力指数y与时间x(分钟)的函数关系式是y=-18x2+4x+60;(2)若学生的注意力指数不低于80,称为“理想听课状态”,则在一节45分钟的课中学生处于“理想听课状态”所持续的时间有多长?(精确到1分钟)(3)现有一道数学压轴题,教师必须持续讲解24分钟,为了使效果更好,要求学生的注意力指数在这24分钟内的最低值达到最大,则该教师上课后从第几分钟开始讲解这道题?(精确到1分钟)(参考数据:6≈2.449)【答案】(1)84,y=-18x2+4x+60;(2)在一节45分钟的课中学生处于“理想听课状态”所持续的时间约有20分钟;(3)教师上课后从第4分钟开始讲解这道题,能使学生的注意力指数在这24分钟内的最低值达到最大.【解析】解:(1)根据题意,把x=8代入y=2x+68可得:y=84,由题意可知,抛物线的顶点坐标为(16,92),∴可设抛物线的解析式为:y=a(x-16)2+92,把(8,84)代入可得:64a+92=84,解得:a=-1 8,∴y=-18(x-16)2+92=-18x2+4x+60,故答案为:84,y=-18x2+4x+60;(2)由学生的注意力指数不低于80,即y≥80,当0≤x≤8时,由2x+68≥80可得:6≤x≤8;当8<x≤45是,则-18x2+4x+60≥80,即-18(x-16)2+92≥80,整理得:(x-16)2≤96,解得:8<x≤16+46,∴16+46-6=10+46≈20(分钟),答:在一节45分钟的课中学生处于“理想听课状态”所持续的时间约有20分钟;(3)设教师上课后从第t分钟开始讲解这道题,∵10+46<24,∴0≤t<6,要使学生的注意力指数在这24分钟内的最低值达到最大,则当x=t和当x=t+24时对应的函数值相同,即2t+68=-18(t+24-16)2+92,整理得:(t+16)2=384,解得:t1=86-16,t2=-86-16(舍),∴t≈4,答:教师上课后从第4分钟开始讲解这道题,能使学生的注意力指数在这24分钟内的最低值达到最大.9(2023•昭阳区一模)新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?【答案】(1)y=-2x2+20x+400;(2)若要书店每天盈利1200元,则每套书销售定价应为130元或120元;(3)当每套书销售定价为125元时,书店一天可获得最大利润,最大利润为1250元.【解析】解:(1)由题意可得:销售量=(20+2x)套,则y=(20+2x)(140-x-100)=(2x+20)(40-x)=-2x2+60x+800,∴y与x的函数关系式为:y=-2x2+60x+800;(2)由题意可得:当y=1200时,即-2x2+60x+800=1200,解得:x1=10,x2=20,∴140-10=130(元),140-20=120(元),答:若要书店每天盈利1200元,则每套书销售定价应为130元或120元;(3)由(1)可知:y=-2x2+60x+800=-2(x-15)2+1250,∵-2<0,∴当x=15时,y有最大值,最大值为1250,此时,售价=140-15=125(元),答:当每套书销售定价为125元时,书店一天可获得最大利润,最大利润为1250元.10(2023•大丰区一模)比萨斜塔是意大利的一座著名斜塔,据说物理学家伽利略曾在塔顶上做过著名的自由落体试验:在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.已知:某建筑OA的高度为44.1m,将一个小铁球P(看成一个点)从A处向右水平抛出,在水平方向小铁球移动的距离d(m)与运动时间t(s)之间的函数表达式是:d=7t,在竖直方向物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=4.9t2.以点O为坐标原点,水平向右为x轴,OA所在直线为y轴,取1m为单位长度,建立如图所示平面直角坐标系,已知小铁球运动形成的轨迹为抛物线.(1)求小铁球从抛出到落地所需的时间;(2)当t=1时,求小铁球P此时的坐标;(3)求抛物线的函数表达式,并写出自变量x的取值范围.【答案】(1)小铁球从抛出到落地所需的时间为3秒;(2)(7,39.2);(3)y=-110x2+44.1(0≤x≤21).【解析】解:(1)根据题意可得,OA的高度为44.1m,且竖直方向物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=4.9t2,∴当h=44.1时,小铁球落到地面,∴4.9t2=44.1,解得:t1=3,t2=-3(舍),答:小铁球从抛出到落地所需的时间为3秒;(2)当t=1时,则d=7×1=7,h=4.9×12=4.9,∴y p=44.1-4.9=39.2,∴小铁球P此时的坐标为(7,39.2);(3)由(1)可知小铁球从抛出到落地所需的时间为3秒,∴d=7×3=21,∴OB=21(m),即B(21,0),根据题意可得,顶点坐标为A(0,44.1),∴可设抛物线解析式为:y=ax2+44.1,将点B(21,0)代入得:441a+44.1=0,解得:a=-1 10,∴抛物线的函数表达式为:y=-110x2+44.1(0≤x≤21).11(2023•南昌模拟)一个运动员跳起投篮,球的运行路线可以看做是一条抛物线,如图1所示,图2是它的示意图,球的出手点D到地面EB的距离为2.25m(即DE=2.25m,当球运行至F处时,水平距离为2.5m(即F到DE的距离为2.5m),达到最大高度为3.5m,已知篮圈中心A到地面EB的距离为3.05m,篮球架AB可以在直线EB上水平移动.(1)请建立恰当的平面直角坐标系,求该抛物线的解析式;(2)若篮球架离人的水平距离EB为4.5m,问该运动员能否将篮球投入篮圈?若能,说明理由;若不能,算一算将篮球架往哪个方向移动,移动多少距离,该运动员此次所投的篮球才能投入篮圈.。
沪科版九年级上册二次函数应用第讲销售利润问题
(1)当第5天和第35天该商品的销售单价为35元/件
(2)第21天时所获利润最大,最大利润为725元;
(3)2≤m≤5
(1)请计算第几天该商品的销售单价为35元/件;
(2)这40天中该加盟店第几天获得的利润最大?最大利润是多少?
(3)在实际销售的前20天中,公司为鼓励加盟店接收大学生参加实践活动决定每销售一件
【答案】(1)൝
1
=3
= 2700
(2)1 = 54, 2 = 36
(3)当生产135吨时,所获最大利润是3375万元
1-2、销售利润问题-图表信息
2-3(202X·东营模拟)某文具店经营某种品牌的文具盒,购进时的单价是30元,根据统计调查:在一段
时间内,销售单价是40元时,文具盒销售量是600个,而销售单价每涨2元,就会少售出20个文具盒.
商品就发给该加盟店m(m≥2)元嘉奖.通过该加盟店的销售记录发现,前10天中,每天获
得嘉奖后的利润随时间x(天)的增大而增大,求m的取值范围.
【分析】(1)分情况讨论,当1≤x≤20时和当21≤x≤40时的函数值为35,然后求得对应的x的值即可;
(2)分为当1≤x≤20时和当21≤x≤40时两种情况,列出与天数的函数关系式,然后利用二次函数和反比例函
值,
1
又函数图像的对称轴为 = 16 + 2 ∵a<4,
1
1
当 = 16 + 2 时,获利最大值为42100元,将 = 16 + 2 代入得,
解得a=1.2或a=37.4(舍)∴.a=1.2
1-2、销售利润问题-图表信息
2-2(202X·馆陶模拟)某公司把一种原料加工成产品进行销售,已知某月共加工原料x吨,恰好能生产相同吨数的
11 22.3实际问题与二次函数——销售问题
22.3.2实际问题与二次函数----利润问题学习目标:1. 能够分析和表示实际问题中变量之间的二次函数关系(重点).2.掌握利用二次函数解决商品销售利润问题中的最大(小)值问题的方法(难点). 一、知识回顾1.求下列二次函数的最大值或最小值: (1)322-+-=x x y (2)x x y 42+=2.商品销售问题中的数量关系: ①单价商品利润=商品售价-商品进价②总利润(W )=单价商品利润×总销售量-(其他成本)3.某商场以每件42元的价钱购进一种服装,根据试销售得知这种服装每天的销售量t (件)与每件的销售价x (元/件)可看成是一次函数关系:2043+-=x t。
(1)写出商场卖这种服装每天销售利润y (元)与每件的销售价x (元)间的函数关系式.(2)商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适?最大利润为多少?二、探究新知问题:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。
已知商品的进价为每件40元,如何定价才能使利润最大? 分析:(调整价格包括涨价和降价两种情况) 1.先来看涨价的情况: 设:每件涨价x 元时,每星期少卖 件,实际卖出 件;销售额为 ,买进商品需付: 所获利润可表示为:y= 即y= ( )∴当销售单价为元时,可以获得最大利润,最大利润是 元.2.在降价的情况下,最大利润是多少?请参考涨价的过程得出答案.三、随堂检测1、某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件) 之间的关系如下表,若日销售量 y 是销售价 x 的一次函数. (1)求出日销售量y (件)与销售价 x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?1.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x 元,每星期的销售量为y 件. (1)y 与x 之间的函数关系式为 ;(2)①设每星期的销售利润为w 元,则w 与x 之间的函数关系式为②当每件售价定为 元时,每星期的销售利润最大,最大利润是 元. ③要想获得最大利润每天必须卖出 件.(3)若35≤x ≤45,则每星期的销售最大利润是 元.(4)①当每件童装售价定为 元时,该店一星期可获得3910元的利润.②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装 件.四、拓展延伸1.某服装经销商发现某款新型运动服市场需求量较大,经过市场调查发现月销售量y (件)与销售单价x (元)之间存在如图所示的函数关系,而该服装的进价z (元)与销售量y (件)之间的关系如下表所示的一次函数关系.已知每月还需支付员工工资和场地租金等费用总计2万元.(2)求该经销商经销这种服装,月获利w (元)与销售单价x (元)的函数表达式,当销售单价x 为何值时,月获利最大?并求出最大获利是多少?。
二次函数销售问题讲解技巧
二次函数销售问题讲解技巧二次函数销售问题是一种常见的数学问题,主要涉及到二次函数的最值计算和实际应用。
为了更好地讲解这类问题,你可以遵循以下步骤:1. 引入问题:首先,选择一个与销售相关的实际问题,例如:如何确定销售价格以最大化利润。
这种问题容易引起学生的兴趣。
2. 建立数学模型:引导学生将实际问题转化为数学模型。
例如,如果成本是固定的,售价和数量之间的关系可以表示为二次函数。
让学生理解“变量”和“自变量”、“因变量”的概念。
3. 分析二次函数的性质:解释二次函数的开口方向、顶点、对称轴等基本性质。
这些性质对于找到最大值或最小值至关重要。
4. 求解最值:利用二次函数的性质,如顶点公式或配方法,找到使利润最大的销售价格。
解释如何通过计算确定最值。
5. 解释实际意义:将计算出的最值解释为实际销售策略。
例如,如果计算结果显示最大利润出现在某个特定的售价,那么这个售价就是最佳销售策略。
6. 案例分析:选择几个与销售相关的实际问题,让学生自行建立模型并求解最值。
通过案例分析,让学生更好地理解二次函数在销售问题中的应用。
7. 总结与反思:回顾整个解题过程,强调二次函数在解决实际问题中的重要性。
同时,引导学生思考如何将这种方法应用于其他类似的销售问题。
8. 互动环节:鼓励学生提问,并就他们的问题进行讨论。
这有助于巩固学生的理解,并激发他们对这个话题的进一步兴趣。
9. 布置作业:提供一些相关的练习题,让学生在课后进行练习,以巩固他们对二次函数销售问题的理解。
10. 反馈与调整:根据学生的反馈和作业完成情况,及时调整教学方法和进度,确保学生能够充分理解和掌握这个主题。
在整个讲解过程中,保持与学生的互动是非常重要的。
通过问答、讨论和案例分析,你可以更好地了解学生的理解程度,并作出相应的调整。
此外,结合实际例子和情境可以帮助学生更好地理解和应用二次函数销售问题的解决方案。
二次函数与商品销售中利润问题
