1.3 利用定义证明函数极限存在性

合集下载

高等数学第一章《函数与极限》

高等数学第一章《函数与极限》

第一章 函数与极限一、内容提要(一)主要定义【定义 1.1】 函数 设数集,D R ⊂如果存在一个法则,使得对D 中每个元素x ,按法则f ,在Y 中有唯一确定的元素y 与之对应,则称:f D R →为定义在D 上的函数,记作(),y f x x D =∈.x 称为自变量,y 称为因变量,D 称为定义域.【定义1.2】 数列极限 给定数列{}x n 及常数a ,若对任意0ε>,总存在正整数N ,使得当n N >时,恒有x a n -<ε成立,则称数列{}x n 收敛于a ,记为a x n n =∞→lim .【定义1.3】 函数极限(1)对于任意0ε>,存在()0δε>,当δ<-<00x x 时,恒有()ε<-A x f .则称A 为()f x 当0x x →时的极限,记为A x f x x =→)(lim 0.(2) 对于任意0ε>,存在0X >,当x X >时,恒有f x A ()-<ε.则称A 为()f x 当x →∞时的极限,记为lim ()x f x A →∞=.(3)单侧极限左(右)极限 任意0ε>,存在()0δε>,使得当000(0)x x x x δδ-<-<<-<时,恒有()ε<-A x f .则称当00()x x x x -+→→时)(x f 有左(右)极限A ,记为00lim ()(lim ())x x x x f x A f x A -+→→== 或00(0)((0))f x A f x A -=+=.单边无穷极限 任意0ε>,存在0X >,使得当x X >(x X <-)时, 恒有f x A ()-<ε, 则lim ()x f x A →+∞=(lim ()x f x A →-∞=) .【定义1.4 】 无穷小、无穷大 若函数()f x 当0x x →(或x →∞)时的极限为零(|()|f x 无限增大),那么称函数()f x 为当0x x →(或x →∞)时的无穷小(无穷大).【定义1.5】 等价无穷小 若lim 0,lim 0,lim 1βαβα===,则α与β是等价的无穷小.【定义 1.6】 连续 若)(x f y =在点0x 附近有定义,且)()(lim 00x f x f x x =→,称()y f x =在点0x 处连续.否则0x 为()f x 的间断点.(二)主要定理【定理1.1】极限运算法则 若a x u =)(lim , b x v =)(lim ,则 (1)()lim u v ±存在,()lim lim lim u v u v a b ±=±=±且; (2)()lim u v ⋅存在,()lim lim lim u v u v a b ⋅=⋅=⋅且; (3)当0≠b 时, limu v 存在,lim lim lim u u a v v b==且 推论 ⑴ lim lim Cu C u Ca ==; ⑵ ()lim lim nnnu u a ==. 【定理1.2】极限存在的充要条件⇔=→A x f x x )(lim 0lim ()x x f x -→=0lim ()x x f x A +→=.lim ()x f x A →∞=⇔lim ()x f x →-∞=lim ()x f x A →+∞=【定理1.3】极限存在准则 (1) 单调有界数列必有极限(2) 夹逼准则: 设数列{}n x 、{}n y 及{}n z 满足① n n n y x z ≤≤, ② lim =lim n n n n y z a →∞→∞=,则lim n n x →∞存在,且lim n n x a →∞=.【定理1.4】极限与无穷小的关系 若lim (),f x A =则(),f x A α=+其中lim 0.α=【定理1.5】两个重要极限 1sin lim0=→x x x ,e x xx =⎪⎭⎫⎝⎛+∞→11lim .【定理1.6】 初等函数的连续性 初等函数在其定义区间内连续. 【定理1.7】闭区间上连续函数的性质(1)最值定理 闭区间上连续函数在该区间上一定有最大值M 和最小值m . (2)有界定理 闭区间上连续函数一定在该区间上有界.(3)介值定理 闭区间上连续函数必可取介于最大值M 与最小值m 之间的任何值. (4)零点存在定理 设函数()x f 在[]b a ,上连续,()a f ()0<⋅b f ,则至少存在一个ξ∈()b a ,,使 ()0f ξ=.二、典型题解析函数两要素:定义域,对应关系定义域:使表达式有意义的自变量的全体,方法为解不等式 对应关系:主要方法用变量替换(一)填空题【例1.1】 函数23arccos2xy x =+的定义域是 . 解 由arccos y u =的定义域知11u -≤≤,从而23112xx -≤≤+, 即 (][][),21,12,-∞--+∞.【例1.2】 设()()()2sin ,1f x x f x xφ==-,则函数()x φ的定义域为 .解 由已知()()2sin[()]1fx x xφφ==-,所以()2sin(1)x arc x φ=-,则2111,x -≤-≤即x ≤.【例1.3】设1()(0,1),()([...