湘教版九年级数学下册第1章达标检测卷 含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章达标检测卷

一、选择题(每题3分,共30分) 1.下列函数中,是二次函数的是( )

A .y =3x -1

B .y =3x 2-1

C .y =(x +1)2-x 2

D .y =x 2-1 2.抛物线y =(x -1)2+1的顶点坐标为( )

A .(1,1)

B .(1,-1)

C .(-1,1)

D .(-1,-1)

3.二次函数y =-x 2+2kx +2的图象与x 轴的交点有( )

A .0个

B .1个

C .2个

D .以上都不对

4.将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的

抛物线为( )

A .y =-2(x +1)2-1

B .y =-2(x +1)2+3

C .y =-2(x -1)2-1

D .y =-2(x -1)2+3

5.二次函数y =x 2-2x -3的图象如图所示,当y <0时,自变量x 的取值范围

是( ) A .-1<x <3 B .x <-1 C .x >3 D .x <-1或x >3

6.若A ⎝ ⎛⎭⎪⎫34,y 1,B ⎝ ⎛⎭⎪⎫-54,y 2,C ⎝ ⎛⎭

⎪⎫

14,y 3为二次函数y =x 2+4x -5图象上的三点,

则y 1,y 2,y 3的大小关系是( )

A .y 1>y 2>y 3

B .y 2>y 1>y 3

C .y 3>y 1>y 2

D .y 1>y 3>y 2

7.函数y =ax +b 和y =ax 2+bx +c 在同一直角坐标系内的图象可能是( )

8.如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是()

A.6 s

B.4 s

C.3 s

D.2 s

9.抛物线y=x2+bx+c与y轴交于点A,与x轴的正半轴交于B,C两点,且BC=2,S△ABC=3,则b的值是()

A.-5

B.4或-4

C.4

D.-4

10.如图,在Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别在AC,BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()

二、填空题(每题3分,共24分)

11.抛物线y=-x2+15有最________点,其坐标是________.

12.如图,二次函数的图象与x轴相交于点(-1,0)和(3,0),则它的对称轴是直线________.

13.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2 022的值为________.

14.小磊要制作一个三角形的钢架模型,在这个三角形钢架模型中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形钢架模型的面积S(单位:cm2)随x的变化而变化.则S与x之间的函数关系式为________________.15.若a,b,c是实数,点A(a+1,b),B(a+2,c)在二次函数y=x2-2ax+3的图象上,则b,c的大小关系是b________c.

16.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:

x…-1 0 1 2 3 …

y…10 5 2 1 2 …

则当y<5时,x的取值范围是______________.

17.某商店经营一种水产品,成本为每千克40元.经市场调查发现,若按每千克50元销售,一个月能售出500 kg;销售单价每涨1元,月销售量减少10 kg,针对这种水产品的销售情况,销售单价定为______元时,获得的月利润最大.

18.如图所示是二次函数y=ax2+bx+c的图象,有下列结论:

①二次三项式ax2+bx+c的最大值为4;

②4a+2b+c<0;

③一元二次方程ax2+bx+c=1的两根之和为-1;

④使y≤3成立的x的取值范围是x≥0.

其中正确的有________个.

三、解答题(19题8分,20、21题每题10分,22、23题每题12分,24题14

分,共66分)

19.已知抛物线y=3x2-2x+4.

(1)通过配方,将抛物线的表达式写成y=a(x-h)2+k的形式.

(2)写出抛物线的开口方向和对称轴.

20.已知二次函数y=x2+bx-c的图象与x轴有两个交点,其坐标分别为(m,

0),(-3m,0)(m≠0).

(1)求证:4c=3b2.

(2)若该二次函数图象的对称轴为直线x=1,试求该二次函数的最小值.

21.如图,二次函数y=x2+bx+c的图象与y轴交于点C(0,-6),与x轴的一个交点坐标是A(-2,0).

(1)求该二次函数的表达式,并写出顶点D的坐标.

(2)将该二次函数的图象沿x轴向左平移5

2个单位,求当y<0时,x的取值

范围.

22.某产品每件的成本是120元,在试销阶段,每件产品的售价x(元)与产品的日销售量y(件)的关系如下表:

x/元130 150 165

y/件70 50 35

(1)若日销售量y(件)是售价x(元)的一次函数,求y与x的函数关系式.

(2)若每日获得利润用P(元)表示,求P与x之间的函数关系式.

(3)当每件产品的售价为多少元时,才能使每日获得的利润最大?最大利润为

多少?

23.如图,有一条双向公路隧道,其截面由一段抛物线和矩形ABCO组成,隧道最高处距地面为4.9 m,AB=10 m,BC=2.4 m.现把隧道的截面放在直角坐标系中,有一辆高为4 m、宽为2 m的装有集装箱的汽车要通过隧道,如果不考虑其他因素,汽车的右侧离隧道的右壁超过多少米才不至于碰到隧道顶部?(抛物线部分为隧道顶部,AO,BC为两壁)

相关文档
最新文档