二次函数与商品销售中利润问题例1 某商店经营一种成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请回答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价定为每千克x元,月销售利润为y元,求y与x之间的函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?练习:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?例2某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式; ⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?练习 :某工厂在生产过程中要消耗大量电能,消耗每千度电产生的利润与电价是一次函数关系,经过测算工厂每千度电产生的利润y (元/千度)与电价x (元/千度)的函数图象如图:(1)当电价为600元/千度时,工厂消耗每千度电产生的利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x (元/千度)与每天 用电量m (千度)的函数关系为x =10m +500,且该工厂每天用电量不超过60千度.为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生的利润最大是多少元?x (元) 15 20 30 … y (件) 25 20 10 …例3某蔬菜基地种植西红柿,由历年市场行情知,从2月1日起的200天内,西红柿市场售价P与上市时间t的关系用图甲的一条线段表示;西红柿的种植成本Q与上市时间t的关系用图乙中的抛物线表示.(其中,市场售价和种植成本的单位为:元/100千克,时间单位为:天) (1)写出图甲表示的市场售价P与时间t的函数关系式; (2)写出图乙表示的种植成本Q与时间t的函数关系式; (3)如果市场售价减去种植成本为纯收益,那么何时上市的西红柿纯收益最大(可借助配方或草图观察)?},巩固提升:(2010年重庆)今年我国多个省市遭受严重干旱.受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,进入5 2.8 元/千克下降至第2周的2.4 元/千克,且y 与周数x 的变化情况满足二次函数c bx x y ++-=2201. (1)请观察题中的表格,用所学过的一次函数或二次函数的有关知识直接写出4月份y 与x 所满足的函数关系式,并求出5月份y 与x 所满足的二次函数关系式; (2)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为2.141+=x m ,5月份的进价m (元/千克)与周数x 所满足的函数关系为251+-=x m .试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月的第2周共销售100吨此种蔬菜.从5月的第3周起,由于受暴雨的影响,此种蔬菜的可销售量将在第2周销量的基础上每周减少%a ,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨%8.0a .若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.图甲 图乙。
第05讲二次函数利润问题的四种题型(带答案)
第05讲二次函数利润问题的四种题型题型一:“每每”的利润问题商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元,“每每”问题的做题步骤①找出原来的销量:30件,原来的每件盈利:50元;②确定每件产品降价(或涨价)后的利润:(50-x)元;③计算出降价(或涨价)后销量的变化量:2x件;④找出降价(或涨价)后的销量,本题里有明确的“多出”字样,即为:(30+2x)件;⑤利润=每件利润×数量:=5−5+B计算注意事项①若题中要求价格为整数,而二次函数的对称轴不是整数,要用二次函数的性质取适当的整数求最值;②结果可能不唯一,例如题中要求结果为整数,而对称轴是51.5,那么51和52都可以;③看清楚题中是否有“最优惠”等条件,算出多个结果需要舍根。
【例1】商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元,据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y元,求y与x的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?【答案】(1)2x ,()50x -;(2)2701500y x x =--+(3)每件商品降价35元时,商场日盈利最高.【分析】(1)每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.商场日销售量增加2x 件,每件商品盈利()50x -元;(2)根据(1)得,单件利润乘以销售量等于利润,即可得到y 与x 的函数关系式;(3)由题意得:利润函数的表达式为()()50302y x x =-+,再化为顶点式得()2352725y x =-++,得,当35x =时,y 有最大值.【详解】(1)解:每天销售30件,每件盈利50元,每件商品每降价1元,商场平均每天可多售出2件,∴当降价x 元时,商场日销售量增加2x 件,每件商品盈利为()50x -元,故答案为:2x ,()50x -;(2)解:根据题意得:=50−30+2=−2−70+1500.(3)解:()22701500352725y x x x =--+=-++,当35x =时,y 有最大值,答:每件商品降价35元时,商场日盈利最高.【点睛】本题考查二次函数的销售问题,涉及到利润函数=单件利润乘以销售数量,利用二次函数的性质求最值,通常都是化为顶点式来解决问题.1.(2022·贵州遵义·三模)红星公司销售一种成本为4元/件的产品,若月销售单价不高于5元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售件产品便向大别山区捐款a 元,已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值2.(2022·辽宁朝阳·模拟预测)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y元,求y与x的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?3.(贵州遵义·统考一模)某水果批发店销售一种优质水果,已知这种优质水果的进价为10元/千克.经市场调查发现:若售价为12元/千克时,每天的销售量为180千克;若售价每千克提高1元,每天的销售量就会减少10千克.设每天的销售量为y千克,每千克的售价为x元.请解答以下问题:(1)为让利给顾客,当这种优质水果售价为多少时,每天可获得利润960元.(2)当售价定为多少时,每天可获得最大利润,并求最大利润是多少?4.(2022·四川巴中·统考中考真题)端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.5.(2022·山东青岛·统考中考真题)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?6.(2022·贵州铜仁·统考中考真题)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?1.(2022·贵州遵义·三模)红星公司销售一种成本为4元/件的产品,若月销售单价不高于5元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售件产品便向大别山区捐款a元,已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值【答案】(1)()540500.110(50100)xyx x⎧≤≤=⎨-+<≤⎩(2)7元/件,最大利润为9万元(3)4a=【分析】(1)分4050x≤≤和50x>两种情况,根据“月销售单价每涨价1元,月销售量就减少0.1万件”即可得函数关系式,再根据0y≥求出x的取值范围;(2)在(1)的基础上,根据“月利润=(月销售单价-成本价)⨯月销售量”建立函数关系式,分别利用一次函数和二次函数的性质求解即可得;万元,先根据捐款当月的月销售单价、月销售2.(2022·辽宁朝阳·模拟预测)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x 元据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x 的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y 元,求y 与x 的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?【答案】(1)2x ,()50x -;(2)2701500y x x =--+(3)每件商品降价35元时,商场日盈利最高.【分析】(1)每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.商场日销售量增加2x 件,每件商品盈利()50x -元;(2)根据(1)得,单件利润乘以销售量等于利润,即可得到y 与x 的函数关系式;(3)由题意得:利润函数的表达式为()()50302y x x =-+,再化为顶点式得()2352725y x =-++,得,当35x =时,y 有最大值.【详解】(1)解:每天销售30件,每件盈利50元,每件商品每降价1元,商场平均每天可多售出2件,∴当降价x 元时,商场日销售量增加2x 件,每件商品盈利为()50x -元,故答案为:2x ,()50x -;(2)解:根据题意得:()()250302701500y x x x x =-+=--+.(3)解:()22701500352725y x x x =--+=-++,当35x =时,y 有最大值,答:每件商品降价35元时,商场日盈利最高.【点睛】本题考查二次函数的销售问题,涉及到利润函数=单件利润乘以销售数量,利用二次函数的性质求最值,通常都是化为顶点式来解决问题.3.(贵州遵义·统考一模)某水果批发店销售一种优质水果,已知这种优质水果的进价为10元/千克.经市场调查发现:若售价为12元/千克时,每天的销售量为180千克;若售价每千克提高1元,每天的销售量就会减少10千克.设每天的销售量为y 千克,每千克的售价为x 元.请解答以下问题:(1)为让利给顾客,当这种优质水果售价为多少时,每天可获得利润960元.(2)当售价定为多少时,每天可获得最大利润,并求最大利润是多少?【答案】(1)当这种优质水果售价为18元时,每天可获得利润960元(2)当售价定为20元时,每天可获得最大利润,最大利润是1000元【分析】(1)先根据题意求得销量与售价的关系,然后根据销量乘以每千克的利润等于总利润,列出一元二次方程,解方程即可求解;(2)设利润为w ,根据题意列出二次函数,根据二次函数的性质即可求解.【详解】(1)解:设每天的销售量为y 千克,每千克的售价为x 元,根据题意得,()180121010300y x x =--⨯=-+,()()1010300960x x --+=,解得:1218,22x x ==,∵为让利给顾客,∴18x =,答:当这种优质水果售价为18元时,每天可获得利润960元;(2)解:设利润为w ,则()()()22101030010400300010201000w x x x x x =--+=-+-=--+,∴20x =时,w 最大,最大利润是1000元,答:当售价定为20元时,每天可获得最大利润,最大利润是1000元.【点睛】本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.4.(2022·四川巴中·统考中考真题)端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a 元,销售猪肉粽的利润为w 元,求该商家每天销售猪肉粽获得的最大利润.【答案】(1)每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元(2)1800元【分析】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,根据猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元列出方程组,解出即可.(2)根据当50a =时,每天可售出100盒,每盒猪肉粽售价为a 元时,每天可售出猪肉粽()100250a --⎡⎤⎣⎦盒,列出二次函数关系式,再化成顶点式即可得解.(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,由题意得:102100x y x y -=⎧⎨+=⎩解得:4030x y =⎧⎨=⎩∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元.(2)(40)[1002(50)]w a a =---22(70)1800a =--+.∴当70a =时,w 最大值为1800元.∴该商家每天销售猪肉粽获得的最大利润为1800元.【点睛】本题主要考查了二元一次方程组的实际应用以及二次函数的实际应用,根据题意列出相应的函数关系式是解此题的关键.5.(2022·山东青岛·统考中考真题)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y (元/千克)与购进数量x (箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?【答案】(1)0.28.4y x =-+(110x ≤≤且x 为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.【分析】(1)根据题意列出8.20.2(1)y x =--,得到结果.