()])1n n f x x x f x f f f x x =≠≠=+次,试求()n f x 解 由()1xf x x =-,则21()[()]11xx f x f f x x x x -===--,显然复合两次变回原来的形式,所以,2(),211n x n k f x x n k x =⎧⎪=⎨=+⎪-⎩(二)选择题【例 1.9】设函数()f x 在(),-∞+∞上连续,又0a >且1a ≠,则函数()()()sin 2sgn sin F x f x x =-是 [ ](A) 偶函数 (B) 奇函数 (C) 非奇非偶函数 (D) 奇偶函数. 解 因为()()sgn sin sgn sin x x -=-⎡⎤⎣⎦,所以()sgn sin x 为奇函数.而()sin 2f x -为偶函数,故()()sin 2sgn sin f x x -⋅为奇函数,故选 B .【例 1.10】设()f x 是偶函数,当[]0,1x ∈时,()2f x x x =-,则当[]1,0x ∈-时,()f x = [ ](A) 2x x -+(B) 2x x + (C) 2x x - (D) 2x x --.解 因为()()f x f x -=,取[]1,0x ∈-,则[0,1]x -∈,所以()()()22f x x x x x -=---=--, 故选 D .(三)非客观题 1.函数及其性质【例1.16】 求函数()lg(1lg )f x x =-的定义域. 解 要使()f x 有意义,x 应满足0,1lg 0x x >⎧⎨->⎩ 即010x <<,所以()f x 的定义域为 (0,10).【例1.17】 设函数()f x 的定义域是[0,1],试求()f x a ++()f x a -的定义域(0a >).解 由()f x 的定义域是[0,1],则0101x a x a ≤+≤⎧⎨≤-≤⎩,故1a x a ≤≤-,则当1a a =-时,即12a =时,函数的定义域为12x =; 当1a a ->时,即12a <时,函数的定义域为[],1a a -; 当1a a -<时,即12a >时,函数的定义域为空集. 【例1.18】设()2,x f x e =()()1f x x ϕ=-并且()0x ϕ≥,求()x ϕ及其定义域.解 因为()()2[()]1,x fx e x φϕ==-且()0x ϕ≥,故()x ϕ=,为使此式有意义,ln(1)0x -≥,所以函数()x ϕ的定义域为{}0x x ≤.【例1.19】 设()2422x xf x x ++=-,求()2f x -.解( 法一)配方法 ()2(2)422(2)2x f x x +-+=-++,所以()24224.x xf x x --=-+解(法二) 变量代换法 令2x t =-,代入得()2422t f t t -=-+,即()2422xf x x -=-+,则()24224xxf x x --=-+.【例1.20】 设()22,01,12x x f x x x ≤≤⎧=⎨<≤⎩,()ln g x x =,求()f g x ⎡⎤⎣⎦. 解 ()[]ln f g x f x =⎡⎤⎣⎦ 22ln ,0ln 1ln ,1ln 2x x x x ≤≤⎧=⎨<≤⎩[]()()222ln ,1,0, ln , ,0,x x e x x e e ⎧∈+∞⎪=⎨⎡⎤∈+∞⎪⎣⎦⎩[]222ln ,1,ln , ,x x e x x e e ⎧∈⎪=⎨⎡⎤∈⎪⎣⎦⎩【例1.21】 设()1,10,1x x x ϕ⎧≤⎪=⎨>⎪⎩,()22,12,1x x x x ψ⎧-≤⎪=⎨>⎪⎩,求 ()x ϕϕ⎡⎤⎣⎦,()x ϕψ⎡⎤⎣⎦. 解 ⑴ 当(),x ∈-∞+∞时,()01x ϕ≤≤ ,所以 ()()1,,x x ϕϕ≡∈-∞+∞⎡⎤⎣⎦.⑵ 因为 ()()()1,10,1x x x ψϕψψ⎧≤⎪=⎡⎤⎨⎣⎦>⎪⎩, 且 ()()1,12,1x x x x ψψ⎧==⎪⎨<≤≠⎪⎩ 1,故 ()1,10,1x x x ϕψ⎧=⎪=⎡⎤⎨⎣⎦≠⎪⎩. 【例1.22】 求函数()2312,1,121216,2x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩的反函数.解 当21121,x y x <- -<-时,=则x =, 当312=8,x y x -≤≤ ≤≤时,-1则x =当212168,x y x > =->时, 则16,12y x +=所以()f x 的反函数为 ()111816,812x y f x x x x -⎧<-⎪⎪⎪==-≤≤⎨⎪+⎪>⎪⎩.【例 1.23】设()f x 在(,)-∞+∞上有定义,且对任意,(,)x y ∈-∞+∞有()()f x f y x y -<-,讨论()()F x f x x =+在(,)-∞+∞上的单调性.解 任取12,(,)x x ∈-∞+∞,不妨设21x x >,则由条件有()()()()21212121f x f x f x f x x x x x -<-<-=-,所以()()1221f x f x x x -<-,则可变形为()()1122f x x f x x +<+,即()()12F x F x <,故()F x 在(,)-∞+∞上单调增加.