(2)根据销售利润=销售量⨯(售价-进价),利用(1)结果,列出销售利润w 与x 的函数关系式,即可求出最大利润.【详解】(1)解:由题意得8.20.2(1)y x =--0.28.4x =-+∴批发价y 与购进数量x 之间的函数关系式是0.28.4y x =-+(110x ≤≤,且x 为整数).(2)解:设李大爷销售这种水果每天获得的利润为w 元则[120.5(1)]10w x y x=---⋅[120.5(1)(0.28.4)]10x x x=----+⋅2341x x=-+∵30a =-<园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y (吨)与批发价x (千元/吨)之间的函数关系式,并直接写出自变量x 的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?【答案】(1)220y x =-+,4 5.5x ≤≤(2)将批发价定为每吨5.5千元时,每天获得的利润最大,最大利润是31.5千元.【分析】(1)根据题意直接写出y 与x 之间的函数关系式和自变量的取值范围;(2)根据销售利润=销售量×(批发价-成本价),列出销售利润w (元)与批发价x (千元/吨)之间的函数关系式,再依据函数的增减性求得最大利润.(1)解:根据题意得()()12242204 5.5y x x x =--=-+≤≤,所以每天销量y (吨)与批发价x (千元/吨)之间的函数关系式220y x =-+,自变量x 的取值范围是4 5.5x ≤≤(2)解:设每天获得的利润为w 千元,根据题意得()()222202224402(6)32w x x x x x =-+-=-+-=--+,∵20-<,∴当6x <,W 随x 的增大而增大.∵4 5.5x ≤≤,∴当 5.5x =时,w 有最大值,最大值为22 5.563231.5-⨯-+=(),∴将批发价定为每吨5.5千元时,每天获得的利润最大,最大利润是31.5千元.【点睛】本题考查二次函数应用,解题的关键是读懂题意,列出函数关系式.题型二:二次函数和一次函数综合的利润问题【例2】2022年春,新冠肺炎有所蔓延,市场对口罩的需求量仍然较大.某公司销售一种进价为12元/袋的口罩,其销售量y (万袋)与销售价格x (元/袋)的变化如表:价格x (元/袋)…14161820…销售量y(万袋)…5432…另外,销售过程中的其他开支(不含进价)总计6万元.(1)根据表中数据变化规律及学过的“一次函数、二次函数、反比例函数”知识,请判断销售量y (万袋)与价格x (元/袋)满足什么函数?并求出y 与x 之间的函数表达式;(2)设该公司销售这种口罩的净利润为w (万元),当销售价格定为多少元时净利润最大,最大值是多少?,可判断该函数是一次函数;设1.(2022·贵州遵义·校考一模)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请直接写出p与x之间的函数关系式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.2.(2021·四川德阳·二模)某工厂制作A、B两种手工艺品,B每件获利比A多105元,制作16件A与制作2件B获利相同.(1)制作一件A和一件B分别获利多少元;(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C工艺品.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等,设每天安排x人制作B,y人制作A.写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作B为5件时,每件B获利不变,若B每增加1件,则当天平均每件B获利减少2元,已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.3.(2022·辽宁大连·校考模拟预测)新冠肺炎疫情后期,我县某药店进了一批口罩,成本价为2元/个,投入市场销售,其销售单价不低于成本,按物价局规定销售利润率不高于80%.经一段时间调查,发现每天销售量y(个)与销售单价x(元/个)之间存在一次函数关系,且有两天数据为:销售价定为2.3元,每天销售1080个;销售价定为2.5元,每天销售1000个.(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围.(2)如果该药店销售口罩每天获得800元的利润,那么这种口罩的销售单价应定为多少元?(3)设每天的总利润为w元,当销售单价定为多少元时,该药店每天的利润最大?最大利润是多少元?1.(2022·贵州遵义·校考一模)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x (元/千克)3035404550日销售量p (千克)600450300150(1)请直接写出p 与x 之间的函数关系式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2430元,求a 的值.【答案】(1)301500p x =-+(2)这批农产品的销售价格定为40元,才能使日销售利润最大(3)a 的值为2.【分析】(1)首先根据表中的数据,可猜想y 与x 是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w 与销售价格x 之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w '与销售价格x 之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a 的值.【详解】(1)解:由表格的数据可知:p 与x 成一次函数关系,设函数关系式为p=kx+b ,则3060040300k b k b +=⎧⎨+=⎩,解得:k=-30,b=1500,∴p=-30x+1500,∴所求的函数关系为p=-30x+1500;(2)解:设日销售利润w=p (x-30)=(-30x+1500)(x-30),即223024004500030(40)3000w x x x =-+-=--+,∵-30<0,∴当x=40时,w 有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)解:日获利w '=p (x-30-a )=(-30x+1500)(x-30-a ),即230(240030)(150045000)w x a x a '=-++-+,作16件A与制作2件B获利相同.(1)制作一件A和一件B分别获利多少元;(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C工艺品.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等,设每天安排x人制作B,y人制作A.写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作B为5件时,每件B获利不变,若B每增加1件,则当天平均每件B获利减少2元,已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.3.(2022·辽宁大连·校考模拟预测)新冠肺炎疫情后期,我县某药店进了一批口罩,成本价为2元/个,投入市场销售,其销售单价不低于成本,按物价局规定销售利润率不高于80%.经一段时间调查,发现每天销售量y (个)与销售单价x (元/个)之间存在一次函数关系,且有两天数据为:销售价定为2.3元,每天销售1080个;销售价定为2.5元,每天销售1000个.(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)如果该药店销售口罩每天获得800元的利润,那么这种口罩的销售单价应定为多少元?(3)设每天的总利润为w 元,当销售单价定为多少元时,该药店每天的利润最大?最大利润是多少元?【答案】(1)4002000(2 3.6)y x x =-+≤≤(2)3元(3)3.5元,900元【分析】(1)设y 与x 之间的函数关系式为y kx b =+,用待定系数法可得y 与x 之间的函数关系式为4002000y x =-+,根据销售单价不低于成本,按物价局规定销售利润率不高于80%,可得2 3.6x ≤≤;(2)根据题意得:()()24002000800x x --+=,即可解得答案;(3)由题意得:()()24002000w x x =--+,整理计算,再利用二次函数的性质可得答案.【详解】(1)设y 与x 之间的函数关系式为y kx b =+,将销售价定为2.3元,每天销售1080个;销售价定为2.5元,每天销售1000个代入得:2.310802.51000k b k b +=⎧⎨+=⎩,解得4002000k b =-⎧⎨=⎩,y ∴与x 的函数关系式为4002000y x =-+,销售单价不低于成本,按物价局规定销售利润率不高于80%,22280%x x ≥⎧∴⎨-≤⨯⎩,解得2 3.6x ≤≤,()40020002 3.6y x x ∴=-+≤≤;(2)根据题意得:()()24002000800x x --+=,整理得:27120x x -+=,解得:13x =,24(x =不合题意,舍去),答:如果每天获得800元的利润,销售单价应定为3元;(3)由题意得:()()24002000w x x =--+240028004000w x x =+-()2400712.2512.254000w x x =--+--2400( 3.5)900w x =--+4000-< ,∴抛物线开口向下,w 有最大值,3.5x ∴=时,w 最大值是900,答:销售单价定为3.5元时,每天的利润最大,最大利润是900元.【点睛】本题考查一元二次方程及二次函数的应用,解题关键是读懂题意,找到等量关系列方程和函数关系是.题型三:二次函数和分段函数综合的利润问题①写分段函数解析式是要明确自变量的取值范围;②要分段求利润的最值,再比较两段之间的最大值;③注意自变量的范围和结果的取舍。
二次函数--销售问题
∴当x=5时,y最大值=6250
在降价的情况下,最大利润是多少?请你参考(1) 的过程得出答案。
解:设降价a元时利润最大,则每星期可多卖20a件,实 际卖出(300+20a)件,每件利润为(60-40-a)元,因 此,得利润
b=(300+20a)(60-40-a)
想一想
(1)题目中有几种调整价格的方法?
(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发 生了变化?
某商品现在的售价为每件60元,每星期可卖
出300件,市场调查反映:每涨价1元,每星
期少卖出10件;每降价1元,每星期可多卖
出20件,已知商品的进价为每件40元,如何
定价才能使利润最大?
分析: 调整价格包括涨价和降价两种情况
=-20(a²-5a+6.25)+6150 =-20(a-2.5)²+6150(0<a<20)
∴a=2.5时,b极大值=6150
你能回答了吧!
怎样确定 a的取值
范围
由(1)(2)的讨论及现在的销售 情况,你知道应该如何定价能
使利润最大了吗?
某商品现在的售价为每件60元,每星期 可卖出300件,市场调查反映:如调整价 格,每涨价1元,每星期少卖出10件;每 降价1元,每星期可多卖出20件,已知商 品的进价为每件40元,(商店规定加价不得 超过进价的60﹪,不得少于进价的40﹪) 如何定价才能使利润最大?
先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y
也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星
期少卖10x件,实际卖出(300-10x)件,每件利润为 (60+x-40) 元,
22.3实际问题与二次函数--销售问题
3. 销售总利润怎么算?
自学指导:阅读P50探究2完成下列问题
(1) 题目中有几种调整价格的方法? (2) 题目涉及哪些变量?哪一个量是自变量?哪 些量随之发生了变化?哪个量是函数? (3) 当每件涨 1 元时,售价是多少?每星期销量是多少? 成本是多少?销售额是多少?利润呢? (4) 最多能涨多少钱呢? (5) 当每件涨 x 元时,售价是多少?每星期销量是多少? 成本是多少?销售额是多少?利润 y 呢?
解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500
∴当x=5时,y =4500 最大
答:当售价提高5元时,半月内可获最大利润4500元
3.小结
(1)这节课学习了用什么知识解决哪类问题? (2)解决问题的一般步骤是什么?
围
=-20(x2-5x-300)
பைடு நூலகம்
=-20(x-2.5)2+6125 (0≤x≤20)
所以定价为60-2.5=57.5时利润最大,最大值为6125元.
答:综合以上两种情况,定价为65元时可获得最大利润为 6250元.
课堂练习
某商店购进一批单价为20元的日用品,如果以单价30 元销售,那么半个月内可以售出400件.根据销售经验,提 高单价会导致销售量的减少,即销售单价每提高1元,销 售量相应减少20件.售价提高多少元时,才能在半个月内 获得最大利润?
解:(2)设降价x元,对应的利润为y元.
根据题意可得
y=(60-40-x)(300+20x)
=-20x2+100x+6 000
销售问题(二次函数的应用)
二次函数的应用——销售问题知识回顾: 1.抛物线21(2)12y x =++的顶点坐标是 ,当x = 时,y 有最 值为 。
2.抛物线()2254y x =--+的顶点坐标是 ,当x = 时,y 有最 值为 。
3.抛物线2247y x x =-++的顶点坐标是 ,当x = 时,y 有最 值为 。
例1:某超市销售一种商品,成本是每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查发现:每天销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:⑴求y 与x 之间的函数关系式:⑵设商品每天的总利润为W (元),求W 与x 之间的函数关系式:⑶试说明⑵中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少 练习:1.汽车城销售某种型号的汽车,每辆进货价为25万元,经市场调研表明:当销售价为29万元时,平均每周售出8辆,而当销售价每降低万元时,平均每周能多售出4辆,如果设每辆汽车降价x 万元,每辆汽车的销售利润为y 万元。
(销售利润=销售价-进货价) ⑴求y 与x 的函数关系式;在保证商家不亏本的前提下,写出x 的取值范围; ⑵假设这种汽车平均每周的销售利润为Z 万元,试写出Z 与x 的函数关系式; ⑶当每辆汽车的定价为多少万元时,平均每周的销售利润最大最大利润是多少2.李经理按市场价格30元/千克收购了一种可食用的野生菌1000千克存入冷库中,据预测,该野生菌的市场价将以每天每千克上涨1元;但冷库存放这种野生菌时每天需要支付各种费用合计310元,而且这类野生菌在冷库中最多可保存160天,同时,平均每天有3千克的野生菌损坏而不能出售。
⑴设x天后每千克该野生菌的市场价为y元,试写出y与x的函数关系式及x的取值范围;⑵若存放x天后,将这批野生菌一次性出售,设出售这批野生菌获得的利润为W元,试写出W与x的函数关系式;(利润=销售额-收购成本-各种费用)⑶将这批野生菌存放多少天后出售可获得最大利润最大利润是多少3.某商店经营一组小商品,规定销售单价不得低于成本单价,且获利不得高于100%。
2023年中考数学高频考点突破-二次函数实际应用中的销售问题
2023年中考数学高频考点突破-二次函数实际应用中的销售问题一、综合题1.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)直接写出y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得6480元的利润,求每件童装售价应为多少元?2.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同,销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系式y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系式y B=﹣x+14.(1)求A、B两种型号的汽车的进货单价;(2)已知A型汽车的售价比B型汽车的售价高2万元/台,设B型汽车售价为t万元/台.每周销售这两种车的总利润为W万元,求W与t的函数关系式,A、B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?3.为了落实国务院的指示精神,政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-x+60.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售的最大利润是多少元?(3)如果物价部门规定这种产品的销售价不能高于每千克35元,该农户想要每天获得300元的销售利润,销售价应定为每千克多少元?4.某旅游风景区出售一种纪念品,该纪念品的成本为12元/个,这种纪念品的销售价格为x(元/个)与每天的销售数量y(个)之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)销售价格定为多少时,每天可以获得最大利润?并求出最大利润.(3)“十•一”期间,游客数量大幅增加,若按八折促销该纪念品,预计每天的销售数量可增加200%,为获得最大利润,“十•一”假期该纪念品打八折后售价为多少?5.为推进节能减排,发展低碳经济,深化“宜居重庆”的建设,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为x元,年销售量为y万件,年获利为w万元.(年获利=年销售额﹣生产成本﹣节电投资)(1)直接写出y与x间的函数关系式;(2)求第一年的年获利w与x函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?6.某商场以每件20元的价格购进一种商品,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间满足一次函数关系,其图象如图所示.设该商场销售这种商品每天获利w(元).(1)求y与之间的函数关系式;(2)求w与x之间的函数关系式;(3)该商场规定这种商品每件售价不低于进价且不高于38元,商品要想获得600元的利润,每件商品的售价应定为多少元?7.“才饮长沙水,又食武昌鱼”.因一代伟人毛泽东的佳句,“鄂州武昌鱼”名扬天下.某网店专门销售某种品牌真空包装的武昌鱼熟食产品,成本为30元/盒,每天销售y(盒)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天这种武昌鱼熟食产品的销售量不低于240盒,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3 600元,试确定这种武昌鱼熟食产品销售单价的范围.8.温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.(1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.9.我国为了实现到2020年达到全面小康社会的目标,近几年加大了扶贫工作的力度,合肥市某知名企业为了帮助某小型企业脱贫,投产一种书包,每个书包制造成本为18元,试销过程中发现,每月销售量y(万个)与销售单价x(元)(不低于成本)之间的关系可以近似看作一次函数y=kx+b,据统计当售价定为30元/个时,每月销售40万个,当售价定为35元/个时,每月销售30万个.(1)请求出k,b的值.(2)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式.(3)该小型企业在经营中,每月销售单价始终保持在25≤x≤36元之间,求该小型企业每月获得利润w(万元)的范围.10.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件,已知产销两种产品的有关信息如下:甲、乙两产品每年的其他费用与产销量的关系分别是:y1 = kx + b 和y2 =ax2+ m ,它们的函数图象分别如图(1)和图(2)所示.(1)求:y1 、y2 的函数解析式;(2)分别求出产销两种产品的最大利润;(利润=销售额-成本-其它费用)(3)若通过技术改进,甲产品的每件成本降到a 万元,乙产品的年最大产销量可以达到110 件,其它都不变,为获得最大利润,该公式应该选择产销哪种产品?请说明理由.11.商店销售某上市新品,期间共销售该产品60天,设销售时间为x天,第一天销售单价定为60元/千克,售出18千克.从第1天至第39天,该产品成本价为28.5元/千克,销售单价每天降低0.5元,销售量每天增加2千克.从第40天开始,成本价降为24元/千克,销售单价稳定在36元/千克,每天销售量y(千克)与第x天满足一次函数关系y=−2x+200,设第x天销售利润为w元(1)直接写出w与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在这60天的销售过程中,共有多少天每天销售利润不低于1232元?12.农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值。
初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)
初中数学二次函数的应用题型分类——商品销售利润问题(附答案)1. 某网店经营一种品牌水果, 其进价为10元/千克, 保鲜期为25天, 每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式;(2)当该品牌水果定价为多少元时, 每天销售所获得的利润最大?(3)若该网店一次性购进该品牌水果3000千克, 根据(2)中每天获得最大利润的方式进行销售, 发现在保鲜期内不能及时销售完毕, 于是决定在保鲜期的最后5天一次性降价销售, 求最后5天每千克至少降价多少元才能全部售完?2. 特产店销售一种水果, 其进价每千克40元, 按60元出售, 平均每天可售100千克, 后来经过市场调查发现, 单价每降低2元, 则平均每天可增加20千克销量.(1)若该专卖店销售这种核桃要想平均每天获利2240元, 每千克水果应降多少元?(2)若该专卖店销售这种核桃要想平均每天获利最大, 每千克水果应降多少元?3.某文具店购进A, B两种钢笔, 若购进A种钢笔2支, B种钢笔3支, 共需90元;购进A种钢笔3支, B种钢笔5支, 共需145元.(1)求该文具店购进A.B两种钢笔每支各多少元?(2)经统计, B种钢笔售价为30元时, 每月可卖64支;每涨价3元, 每月将少卖12支, 求该文具店B种钢笔销售单价定为多少元时, 每月获利最大?最大利润是多少元?4.某公司可投入研发费用80万元(80万元只计入第一年成本), 成功研发出一种产品, 公司按订单生产(产量=销售量), 第一年该产品正式投产后, 生产成本为8元/件, 此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+28.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元, 那么该产品第一年的售价是多少?(3)第二年, 该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发, 使产品的生产成本降为6元/件, 为保持市场占有率, 公司规定第二年产品售价不超过第一年的售价, 另外受产能限制, 销售量无法超过14万件, 请计算该公司第二年的利润W2至少为多少万元.5.某实验器材专营店为迎接我市理化生实验的到来, 购进一批电学实验盒子, 一台电学实验盒的成本是30元, 当售价定为每盒50元时, 每天可以卖出20盒.但由于电学实验盒是特殊时期的销售产品, 专营店准备对它进行降价销售.根据以往经验, 售价每降低3元, 销量增加6盒.设售价降低了x(元), 每天销量为y(盒).(1)求y与x之间的函数表达式;日销售利润w875 1875 1875 875(元)(注: 日销售利润=日销售量×(销售单价﹣成本单价))(1)求y与x的函数关系式;(2)当销售单价x为多少元时, 日销售利润w最大?最大利润是多少元?(3)当销售单价x为多少元时, 日销售利润w在1500元以上?(请直接写出x的范围)7. 某公司销售一批产品, 进价每件50元, 经市场调研, 发现售价为60元时, 可销售800件, 售价每提高1元, 销售量将减少25件.公司规定:售价不超过70元.(1)若公司在这次销售中要获得利润10800元, 问这批产品的售价每件应提高多少元?(2)若公司要在这次销售中获得利润最大, 问这批产品售价每件应定为多少元?8.某公司开发了一种新型的家电产品, 又适逢“家电下乡”的优惠政策.现投资万元用于该产品的广告促销, 已知该产品的本地销售量(万台)与本地的广告费用(万元)之间的函数关系满足.该产品的外地销售量(万台)与外地广告费用(万元)之间的函数关系可用如图所示的抛物线和线段来表示.其中点为抛物线的顶点.