【例1.24】 求c 的一个值,使()sin()()sin()0b c b c a c a c ++-++=,这里b a >,且均为常数.解 令()sin f x x x =,则()f x 是一个偶函数,则有[]()()f b c f b c +=-+要使()(),()f b c f a c a b +=+≠成立,则有1()()()2a cbc c a b +=-+⇒=-+.极限与连续:不定式,等价关系,特殊极限 极限待定系数的确定原理 连续待定系数确定的原理【例1.4】 设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a = . 解 因为 233lim lim lim 1x x xx x x x a x a a a x a x a x a →∞→∞→∞+-+⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭3333lim 1x a axa x aa x a e x a --→∞⎛⎫=+= ⎪-⎝⎭再由3ln83ln 28ln 2aee e a ===⇒=.【例1.5】(2004数三)若()0sin lim cos 5x x xx b e a→-=-,则a = ,b = .解 因()0sin limcos 5x x xx b e a→-=-,而()0limsin cos 0x x x b →-=,则0lim 0x x e a →-=, 所以1a =,又0x →时,sin ,1x xx e x -,则()()000sin limcos lim cos limcos51x x x x x x x b x b x b x e →→→-=-=-=-,154b b -=⇒=-. 【例 1.6】 已知当0x →时,123(1)1ax +-与1cos x -是等价无穷小,则常数a = .解 由1230(1)1lim1,1cos x ax x→+-=-而1222ln(1)3112ln(1)2333220000(1)112limlim limlim1cos 1cos 32ax ax ax x x x x ax e a xx x x ++→→→→+--====--,故3.2a = 【例1.7】 (2004数二)设()()21lim1n n x f x nx →∞-=+,则()f x 的间断点为x = .解 ()()()22111limlim ,0110,0n n n x n x x f x xnx nx x →∞→∞⎧--=⋅=≠⎪=⎨++⎪=⎩而 ()001lim lim(0)x x f x f x→→===∞≠,故()f x 的间断点(无穷)为0x =.【例1.8】 设()1sin , 02, 0x x f x x a x ⎧≠⎪=⎨⎪=⎩,在0x =处连续,则a = . 解 要使()f x 在0x =处连续,应有()()0lim 0,x f x f a →==而()0001sin1122lim lim sin lim 222x x x xx f x x x →→→===, 所以12a =.(二)选择题 【例1.11】()1, 10,01x x f x x x --<≤⎧=⎨<≤⎩ ,则()0lim x f x →= [ ](A) -1 (B) 0 (C) 不存在 (D) 1. 解 ()0lim lim 0x x f x x →+→+==, ()()0lim lim 11x x f x x →-→-=-=-.因为()()0lim lim x x f x f x →+→-≠,所以()0lim x f x →不存在,故选 C.【例1.12】 下列结论正确的是 [ ] (A) 若1lim1n n na a +→∞=,则lim n n a →∞存在;(B) 若lim n n a A →∞=,则11lim lim1lim n n n n nn n a a A a a A ++→+∞→∞→∞===; (C) 若lim n n a A →∞=,若lim n n b B →∞=,则()lim n bB n n a A →+∞=;(D) 若数列{}2n a 收敛且()2210n n a a n --→→∞,则数列{}n a 收敛.解 (A)不正确,反例{}n a n =,(B)不正确,因为只有当lim 0n n a →∞≠时,才能运用除法法则:11lim lim lim n n n n nn n a a a a ++→+∞→∞→∞= ,(C)不正确,只有0A ≠时,()lim n b B n n a A →+∞=成立.故选 D.注意无穷大与有界量的乘积关系 【例1.13】 当0x →时,变量211sin x x是 [ ] (A) 无穷小; (C) 有界的,但不是无穷小量; (B) 无穷大; (D) 无界的,但不是无穷大量. 解 M ∀,1,22n x n ππ∃=+只要,2M n π⎡⎤>⎢⎥⎣⎦则()2,2n f x n M ππ=+> 所以211sin x x 无界.再令 12x k π=,()0,1,2,k =±±,则()20lim lim(2)x k f x k π→→∞=⋅ sin 20k π≡,故()lim x f x →∞≠∞.故选 D.