结合图象, 求出(万台)与外地广告费用(万元)之间的函数关系式;()2求该产品的销售总量y(万台)与本地广告费用x(万元)之间的函数关系式;如何安排广告费用才能使销售总量最大?9.某电子厂生产一种新型电子产品, 每件制造成本为20元, 试销过程中发现, 每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时, 厂商每月获得的利润为400万元?(3)根据相关部门规定, 这种电子产品的销售单价不能高于40元, 如果厂商每月的制造成本不超过520万元, 那么当销售单价为多少元时, 厂商每月获得的利润最大?最大利润为多少万元?10.某灯具厂生产并销售A, B两种型号的智能台灯共100盏, 生产并销售一盏A型智能台灯可以获利30元;如果生产并销售不超过20盏B型台灯, 则每盏B型台灯可以获利90元, 如果超出20盏B型台灯, 则每超出1盏, 每盏B型台灯获利将均减少2元.设生产并销售B型台灯x盏.(其中x>20)(2)当A型台灯所获得的利润比B型台灯所获得利润少200元时, 求生产并销售A, B 两种台灯各多少盏?(3)如何设计生产销售方案可以获得最大利润, 最大的利润为多少元?11.某商场销售一批名牌衬衫:平均每天可售出20件, 每件盈利40元, 为了扩大销售量, 增加盈利, 尽快减少库存, 商场决定采取适当的降价促销措施, 经市场调查发现:如果每件衬衫降价1元, 那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(1)请直接写出a的值为;(2)从第21天到第40天中, 求q与x满足的关系式;(3)若该网店第x天获得的利润y元, 并且已知这40天里前20天中y与x的函数关系式为y=﹣x2+15x+500i请直接写出这40天中p与x的关系式为: ;ii求这40天里该网店第几天获得的利润最大?13. 某工厂生产甲、乙两种产品, 已知生产1吨产品甲需要2吨原材料A;生产1吨产品乙需要3吨原材料A. 根据市场调研, 产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足函数关系:产品甲:y=ax2+bx且x=2时, y=2.6;x=3时, y=3.6产品乙: y=0.3x(1)求产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系;(2)若现原材料A共有20吨, 请设计方案, 应怎样分配给甲、乙两种产品组织生产, 才能使得最终两种产品的所获利润最大.14. 某商场销售一批衬衫, 平均每天可售出20件, 每件盈利40元. 为了扩大销售, 增加盈利, 商场采取了降价措施. 假设在一定范围内, 衬衫的单价每降1元, 商场平均每天可多售出2件, 设衬衫的单价降x元, 每天获利y元.(1)如果商场里这批衬衫的库存只有44件, 那么衬衫的单价应降多少元, 才能使得这批衬衫一天内售完, 且获利最大, 最大利润是多少?种成本为25元/件的新型商品.在40天内, 其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时, ;当21≤x≤40时, .这40天中的日销售量m(件)与时间x(天)符合函数关系, 具体情况记录如下表(天数为整数):时间x(天)日销售量m(件)45 40 35 30 25 …(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元, 试写出日销售利润w(元)与时间x(天)的函数关系式;16.某体育用品商店试销一款成本为50元的排球, 规定试销期间单价不低于成本价, 且获利不得高于40%.经试销发现, 销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元, 试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时, 该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元, 请确定销售单价x的取值范围.销售单价q(元/件)与x满足: 当1≤x<25时q=x+60;当25≤x≤50时q=40+ . (1)请分析表格中销售量p与x的关系, 求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(1)请你根据表中的数据, 用所学知识确定与之间的函数表达式;(2)该商店应该如何确定这批文具盒的销售价格, 才能使日销售利润最大?(3)根据(2)中获得最大利润的方式进行销售, 判断一个月能否销售完这批文具盒, 并说明理由.20. 某工厂加工一种商品, 每天加工件数不超过100件时, 每件成本80元, 每天加工超过100件时, 每多加工5件, 成本下降2元, 但每件成本不得低于70元.设工厂每天加工商品x(件), 每件商品成本为y(元),(1)求出每件成本y(元)与每天加工数量x(件)之间的函数关系式, 并注明自变量的取值范围;(2)若每件商品的利润定为成本的20%, 求每天加工多少件商品时利润最大, 最大利润是多少?21.家用电器开发公司研制出一种新型电子产品, 每件的生产成本为18元, 按定价40元出售, 每月可销售20万件, 为了增加销量, 公司决定采取降价的办法, 经过市场调研, 每降价1元, 月销售量可增加2万件.(1)求出月销售利润W(万元)与销售单价x(元)之间的函数关系式.(2)为了获得最大销售利润, 每件产品的售价定为多少元?此时最大月销售利润是多少?(3)请你通过(1)中函数关系式及其大致图象帮助公司确定产品的销售单价范围, 使月销售利润不低于480万元.22.城隍庙是宁波市的老牌商业中心, 城隍庙商业步行街某商场购进一批品牌女装, 购进时的单价是600元, 根据市场调查, 在一段时间内, 销售单价是800元时, 销售量是200件, 销售单价每降低10元, 就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌女装获得的利润W(元)与销售单价x(元)之间的函数关系式;倍,且y是x的二次函数,它们的关系如下表:x(10万元)y 1 1.5 1.8 …(1)求y与x的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费, 试写出年利润S(10万元)与广告费x(10万元)的函数关系式;(3)如果投入的年广告费为10~30万元, 问广告费在什么范围内, 公司获得的年利润随广告费的增大而增大?24.绿色生态农场生产并销售某种有机产品, 每日最多生产130kg, 假设生产出的产品能全部售出, 每千克的销售价y1(元)与产量x(kg)之间满足一次函数关系y1=﹣x+168, 生产成本y2(元)与产量x(kg)之间的函数图象如图中折线ABC所示.(1)求生产成本y2(元)与产量x(kg)之间的函数关系式;(2)求日利润为W(元)与产量x(kg)之间的函数关系式;(3)当产量为多少kg时, 这种产品获得的日利润最大?最大日利润为多少元?25.新鑫公司投资3000万元购进一条生产线生产某产品, 该产品的成本为每件40元, 市场调查统计:年销售量y(万件)与销售价格x(元)(40≤x≤80, 且x为整数)之间的函数关系如图所示.(1)直接写出y与x之间的函数关系式;(2)如何确定售价才能使每年产品销售的利润W(万元)最大?(3)新鑫公司计划五年收回投资, 如何确定售价(假定每年收回投资一样多)?26. 某商品的进价是每件40元, 原售价每件60元. 进行不同程度的涨60 61 62 63 …价后, 统计了商品调价当天的售价和利润情况, 以下是部分数据:售价(元/件)利润(元)6000 6090 6160 6210 …(1)当售价为每件60元时, 当天售出件;(2)若对该商品原售价每件涨价x元(x为正整数)时当天售出该商品的利润为y元.①用所学过的函数知识直接写出y与x之间满足的函数表达式:.②如何定价才能使当天的销售利润不等于6200元?27.服装厂批发某种服装, 每件成本为65元, 规定不低于10件可以批发, 其批发价y (元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式, 并写出x的取值范围;(1)由题意知商品的最低销售单价是元, 当销售单价不低于最低销售单价时, y是x的一次函数. 求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下, 当销售单价为多少元时, 所获销售利润最大, 最大利润是多少元?29. 某店只销售某种进价为40元/kg的产品, 已知该店按60元kg出售时, 每天可售出100kg, 后来经过市场调查发现, 单价每降低1元, 则每天的销售量可增加10kg.(1)若单价降低2元, 则每天的销售量是_____千克, 每天的利润为_____元;若单价降低x元, 则每天的销售量是_____千克, 每天的利润为______元;(用含x的代数式表示)(2)若该店销售这种产品计划每天获利2240元, 单价应降价多少元?(3)当单价降低多少元时, 该店每天的利润最大, 最大利润是多少元?30. 某文具店出售一种文具, 每个进价为2元, 根据长期的销售情况发现:这种文具每个售价为3元时, 每天能卖出500个, 如果售价每上涨0.1元, 其销售量将减少10个. 物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润, 每个文具的售价应是多少?(2)该如何定价, 才能使这种文具每天的利润最大?最大利润是多少?31.某制衣企业直销部直销某类服装,价格(元)与服装数量(件)之间的关系如图所示,现有甲乙两个服装店,计划在"五一”前到该直销部购买此类服装, 两服装店所需服装总数为件,乙服装店所需数量不超过件,设甲服装店购买件,如果甲、乙两服装店分别到该直销部购买服装,两服装店需付款总和为元.(1)求y关于x的函数关系式,并写出x的取值范围.(2)若甲服装店购买不超过100件,请说明甲、乙两服装店联合购买比分别购买最多可节约多少钱32. 某企业接到生产一批手工艺品订单, 须连续工作15天完成. 产品不能叠压, 需专门存放, 第x天每件产品成本p(元)与时间x(天)之间的关系为p=0.5x+7(1≤x≤5, x 为整数). 约定交付产品时每件20元. 李师傅作了记录, 发现每天生产的件数y(件)与时间X(天)满足关系:(1)写出李师傅第x天创造的利润W(不累计)与x之间的函数关系式.(只要结果, 并注明自变量的取值范围.)(2)李师傅第几天创造的利润最大?是多少元?(3)这次订单每名员工平均每天创造利润299元. 企业奖励办法是: 员工某天创造利润超过平均值, 当天计算奖金30元. 李师傅这次获得奖金共多少元?33. 某手机专营店, 第一期进了品牌手机与老年机各50部, 售后统计, 品牌手机的平均利润是160元/部, 老年机的平均利润是20元/部, 调研发现:①品牌手机每增加1部, 品牌手机的平均利润减少2元/部;②老年机的平均利润始终不变.该店计划第二期进货品牌手机与老年机共100部, 设品牌手机比第一期增加x部. (1)第二期品牌手机售完后的利润为8400元, 那么品牌手机比第一期要增加多少部?(2)当x取何值时, 第二期进的品牌手机与老年机售完后获得的总利润W最大, 最大总利润是多少?34.某公司经销一种水产品, 在一段时间内, 该水产品的销售量W(千克)随销售单价x(元/千克)的变化情况如图所示.(1)求W与x的关系式;(2)若该水产品每千克的成本为50元, 则当销售单价定为多少元时, 可获得最大利润?(3)若物价部门规定这种水产品的销售单价不得高于90元/千克, 且公司想要在这段时间内获得2250元的销售利润, 则销售单价应定为多少元?35. 某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示, 成本y2与销售月份x之间的关系如图2所示(图1的图象是线段, 图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低, 此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜, 每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元, 且5月份的销售量比4月份的销售量多2万千克, 求4、5两个月的销售量分别是多少万千克?36. 