趋向无穷大主要是最高次项 趋向无穷小主要是最低次项【例1.14】 当0x →时,下列4个无穷小关于x 的阶最高的是 [ ](A) 24x x + (B)1 (C)sin 1xx- (D)-解 242200lim lim(1)1x x x x x x→→+=+=,所以24x x +是x 的2阶无穷小. 当0x →111sin 22x x ,故(B )是x 的同阶无穷小. 311000sin 11sin 6lim lim lim k k k x x x x x x xx x xx ++→→→---==,要使极限存在2k =,故(C )是x 的2阶无穷小.0x x →→= 3001sin (1cos )1lim lim 24cos k k x x x x x x xx →→-==, 同理(D )是x 的3阶无穷小.故选D.指数函数的极限要注意方向【例1.15】(2005数二)设函数()111xx f x e-=-,则 [ ](A) 0x =,1x =都是()f x 的第一类间断点; (B) 0x =,1x =都是()f x 的第二类间断点;(C) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点; (D) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 解 因为()0lim x f x →=∞,则0x =是()f x 的第二类间断点;而()()11111111lim lim 0,lim lim 111xx x xx x x x f x f x ee++--→→→→--====---, 所以1x =是()f x 的第一类(跳跃)间断点,故选 D. (三)非客观题 求极限的各种方法(1) 用N ε-定义证明数列极限定义证明的关键是利用n x A ε-<倒推找正整数N (与ε有关),这个过程常常是通过不等式适当放大来实现.【例1.25】求证lim1n n→∞=. 证明 对0ε∀>,1ε-<成立,则需1-n n =n a n n +-<a nε=<只要1an n ⎡⎤>+⎢⎥⎣⎦,取1a N n ⎡⎤=+⎢⎥⎣⎦,当n N >时,1ε<.证毕. 【例1.26】 设常数1,a >用N ε-定义证明lim 0!nn a n →∞=. 证明 对0ε∀>,要使0!na n ε-<成立,则需[]0!1[]([]1)[]1n a n a a a a a aa k n a a n a ε-⎛⎫⋅⋅⋅⋅-=<⋅< ⎪⋅⋅+⋅⋅+⎝⎭,(其中1[]a ak a ⋅⋅=⋅⋅)只要lg []lg[]1k n a a a ε>++,为保证0,N >取lg max 1,[]lg []1k N a a a ε⎧⎫⎡⎤⎪⎪⎢⎥⎪⎪⎢⎥=+⎨⎬⎢⎥⎪⎪⎢⎥+⎪⎪⎣⎦⎩⎭,当n N >时,有 0!na n ε-<,证毕. (2)通过代数变形求数列极限 逐项平方差【例1.27】求极限2421111lim(1)(1)(1)(1)2222nn →∞++++解 2421111lim(1)(1)(1)(1)2222n n →∞++++=2111(1)(1)(1)222lim n →∞-++2n 1(1+)211-22(1)12lim(1)22n n +→∞=-=平方差公式【例1.28】求极限lim )n n n →∞.解lim )nn n →∞n =limn →∞=limn =12=. 等比求和【例1.29】 求极限221112333lim 111555nn n →∞+++++++. 解 由等比数列的求和公式2(1)1n nq q q q q q-+++=-将数列变形,则221113211113213333lim lim 11111155551515n n n n n n →∞→∞-+⨯++++-=+++-⨯-112123lim 11145n x n →∞⎛⎫+- ⎪⎝⎭=⎛⎫- ⎪⎝⎭1221014+==. 分项求和【例1.30】 求[]31lim(21)2(23)3(25)n n n n n n →∞-+-+-++.解 []31lim (21)2(23)3(25)n n n n n n →∞-+-+-++()311lim 221nn k k n k n →∞==-+∑()23111lim 212n nn k k n k k n →∞==⎡⎤=+-⎢⎥⎣⎦∑∑()()()()32111211lim 226n n n n n n n n →∞++++⎡⎤=-⎢⎥⎣⎦()()312111lim63n n n n n →∞++==.拆分原理【例1.31】 求极限2111lim()31541n n →∞+++-.解 因为()()1111212122121n n n n ⎛⎫=-⎪-+-+⎝⎭,则 2111lim()31541n n →∞+++-111111lim [(1)()()]23352121n n n →∞=-+-++--+ 111lim (1)2212n n →∞=-=+. 求和后拆分【例1.32】 求极限111lim(1)1212312n n→∞+++++++++.