某商品的进价为每件20元, 市场调查反映, 若按每件30元销售, 每天可销售100件;若销售单价每上涨1元, 每天的销售就减少5件.(1)设每天该商品的销售利润为y元, 销售单价为x元(x≥30), 求y与x的函数解析式;(2)求销售单价为多少元时, 该商品每天的销售利润最大, 最大利润是多少?37. 数学兴趣小组几名同学到商场调查发现, 一种纯牛奶进价为每箱40元, 厂家要求售价在40~70元之间, 若以每箱70元销售平均每天销售30箱, 价格每降低1元平均每天可多销售3箱.(1)求出y 与x 之间的函数表达式(2)该新型“吸水拖把”每月的总利润为w (元), 求w 关于x 的函数表达式, 并指出销售单价为多少元时利润最大, 最大利润是多少元?(3)由于该新型“吸水拖把”市场需求量较大, 厂家又进行了改装, 此时超市老板发现进价提高了m 元, 当每月销售量与销售单价仍满足上述一次函数关系, 随着销量的增大, 最大利润能减少1750元, 求m 的值.39.某花店用3600元按批发价购买了一批花卉.若将批发价降低10%, 则可以多购买该花卉20盆.市场调查反映, 该花卉每盆售价25元时, 每天可卖出25盆.若调整价格, 每盆花卉每涨价1元, 每天要少卖出1盆. (1)该花卉每盆批发价是多少元?(2)若每天所得的销售利润为200元时, 且销量尽可能大, 该花卉每盆售价是多少元? (3)为了让利给顾客, 该花店决定每盆花卉涨价不超过5元, 问该花卉一天最大的销售利润是多少元?40. 某商店经营一种小商品, 进价为3元, 据市场调查, 销售单价是13元时平均每天销售量是400件, 而销售价每降低一元, 平均每天就可以多售出100件.(Ⅰ)假定每件商品降低x 元, 商店每天销售这种小商品的利润y 元, 请写出y 与x 之间的函数关系. (注:销售利润=销售收入-购进成本)(Ⅱ)当每件小商品降低多少元时, 该商店每天能获利4800元?40元, 根据市场调查:在一段时间内, 销售单价是50元时, 销售量是600件,而销售单价每涨2元, 就会少售出20件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>50), 请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润ω元, 并把结果填写在表格中:销售单价(元)销售量y(件)①销售玩具获得利润ω(元)②(2)在(1)问条件下, 若玩具厂规定该品牌玩具销售单价不低于54元, 且商场要完成不少于400件的销售任务, 求商场销售该品牌玩具获得的最大利润是多少元?42.如图,某工厂与两地有铁路相连,该工厂从地购买原材料,制成产品销往地.已知每吨进价为600元(含加工费),加工过程中1吨原料可生产产品吨,当预计销售产品不超过120吨时,每吨售价1600元,超过120吨,每增加1吨,销售所有产品的价格降低2元.设该工厂有吨产品销往地.(利润=售价—进价—运费)(1)用的代数式表示购买的原材料有吨.(2)从地购买原材料并加工制成产品销往地后,若总运费为9600元,求的值,并直接写出这批产品全部销售后的总利润.(3)现工厂销往地的产品至少120吨, 且每吨售价不得低于1440元, 记销完产品的总利润为元, 求关于的函数表达式, 及最大总利润.43. 水产经销商以10元/千克的价格收购了1000千克的鳊鱼围养在湖塘中(假设围养期每条鳊鱼的重量保持不变), 据市场推测, 经过湖塘围养后的鳊鱼的市场价格每围养一天能上涨1元/千克, 在围养过程中(最多围养20天), 平均每围养一天有10千克的鳊鱼会缺氧浮水。
利润问题(二次函数应用题)含答案
利润问题(二次函数应用题)1、某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100)x件,应如何定价才能使定价利润最大?最大利润是多少元?2、某超市茶叶专柜经销一种绿茶,每千克成本为50元,市场调查发现,在一段时间内,每天的销售量y(千克)随销售单价x(元/千克)的变化而变化,具体的变化如下表:(1)求y与x的函数关系式;(2)设这种绿茶在这段时间内的销售利润为W(元).那么该茶叶每千克定价为多少元时,获得最大利润?且最大利润为多少元?3、某商店经营一种小商品,进价为2元,据市场调查,销售单价是13元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.(1)设每件商品定价为x元时,销售量为y件,求出y与x的函数关系式;(2)若设销售利润为s,写出s与x的函数关系式;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?4、某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?5、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件。
(1)设每件衬衫降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。
(2)每件衬衫降价多少元时,商场平均每天盈利最多?6、某商场销售一批产品零件,进价货为10元,若每件产品零件定价20元,则可售出10件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件产品零件每降价2元,商场平均每天可多售8件。
(1)设每件产品零件降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。
二次函数与销售问题
利用二次函数模型,可以预测未来特定时间段源自的销售量,帮助企业做出明智 的决策。
3
二次函数对销售问题的优势
二次函数模型具有灵活性和准确性,能 够提供对未来销售的预测,并为决策提 供有力支持。
案例研究:二次函数在销售中的应用
销售数据分析
二次函数模型构建
通过对销售数据进行分析和挖掘, 我们可以发现销售趋势中的潜在 规律和关键因素。
二次函数与销售问题
二次函数是数学中重要的概念之一。本次演示将深入探讨二次函数的定义、 图像特征以及如何运用它们解决销售问题。
二次函数概述
二次函数定义
二次函数是一个以 x2 为最高次项的多项式函数。
二次函数图像特征
二次函数的图像呈现出抛物线状,具有顶点、对称轴以及开口方向等特征。
销售问题背景
1 销售问题的重要性
通过预测未来销售趋势,企 业能够及时调整销售策略, 提前做好市场准备。
提供决策
基于二次函数模型的分析结 果,企业可以制定更有效的 销售策略和决策,以提升销 售绩效。
销售是任何企业的核心活动,更好地理解销售问题可以帮助企业制定更有效的销售策略。
2 销售问题的挑战
销售问题常常涉及市场需求、竞争分析和销售预测等方面,需要综合考虑多个因素。
利用二次函数解决销售问题的方法
1
利用二次函数建模销售趋势
通过分析历史销售数据,可利用二次函
利用二次函数预测销售量
2
数建立模型来预测销售趋势的变化。
利用收集到的数据,我们可以构 建二次函数模型,以准确预测销 售趋势的变化。
预测销售趋势
通过应用建立的二次函数模型, 我们可以预测未来销售趋势,为 企业的决策提供有力支持。
二次函数对销售问题的优势
中考数学高频考点27-二次函数实际销售问题
中考数学高频考点-二次函数实际销售问题1.某经销商销售一种成本价为100元/件的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于180元/件.在销售过程中发现销量y(kg)与售价x(元/kg)之间满足一次函数关系,对应关系如下表所示:x120140150170y360320300260(1)求y与x之间的函数表达式,并写出自变量x的取值范围.(2)设销售这种商品每天所获得的利润为W元,求W与x之间的函数表达式;该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润是多少?2.某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?3.新冠疫情全球爆发,口罩成了生活必需品,某药店销售一种口罩,每包进价为9元,日均销售量y(包)与每包售价x(元)成一次函数关系,且10≤x≤16.当每包售价为12元时,日均销售量是40包,当每包售价为10元时,日均销售量是56包.(1)求y关于x的函数表达式;(2)要使日均利润达到最大.每包售价应定为多少元?(3)若进价提高了a元,要使日均利润达到最大,则每包售价应定为14元,求a的值.4.我市某乡镇实施产业精准扶贫,帮助贫困户承包了若干亩土地种植新品种草莓,已知该草莓的成本为每千克10元,草莓成熟后投入市场销售.经市场调查发现,草莓销售不会亏本,且每天的销售量y(千克)与销售单价x(元/千克)之间函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围.(2)当该品种草莓的定价为多少时,每天可获利润2000元?(3)销售一段时间后发现,当草莓销售单价定价高时每日所获利润反而比定价低时少,请你说明原因.并给出合理建议:如何制定销售单价,才能使销售单价越高则每天所获利润就越多.5.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元[(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.6.某超市销售一种电子计算器,其进价为每个30元,计划每个售价不低于成本,且不高于45元,这种计算器每天的销售量y(个)与销售单价x(元)的关系为y=−x+60(30≤x≤60),设这种计算器每天的销售利润为w元.(1)求w与x之间的函数解析式(利润=售价-进价);(2)若该超市销售这种计算器每天要获得200元的销售利润,则销售单价应定为多少元?7.某批发商以每件40元的价格购进600件T恤,第一个月以单价60元销售,售出了200件,第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出20件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余T恤清仓销售,清仓时单价为30元,设第二个月单价降低x元.(1)填表(不需要化简)时间第一个月第二个月清仓时单价/元6030销售量/件200(2)若批发商希望通过销售这批T恤获利7680元,则第二个月的单价应是多少元?(3)如果批发商希望通过销售这批T恤获利达到了最大值,则第二个月的单价应是多少元?可获利多少元?8.某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.(1)求售价为70元时的销售量及销售利润;(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?9.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.投资量x(万元)2种植树木利润y1(万元)4种植花卉利润y2(万元)2(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.10.专卖店销售一种陈醋礼盒,成本价为每盒40元.如果按每盒50元销售,每月可售出500盒;若销售单价每上涨1元,每月的销售量就减少10盒.设此种礼盒每盒的售价为x元(50<x<75),专卖店每月销售此种礼盒获得的利润为y元.(1)写出y与x之间的函数关系式;(2)专卖店计划下月销售此种礼盒获得8000元的利润,每盒的售价应为多少元?(3)专卖店每月销售此种礼盒的利润能达到10000元吗?说明理由.11.学校体育节即将来临,为了满足全体师生锻炼的需要,学校超市以每件50元的价格购进一种体育用品,销售中发现这种体育用品每天的销售量y(件)与每件的销售价格x(元)近似满足一次函数关系,其图象如图所示,且销售这种体育用品不会亏本.(1)求出y与x的函数关系式,并写出x的取值范围.(2)求该超市每天销售这种体育用品的销售利润w与x之间的函数关系式并求出当销售价格x 为何值时,销售利润w的值最大,最大值是多少?(3)在网格坐标系中画出w关于x的函数的大致图象,再利用图象分析每件体育用品的销售价格在什么范围内时,每天的销售利润在400元以上.12.小明投资销售一种进价为每件20元的护眼台灯.经过市场调研发现,每月销售的数量y(件)是售价x(元/件)的一次函数,其对应关系如表:x/(元/件)22253035…y/件280250200150…在销售过程中销售单价不低于成本价,物价局规定每件商品的利润不得高于成本价的60%,(1)请求出y关于x的函数关系式.(2)设小明每月获得利润为w(元),求每月获得利润w(元)与售价x(元/件)之间的函数关系式,并确定自变量x的取值范围.(3)当售价定为多少元/件时,每月可获得最大利润,最大利润是多少?13.在2020年新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩。