解 111lim(1)1212312n n→∞+++++++++(由等差数列的前n 项和公式)222lim 12334(1)n n n →∞⎡⎤=++++⎢⎥⨯⨯+⎣⎦ (逐项拆分) 111111lim 12()23341n n n →∞⎡⎤=+-+-++-⎢⎥+⎣⎦2lim 221n n →∞⎛⎫=-= ⎪+⎝⎭(3)利用夹逼准则求数列极限 【例1.33】求lim n解 11111n n ≤+<+,而1lim(1)1n n→∞+=,∴ 由夹逼准则得 lim 1n →∞=. 掌握扩大和缩小的一般方法 【例1.34】 求22212lim()12n nn n n n n n n →∞+++++++++. 解212n n n n +++++2221212nn n n n n n n<+++++++++2121n n n +++<++ 且 2121lim,2n n n n n →∞+++=++ 2121lim 21n n n n →∞+++=++, 由夹逼准则得 22212lim()12n nn n n n n n n →∞+++++++++=12. 【例1.35】 求极限226n nn →∞++.解≤≤,则2221nnnk k k===≤≤且 22111limlim 3nnn nk k →∞→∞====,由夹逼准则得原式21lim3nn k→∞===.以下两题了解一下即可 【例1.36】 证明 1;1(0)n n a ==>证明 1) 1n h =+,则22(1)(1)(1)122n nn n n n n n n n n n h nh h h h --=+=+++>,即 0n h <<由夹逼准则 lim 0,n n h →∞=从而lim(1) 1.n n n h →∞=+=2)当1a >时,0<<由夹逼准则1n =;当01a <<,令11b a=>,则lim lim 1n n →∞→∞==,从而1(0).n a =>注 【例1.36】的结果以后直接作为结论使用. 【例1.37】 求极限nk n a ++.(12,,,0k a a a >,k N ∈)解 记{}12max ,,,k aa a a =,则nk a≤++≤.且,n n n a a a ==⋅=,由夹逼准则得{}12max ,,,nk k n a a a a a ++==.(4)利用单调有界准则求数列极限给出前后项的关系,证明其单调,有界,设出极限解方程数列单调性一般采用证明110,1,nn n n x x x x ---≥≥或函数的单调性;数列的有界性方法比较灵活.【例1.38】 求lim n n a a a a →∞++++个根号.解 设n x a =++,则12x x ==…,n x =,从而 1n nx x -<,数列{}n x 单调增加;又n x =,21n nx a x -=+,111n n n n x a x x x -=+<+=,数列有上界,故{}n x 有极限.不妨设lim n n x A →∞=,将21n n x ax -=+两边取极限,有2A a A =+,故12A ±=【例1.39】 求33n .(共有n 个根号)解 设33n x =,显然1n n x x ->,{}nx单调增加;且1n x x =2x =3n x <,{}n x 有上界,所以数列极限存在.不妨设lim n n x A →∞=,将213n n x x -=两边取极限,有23A A =,则()3,0A A ==舍.【例1.40】 设2110,0,,1,2,2n n nx aa x x n x ++>>==,证明数列{}n x 收敛,并求极限.解 2102nn n na x x x x +--=≤,数列{}n x 单调递减;且21122n n n n n x a a x x x x +⎛⎫+==+ ⎪⎝⎭≥=,{}n x 有界,所以数列{}n x 收敛.令lim n n x A →∞=,对212n n nx a x x ++=两边取极限,有12a A A A ⎛⎫=+ ⎪⎝⎭,则A =. (5)利用无穷小的性质求数列极限 【例1.41】 求下列极限(1)(2)题的方法化为指数形式常用,(3)要说明无穷小乘有界量为无穷小 (1) lim 1)(0)n n a →∞-> (2)1121lim (33)n n n n +→∞- (3)2lim 1n nn →∞+解 (1)当1ln 11ln a nn e a n→∞-时, ,则 1ln lim 1)lim (1)a nn n n n e→∞→∞-=-1lim ln ln n n a a n→∞=⋅=(2)当n →∞时, 1ln 331nn-(n+1)(n+1),则11112211lim (33)lim3(31)nnn n n n n n ++→∞→∞-=-(n+1)121ln 3lim 3lim ln 3n n n n n+→∞→∞⋅=⋅=(n+1)(3)因为0n →∞=,而sin 1n ≤,由于无穷小与有界函数的乘积仍为无穷小,所以2lim 01n nn →∞=+ 注 limsin n n →∞不存在,故不能写成lim sin 0n n n n →∞→∞→∞=⋅=. 综合题了解一下即可【例1.42】 求())()22211131lim arctan !22311n n nn n n n →∞⎡⎤⎛⎫+⨯-+++⎢⎥ ⎪ ⎪⨯--⎢⎥⎝⎭⎣⎦. 