2025年中考数学一轮专题训练:实际问题与二次函数(销售问题)
2025年中考数学专题训练:实际问题与二次函数(销售问题)1.某商店销售童装每件售价60元,每星期可卖300件,为了促销决定降价销售,减少库存.经市场调查发现,每降1元每星期可多卖30件,已知童装的成本价为40元,问(1)如何定价能使利润为6720元?(2)如何定价使利润最大?2.某商店销售乌馒头,通过分析销售情况发现,乌馒头的日销售量y(单位:盒)是销售单价x(单位:元/盒)的一次函数,销售单价、日销售量的部分对应值如下表,已知销售单价不低于成本价且不高于20元,每天销售乌馒头的固定损耗为20元,且成本价为12元/盒,日销售量为200盒.销售单价x/(元/盒)1513日销售量y/盒500700(1)求乌馒头的日销售量y与销售单价x的函数解析式;(2)端午节期间,商店决定采用降价促销的方式回馈顾客,在顾客获得最大实惠的前提下,当乌馒头每盒降价多少元时,商店日销售纯利润为1480元;(3)当销售单价定为多少时,日销售纯利润最大,并求此日销售最大纯利润.3.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.(1)求y关于x的函数关系式(不要求写出x的取值范围);(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?(3)超市销售这种苹果每天要获利150元并要使顾客实惠,那么每千克这种苹果的售价应定为多少元?4.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:()603060y x x =-+≤≤.设这种双肩包每天的销售利润为w 元.(1)求w 与x 之间的函数解析式;(2)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?5.某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量y (千克)与销售单价x (元/千克)之间是一次函数关系,如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保鲜期为20天,根据(2)中获得最大利润的方式进行销售,能否在保鲜期内销售完这批蜜柚?请说明理由.6.小明大学毕业回家乡创业,第一期培植盆景与花卉各40盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;①花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共80盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为12,W W (单位:元)(1)用含x 的代数式分别表示1W ,2W ;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?7.某工厂接到一批产品生产任务,按要求在20天内完成,已知这批产品的出厂价为每件8元.为按时完成任务,该工厂招收了新工人,设新工人小强第x 天生产的产品数量为y 件,y与x满足关系式为:20(05)10100(520)x xyx x≤≤⎧=⎨+<≤⎩.(1)小强第几天生产的产品数量为200件?(2)设第x天每件产品的成本价为a元,a(元)与x(天)之间的函数关系图象如图所示,求a与x之间的函数关系式;(3)设小强第x天创造的利润为w元.①求第几天时小强创造的利润最大?最大利润是多少元?①若第①题中第m天利润达到最大值,若要使第(1)m+天的利润比第m天的利润至少多124元,则第(1)m+天每件产品至少应提价几元?8.新冠疫情期间,邻居小王在淘宝上销售某类型口罩,每袋进价为20元,经市场调研,销售定价为每袋25元时,每天可售出250袋;销售单价每提高1元,每天销售量将减少10袋,已知平台要求该类型口罩每天销售量不得少于120袋.(1)直接写出:①每天的销售量y(袋)与销售单价x(元)之间的函数关系式________;②每天的销售利润w(元)与销售单价x(元)之间的函数关系式________.(2)小王希望每天获利1760元,则销售单价应定为多少元?(3)若每袋口罩的利润不低于10元,则小王每天能否获得2000元的总利润,若能,求出销售定价;否则,说明理由.9.某商店经营一种小商品,进价为3元.据市场调查,销售单价是13元时平均每天销售量是400件,而销售价每降低一元,平均每天就可以多售出100件.(1)假定每件商品降低x元,商店每天销售这种小商品的利润y元,请写出y与x之间的函数关系.(注:销售利润=销售收入-购进成本)(2)当每件小商品降低多少元时,该商店每天能获利4800元?10.宜昌某农副加工厂2023年年初投入80万元经销某种农副产品,由于物美价廉,在惠农网商平台推广下,该产品火爆畅销全国各地.已知该产品的成本为20元/件,经市场调查发现,该产品的销售单价定为25元到30元之间较为合理,该产品每年的销售量y (万件)与售价x (元/件)之间满足一种函数关系,售价x (元/件)与y (万件)的对应关系如表:(1)求该产品每年的销售量y (万件)与售价x (元/件)之间的函数关系式;(2)2023年年底该工厂共盈利16万元,2024年国家惠农政策力度更大,生产技术也有所提高,使得该特产的成本平均每件减少了1元.①求2023年该特产的售价;①该产品2024年售价定为多少时,工厂利润最大? 最大利润是多少?11.某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,售后经过统计得到此商品单价与第x 天(x 为正整数)的销售量的相关信息,如下表所示.(1)请计算第几天该商品的单价为25元?(2)求网店销售该商品30天里每天所获利润y (元)关于x (天)的函数关系式.(3)这30天中,第几天获得的利润最大? 最大利润是多少?12.某品牌大米远近闻名,深受广大消费者好评,某超市每天购进一批成本价为6元/kg 的该大米,以不低于成本价且不超过12.5元/kg 的价格销售.当售价为8元/kg 时.每天售出大米1000kg ;当售价为9元/kg 时,每天售出大米900kg ,通过分析销售数据发现:每天销售大米的质量()y kg 与售价x (元/kg )满足一次函数关系.(1)请写出y 与x 的函数关系式;(2)当售价定为多少元/kg 时,每天销售该大米的利润可达到3500元;(3)当售价定为多少元/kg 时,每天获利最大?最大利润为多少?13.近年来,湖北省某地致力打造特色乡村旅游,发展以“农家乐”“高端民宿”为代表的旅游度假区.为迎接旅游旺季的到来,某民宿准备重新调整房间价格,已知该民宿有20个房间,当每个房间每天的定价为500元时,所有房间全部住满;当每个房间每天的定价每增加50元时,就会有一个房间无人入住,如果有游客居住房间,民宿每天需要对每个房间各支出100元的其他费用.设每个房间每天的定价增加x个50元(020x≤≤,且x为整数),该民宿每天游客居住的房间数量为y间,所获利润为W元.为吸引游客,该地物价部门要求民宿尽最大可能让利游客.(1)分别求出y与x,W与x之间的函数关系式;(2)当定价为多少元时,民宿每天获得的利润可以达到9600元;(3)求当每个房间的定价为多少元时,民宿每天获得的利润最大,最大利润是多少?14.成都市某新能源汽车销售商,购进某种型号的汽车成本价为20万元/台,投入市场销售,其销售单价不低于成本,开展购买新能源汽车补贴活动后,发现每月销售量y(台)与销售单价x(万元/台)之间存在一次函数关系,且已知两月数据为:销售价定20.1万元,每月销售39台;销售价定为20.3万元,每月销售37台.(1)若该店销售这种新能源汽车每月获得30万元的利润,则这种新能源汽车的销售单价定为多少元?(2)设每月的总利润为w万元,当销售单价定为多少时,该店每月的利润最大?最大利润是多少?15.某公司投入20万元作为某种电子产品的研发费用,成功研制出后投入生产并进行销售.已知生产这种电子产品的成本为10元/件,公司规定该种电子产品每件的销售价格不低于22元,不高于32元.在销售过程中发现:销售量y(万件)与销售价格x(元/件)的关系如图所示.设该公司销售这种电子产品的利润为S(万元).(1)求y(万件)与销售价格x(元/件)之间的函数关系式;(2)求销售这种电子产品的利润的最大值(利润=总售价﹣总成本﹣研发费用);(3)公司决定每销售1件该产品就捐赠m元5()给希望工程,通过销售记录发现,销售价m≥格大于25元/件时,扣除捐赠后的利润随销售价格x(x为正整数)增大而减小,求m的取值范围.。
2.4二次函数的应用(2)营销最值问题
三、课堂小结
求一个未知量的值
设一个未知数
方程
求一个未知量的最值
设两个未知数
关键:寻找等量关系
解决实际问题的有效模型
函数
四、课堂检测
1. 某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么
半月内可售出400件、根据销售经验,提高销售单价会导致销售量的减少,
某种服装,平均每天可销售20件,每件盈利44元. 据市场调查发现:
若每件降价1元,则每天可多售5件. 如果每天要盈利1600元,每件应
降价多少元?
解:设每件应降价 x 元,根据题意,得
( − )( + ) =
解得: = , =
所以,每件应降价4元或36元.
二、新知探究
解:设每间客房日租金提高
∵ ≥ , −
≥
x 元 时,总收入 y 元.
∴ ≤ ≤
= ( + )( −
)
∴.当x=20时,y取得最大值为19440.
= − + +
∴ + = (元)
∴
= − ( − ) +
围内有可能求出最值.故可尝试用函数知识来解决.
例1 某种服装,平均每天可销售20件,每件盈利44元. 据市场调查发
现:若每件降价1元,则每天可多售5件. 每件降价多少时,才能盈利
最多,最多是多少?
分析:函数表达式也是一个等式,是关于两个未知数的等式.可见解
函数应用题的关键也是: 寻找等量关系。本题的主要等量关系:
子.增种多少棵橙子树时果园的产量最高?
九年级数学二次函数销售最大利润问题课件
【销售最大利润问题】先通过价格与利润关系得到二次函数的关系式,根据函
数图象及性质求最大值。
情景思考(销售最大利润问题)
某产品现在售价为每件60元,每星期可卖出300件。市场调查反映:如果调价,每涨价1元,
每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,请问:
3)如何定价才能使每周利润最大化
并确定x的取值范围?
情景思考(销售最大利润问题)
某产品现在售价为每件60元,每星期可卖出300件。市场调查反映:如果调价,每
涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进
价为每件40元,请问:
1)题中调整价格的方式有哪些?
涨价和降价
2)如何表示价格与利润之间的关系?
元
情景思考(销售最大利润问题)
某产品现在售价为每件60元,每星期可卖出300件。市场调查反映:如果调价,每涨价1元,每
星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,请问:
3)如何定价才能使每周利润最大化并确定x的取值范围?
300+20x(0 ≤ ≤ 0)
20x
(2)要使每日的销售利润最大,每件产品的售价应定为多少元?此时的日销售利润是多少?
(3)若日销售利润不低于125元,请直接写出售价的取值范围.