解()arctan !2n π≤,()221=()2limarctan !0n n →∞∴=,有界量乘无穷小()1111lim lim 112231n n n n n →∞→∞⎡⎤⎛⎫+++=-=⎢⎥ ⎪⨯-⎝⎭⎣⎦,拆分求和2231lim 31n n n →∞+=-, 则 ()2211131lim 322311n n n n n →∞⎡⎤++++=⎢⎥⨯--⎣⎦ )()222131lim arctan !lim 1lim 1n n x n n n n n →∞→∞→∞+⎛⎫⎡⎤-- ⎪⎢⎥⎣⎦-⎝⎭故原式= 033=-=-.两极限都存在用四则运算法则注利用函数极限求数列极限见第三章;利用定积分定义求数列极限见第六章; 利用级数收敛的性质求极限见第十一章. 3.函数的极限(1)用εδ-定义或X ε-定义证明极限用εδ-定义证明函数极限关键是用倒推法适当放缩找到0x x -与ε的关系,确定()δε;而X ε-定义证明函数极限关键是用倒推法适当放缩找到x 与ε的关系,确定()X ε.【例1.43】 证明 22lim 4x x →= 此题典型要搞清楚自变量的约束范围的确定证明 对于0ε∀>,不妨设21,x -<则222225,x x x +≤+<-++< 要使242252x x x x ε-=+⋅-<⋅-<,只要取min{1,}5εδ=,当02x δ<-<时,有24x ε-<.证毕.注 函数在0x 的极限只与函数在0(,)U x δ的定义有关,与函数的整个定义范围无关.因此上例作了假设2 1.x -<也可假设122x -<等. 【例1.44】 用X ε-定义证明:232lim .33x x x →∞+=证明 对于0ε∀>,要使2322321333x x x x x xε++--==<,只要1.x ε>故取11,X ε=+当x X >时,均有23233x x ε+-<,即232lim .33x x x →∞+=(2)用极限存在的充要条件研讨极限 含有,xxe e-的表达式x →∞的极限;含有[]11,,,xxe e x x -的表达式0x →的极限;分段函数在分段点的极限,一般来说用极限存在的充要条件讨论.注意指数函数的极限,一般要考虑两边趋势【例1.45】 讨论极限 lim x xx xx e e e e --→∞-+.解 221lim lim 11x x x xx x x x e e e e e e --→-∞→-∞--==-++; 221lim lim 11x x xx x x x x e e e e e e--→+∞→+∞--==++. 所以 lim x xx xx e e e e --→∞-+不存在.【例1.46】 求1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦. 解 1402sin lim 1x x x e x x e +→⎡⎤+⎢⎥+⎢⎥⎢⎥+⎣⎦43402sin lim 0111x xx xe e x x e +--→-⎡⎤+⎢⎥=+=+=⎢⎥⎢⎥+⎣⎦; 1402sin lim 2111x x x e x x e -→⎡⎤+⎢⎥-=-=⎢⎥⎢⎥+⎣⎦; 所以 1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦1=. 【例1.47】 []x 表示不超过x 的最大整数,试确定常数a 的值,使[]210ln(1)lim ln(1)x x x e a x e →⎧⎫+⎪⎪+⎨⎬⎪⎪+⎩⎭存在,并求出此极限.解 由[]x 的定义知,[][]0lim 1,lim 0,x x x x -+→→=-=故所给极限应分左、右极限讨论. []22211110000ln(1)ln(1)lim lim lim lim .ln(1)ln(1)x x x x x x x x x x xe e e a x a a e a a e e e ----→→→→⎧⎫++⎪⎪+=-=-=-=-⎨⎬⎪⎪++⎩⎭[]222211110002ln(1)ln(1)ln (1)lim lim 0lim 01ln(1)ln (1)ln(1)x xxxx x x x x x xe e e e x a x e e e e x+++--→→→--⎧⎫+++⋅+⎪⎪+=+=+⎨⎬⎪⎪+⋅+++⎩⎭212ln(1)lim 21ln(1)xx xe e +-→-++==++.所以,当2a =-时所给极限存在,且此时极限为2.【例1.48】设21,1,()23, 1.x f x x x x ⎧≥⎪=⎨⎪+<⎩试求点1x =处的极限.解 211(10)lim ()lim(23)5x x f f x x --→→-==+=; 111(10)lim ()lim 1x x f f x x++→→+===; 即(10)(10)f f -≠+,1lim ()x f x →∴不存在.(3)通过代数变形求函数极限 【例1.49】求下列极限(1)22232lim 2x x x x x →-+++- (2)422123lim 32x x x x x →+--+ (3)11lim ,()1n x x n Z x +→-∈- 解 (1)原式222(1)(2)(1)(2)limlim (1)(1)(1)(11)x x x x x x x x x x →-→-++++==-+--++211lim.13x x x →-+==-(2)原式22211(1)(3)(1)(3)limlim 8.(2)(1)2x x x x x x x x x →→-+++===---- (3)原式121(1)(1)lim1n n x x x x x x --→-++++=- (提零因子)121lim(1)n n x xx x n --→=++++=.注 分子分母都为0必有共同的0因子① 因为分母极限为零,所以不能直接用计算法则; ② 当0x x →时,0x x ≠. 【例1.50】求下列极限注意多项式商的三种形式的规律0x x x a →∞→→,,,最高项,最低项,零因子(1)247lim 52x x x x x →∞-+++ (2)()()()3020504192lim 61x x x x →∞++- (3) 3225lim 34x x x x →∞-++解(1)原式234341170lim 0.5211x x x x x x→∞-+==++(2)原式3020501249lim 16x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫- ⎪⎝⎭1030205049263⋅⎛⎫== ⎪⎝⎭. (3)3225lim 34x x x x →∞-=∞++ (因为2334lim 025x x x x →∞++=-) 注 x →∞时有理函数求极限,分子、分母同时除以x 的最高幂次.即抓“大头”.综合题也可直接用结论 0101101,lim0,,m m m n n x n a n m b a x a x a n m b x b x b n m --→∞⎧=⎪⎪+++⎪=>⎨+++⎪∞<⎪⎪⎩. 【例1.51】求下列极限了解共轭因式,尤其是N 方差公式 (1))0lim 0x aa +→>. (2)0x → (3)limx解 ⑴原式0lim x a+→=limx a+→=lim x a+→==⑵ 原式=2x x →x →=32=⑶ 原式2limx=2123lim 1x --==.(4)利用两个重要极限求极限利用0sin lim 1x x x →=,1lim 1nn e n →∞⎡⎤+=⎢⎥⎣⎦求极限,则有0sin 1lim 1,lim(1)e →→∞=+=(此两式中的形式必须相同).【例1.52】 求下列极限 (1)201cos limx xx →-)(2)22sin sin lim x a x a x a→--(3)31lim sin ln(1)sin ln(1)x x x x→∞⎡⎤+-+⎢⎥⎣⎦解 (1)原式22200212sin sin1222limlim 2()2x x x xx x →→==.(2)原式()()sin sin sin sin limx ax a x a x a→-+=-()2limsin cos sin sin 22x a x a x a x a x a →-+=+-()sin2limcos sin sin 22x a x ax a x a x a →-+=⋅+-1cos 2sin sin 2a a a =⨯⨯=. (3)3lim sin ln(1)x x x →∞+ 3sin ln(1)33lim ln(1)0 limln(1)3ln(1)x x x x x x x→∞→∞++=⋅++ 33333lim ln 1ln lim[(1)]3x x x x x x⋅→∞→∞⎛⎫=+=+= ⎪⎝⎭同理 1lim sin ln(1)1x x x→∞+=,所以 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+⎢⎥⎣⎦312=-=.【例1.53】 求下列极限 趋向常数的极限通常会做变量替换 (1)1lim(1)tan2x xx π→- (2)22sin lim1x xx ππ→- 解 (1)令1,t x =-则 原式02lim tan()lim cotlimlim222tan22t t t t ttt tt t ttππππππ→→→→=⋅-=⋅===(2) 令,x t π=-则原式2222200002sin()sin sin lim lim lim lim .()2(2)221t t t t t t t t t t t t t ππππππππππ→→→→-====----- 【例1.54】 求下列极限(1)32lim 22xx x x →∞-⎛⎫ ⎪-⎝⎭ (2)cot 0lim tan 4xx x π→⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦解 (1)原式1222111lim 1lim 11222222x xx x x x x --→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫=+=+⋅+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1e e =⋅=(2)原式11tan t 001tan 1t lim()lim()1tan 1t x x t x x →→--==++122t 102t lim(1)1tt t t +-⋅-+→-=++02lim1122t02tlim(1)1t t ttt e →-++--→⎡⎤-=+=⎢⎥+⎣⎦.