情景思考
【分析】
(1) 因为日销售量y是销售价x的一次函数,设y=kx+b,代入对应数值求出函数解析式即可;
(2) 利用销售利润=一件利润×销售件数,一件利润=销售价-成本, 日销售量y是销售价x的
___________________元,此时每周产品的成本______________元,因此周利
2022年中考数学复习:二次函数实际压轴应用题(销售问题)
2022年中考数学复习:二次函数实际压轴应用题(销售问题)1.某一种蜜桔在农贸水果市场的需求量y1(万斤)、市场供应量y2(万斤)与市场价格x(元/斤)分别满足下列关系:y1=-0.2x + 2.8 ,y2= 0.4x - 0.8.当y1=y2 时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量.(1)求平衡价格和平衡需求量.(2)若该蜜桔的市场销售量y(万件)是市场需求量y1和市场供应量y2两者中的较小者,该蜜桔的市场销售额P(万元)等于市场销售量y 与市场价格x 的乘积.当市场价格x 取何值时,市场销售额P 取得最大值?(3)蜜桔的每斤进价为m 元,若当3≤x≤10 时,随着x 的增大,蜜桔的销售利润(万元)会经历先减小后增大再减小的变化,请直接写出m 的取值范围.2.九(4)班数学兴趣小组经过市场调查,整理出童威的某种高端商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在前49天销售中,每销售一件商品就捐赠m元(0<m<10)给希望工程.若前49天销售获得的最大日利润为5408元,则m=_____.3.超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为112100z x=-+.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入-购进支出)4.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..;①月利润=月租车费-月维护费;①两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元()0a>给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.5.某水产经销商从批发市场以30元每千克的价格收购了1000千克的虾,了解到市场价在30元每千克的基础上一个月内会以每天0.5元每千克的价格上涨,经销商打算先在塘里放养几天后再出售(但不超过一个月).假设放养期间虾的个体质量保持不变,但每天有10千克的虾死去.死去的虾会在当天以20元每千克的价格售出. (1)若放养8天后出售,则活虾的市场价为每千克________元.(2)若放养x 天后将活虾一次性售出,总共获得的销售总额y 元,求y 与x 的函数关系式;(3)若放养期间,每天会有各种其他的各种费用支出为a 元,经销商在放养x 天后全部售出,当2030x ≤≤时,经销商总获利的最大值为1800元,求a 的值(总获利=日销售总额-收购成本-其他费用)6.为了减少农产品库存,某板栗公司利用网络平台直播销售板栗,为提高大家购买的积极性,直播时板栗公司每天拿出2000元作为红包发给购买者,已知该板栗的成本价格为6元/千克,每天的销售量y (千克)与销售单价x (元/千克)满足关系式1005000y x =-+,销售单价不低于成本且不高于30元/千克,设销售板栗日获利为W 元.(1)求日获利W 与销售单价x 的函数关系式;(2)当销售单价定为多少时,日获利最大?最大利润为多少元?(3)当40000W ≥时,网络平台将向公司收取a 元/千克()4a <的相关费用,若此时日获利的最大值为42100元,求a 的值.7.疫情期间,某口罩公司销售一种成本为每盒60元的口罩,规定试销期间销售单价不低于成本价,且获利不得高于40﹪,经试销发现,销售量y (万盒)与销售单价x (元)之间的函数图象如图.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)当售价为元时,销售利润最大,最大利润为万元;(3)该公司决定每销售一盒口罩,就抽出a(a>0)元钱捐给“火神山”医院,若除去捐款后,所获得的最大利润为756万元,求a的值.8.春节前夕,某花店采购了一批鲜花礼盒,成本价为30元/件,物价局要求,销售该鲜花礼盒获得的利润率不得高于120%.分析往年同期的鲜花礼盒销售情况,发现每天的销售量y(件)与销售单价x(元/件)近似的满足一次函数关系,数据如下表:(1)直接写出y与x的函数关系式:________________;(2)试确定销售单价取何值时,花店销售该鲜花礼盒每天获得的利润最大?并求出最大利润;(3)为了确保今年每天销售此鲜花礼盒获得的利润不低于5000元,请预测今年销售单价的范围是多少?n<)给“爱心基金”.若扣除(4)花店承诺:今年每销售一件鲜花礼盒就捐赠n元(5捐赠后的日利润随着日销量的减小而增大,则n的取值范围是多少?9.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)是时间t (天)的一次函数,当1t =时,94m =;当3t =时90m =;未来40天内,前20天每天的价格1y (元/件)与时间t (天)的函数关系式为11254y t =+(120t ≤≤且t 为整数),后20天每天的价格2y (元/件)与时间t (天)的函数关系式为21402y t =-+(2140t ≤≤且t 为整数).下面我们就来研究销售这种商品的有关问题:(1)求m (件)与t (天)之间的函数关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少? (3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(4a <)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.10.某公司为了宣传一种新产品,在某地先后举行40场产品促销会,已知该产品每台成本为10万元,设第x 场产品的销售量为y (台),在销售过程中获得以下信息:信息1:第一场销售产品49台,第二场销售产品48台,且销售量y 与x 是一次函数关系;信息2:产品的每场销售单价p (万元)由基本价和浮动价两部分组成,其中基本价保持不变,第1场至第29场浮动价与销售场次x 成正比,第30场至第40场浮动价与销售场次x 成反比,经过统计,得到如下数据:(1)直接写出y 与x 之间满足的函数关系式____________;(2)求p 与x 函数关系式,并写出自变量的取值范围;(3)在这40场产品促销会中,哪一场获得的利润最大,最大利润是多少?11.公司经销某种商品,经研究发现,这种商品在未来40天的销售单价1y (元/千克)和成本价2y (元/千克)关于时间t 的函数关系式分别为11602y t =-+(040t <≤,且t 为整数);()()21030,3033040,20t t t y t t ⎧<≤-+⎪=⎨<≤⎪⎩且为整数且为整数,他们的图像如图1所示,未来40天的销售量m (千克)关于时间t 的函数关系如图2的点列所示.(1)求m 关于t 的函数关系式;(2)哪一天的销售利润最大,最大利润是多少?(3)若在最后10天,公司决定每销售1千克产品就捐赠a 元给“环保公益项目”,且希望扣除捐赠后每日的利润不低于3600元以维持各种开支,求a 的最大值(精确到0.01元).12.某公司生产甲、乙两种产品.已知生产甲种产品每千克的成本费是30元,生产乙种产品每千克的成本费是20元.物价部门规定,这两种产品的销售单价(每千克的售价)之和为80元.经市场调研发现,甲种产品的销售单价为x (元),在公司规定3060x ≤≤的范围内,甲种产品的月销售量1y (千克)符合12150y x =-+;乙种产品的月销售量2y (千克)与它的销售单价成正比例,当乙产品单价为30元(即:8030x -=)时,它的月销售量是30千克.(1)求2y 与x 之间的函数关系式;(2)公司怎样定价,可使月销售利润最大?最大月销售利润是多少?(销售利润=销(3)是否月销售额越大月销售利润也越大?请说明理由.13.某客商准备购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元. (1)求一件A ,B 型商品的进价分别为多少元?(2)若该客商购进A ,B 型商品共250件进行试销,若A 型商品的售价为240元/件,B 型商品的售价为220元/件,设购进A 型商品m ()20125m ≤≤件.若两种商品全部售出,求出商场销售这批商品的最大利润,并求出此时的进货方案.(3)若该客商购进A ,B 型商品共250件进行试销,设购进A 型商品m ()20125m ≤≤件,经市场调查发现:A 型商品的售价的一半与A 型商品销量的和总是等于120;B 型商品的售价降为210元/件,若两种商品全部售出,求出这批商品的最大利润,并求出此时的进货方案.14.某公司计划投资A 、B 两种产品,若只投资A 产品,所获得利润A W (万元)与投资金额x (万元)之间的关系如图所示,若只投资B 产品,所获得利润B W (万元)与投资金额x (万元)的函数关系式为213005B W x nx =-++.(1)求 A W 与x 之间的函数关系式;(2)若投资A 产品所获得利润的最大值比投资B 产品所获得利润的最大值少140万元,求n 的值;(3)该公司筹集50万元资金,同时投资A 、B 两种产品,设投资B 产品的资金为a 万围.15.疫情期间,某销售商在网上销售A 、B 两种型号的电脑“手写板”,其进价、售价和每日销量如下表所示:根据市场行情,该销售商对A 型手写板降价销售,同时对B 型手写板提高售价,此时发现A 型手写板每降低5元就可多卖1个,B 型手写板每提高5元就少卖1个.销售时保持每天销售总量不变,设其中A 型手写板每天多销售x 个,每天获得的总利润为y 元.(1)求y 与x 之间的函数关系式,并直接写出x 的取值范围;(2)要使每天的利润不低于212000元,求出x 的取值范围;(3)该销售商决定每销售一个B 型手写板,就捐助a 元(0100)a <给受“新冠疫情”影响的困难学生,若当30≤x ≤40时,每天的最大利润为203400元,求a 的值.16.利民商店经销甲、乙两种商品. 现有如下信息:信息1:按零售单价购买甲商品3件和乙商品2件,共付了19元.商品的进货单价之和是5元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元.信息3:按零售单价购买甲商品3件和乙商品2件请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商大的利润,商店决定把甲、乙两种商品的零售单价都下降m元. 在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?17.某文具店经销甲、乙两种不同的笔记本.已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,马阳光同学买4本甲种笔记本和3本乙种笔记本共用了47元.(1)甲、乙两种笔记本的进价分别是多少元?(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时该文具店获利最大?(3)店主经统计发现平均每天可售出甲种笔记本350本和乙种笔记本150本.如果甲种笔记本的售价每提高1元,则每天将少售出50本甲种笔记本;如果乙种笔记本的售价每提高1元,则每天少售出40本乙种笔记本,为使每天获取的利润更多,店主决定把两种笔记本的价格都提高x元,在不考虑其他因素的条件下,当x定为多少元时,才能使该文具店每天销售甲、乙两种笔记本获取的利润最大?18.温州文化用品市场A商家独家销售某种儿童玩具,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥45)元/件的关系如下表:(1)直接写出y与x的函数关系式:;(2)设一周的销售利润为W元,请求出W与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润(W)随着销售单价(x)的增大而增大?数额不超过8000元的情况下,请你求出该商家最大捐款数额是多少元?19.高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).(1)试写出y与x之间的函数关系式(不写x的取值范围);(2)试写出z与x之间的函数关系式(不写x的取值范围);(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?20.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本),若每份售价不超过10元,每天可销售400份;若每份超过10元,每提高1元,每天的销售量就减少40份,为了便于结算,每份套餐的售价X(元)取整数,用Y(元)表示该店日净收入,(日净收入=每天的销售额—套餐成本—每天固定支出)(1)求Y与X之间的函数关系式;(2)若每分套餐的售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?
归纳小结:
运用二次函数的性质求实际问题的最大值和最小值的一般步骤 : ∙求出函数解析式和自变量的取值范围
∙配方变形,或利用公式求它的最大值或最小值。
检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内。
2. 某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现:若每箱以50 元销售,平均每天可销售100箱. 价格每箱降低1元,平均每天多销售25箱 ; 价格每箱升高1元,平均每天少销售4箱。
如何定价才能使得利润最大?
练一练
若生产厂家要求每箱售价在45—55元之间。
如何定价才能使得利润最大?(为了便于计算,要求每箱的价格为整数)
、
3. 有一经销商,按市场价收购了一种活蟹1000千克,放养在塘内,此时市场价为每千克30元。
据测算,此后每千克活蟹的市场价,每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元(放养期间蟹的重量不变).
⑴设x天后每千克活蟹市场价为P元,写出P关于x的函数关系式.
⑵如果放养x天将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q关于x的函数关系式。
⑶该经销商将这批蟹放养多少天后出售,可获最大利润,(利润=销售总额-收购成本-费用)?最大利润是多少?。