注 1∞型极限的计算还可用如下简化公式:设(),(),u u x v v x ==且lim 1,lim u v ==∞,则lim(1)lim .u vvu e-=(因为 (1)1lim(1)1lim lim [1(1)]u vu vvu u u e---⎧⎫⎪⎪=+-=⎨⎬⎪⎪⎩⎭)和ln lim lim .v v uu e=【例1.55】 求下列极限 (1)lim hx kx ax b ax c +→∞+⎛⎫⎪+⎝⎭(2)1sin sin 20cos lim cos 2x xx x x →⎛⎫⎪⎝⎭解 (1) 原式=()()lim 1lim x x ax b b c hx k hx k ax c ax c e e→∞→∞+-⎛⎫⎛⎫-++ ⎪ ⎪++⎝⎭⎝⎭=()b c hae-=(2) 原式22000cos 1cos cos 211cos cos 2lim 1lim limcos 2sin sin 2cos 2cos 222x x x x x x x xxx xx xxx eee→→→--⎛⎫⎛⎫-⋅⎪⎪⎝⎭⎝⎭===2222220011(2)1cos 21cos 322lim []lim []22224x x x x x xx x x xeee →→----===.(5)利用函数的连续性求极限① 设()f x 在x a =连续,按定义则有 lim ()()x af x f a →=.因此对连续函数求极限就是用代入法求函数值.② 一切初等函数在它的定义域上连续.因此,若()f x 是初等函数,a 属于它的定义域,则lim ()()x af x f a →=.③ 设lim ()x ag x A →=,若补充地定义()g a A =,则()g x 在x a =连续.若又有()y f u =在u A =连续,则由复合函数的连续性得 lim (())(lim ())()x ax af g x f g x f A →→==.【例1.56】 求下列极限(1)3225lim243x x x x →+++ (2)3x →解 利用函数的连续性得 (1)332252251lim243224233x x x x →+⨯+==++⨯+⨯+,(2)x →==(6)利用无穷小的性质求极限常用的几个重要等价无穷小代换(当0→x 时)有: sin arcsin tan arctan 1ln(1)x xx x x xe x -+x cos 1-~22x , 1-xa ~)0(ln >a a x , )1(log x +α~ln x a.1)1(-+αx ~x α(α为任意实数), 3tan sin ,2x x x -3sin .6x x x - 利用等价无穷小代换时,通常代换的是整个分子、分母或分子、分母的因子. 【例1.57】求下列极限(1)201lim sin 3x x e x →- (2)cos 0lim sin x x e e x x →- (3)0x →解 (1)当0x →时,212,sin 33xex x x -,∴200122limlim sin 333x x x e x x x →→-==. (2)当0x →时,1cos 0x -→,1cos 11cos xex -∴--.原式cos 1cos 1cos cos 22000(1)(1)lim lim lim x x x xx x x e e e e x x--→→→--==⋅20(1cos )1lim2x x x→-==(因为当210,1cos 2x x x →-). (3)原式0x →=0x x →→=012x →=201112lim 1222x xx x →==⋅.【例1.58】 已知()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,求()20lim x f x x →. 解 由()0lim 310x x →-=及()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,必有()0limln 10sin x f x x →⎡⎤+=⎢⎥⎣⎦, 所以 ()ln 1sin f x x ⎡⎤+⎢⎥⎣⎦~()sin f x xln3311x x e -=-~ln 3x 原式()0sin lim ln 3x f x x x →=()201lim ln 3sin x f x x x x →=⋅ ()201lim ln 3x f x x→==2,则 ()2lim2ln 3x f x x→=.【例1.59】 求 30sin tan limsin x x xx→- 解 原式33001sin (1)sin (cos 1)cos limlim sin cos sin x x x x x x x x x →→--==⋅23001()1lim lim cos 22x x x x x x→→⋅-=⋅=-⋅.注 3300sin tan limlim 0.sin sin x x x x x xx x→→--≠= 【例1.60】 求 213sin 2sin lim x x xx x→∞+解 213sin 2sin lim x x xx x→∞+=13sin 1lim2lim sin 1x x x x x x→∞→∞+, 1sin1lim1;lim 0,sin 1,1x x x x x x→∞→∞==≤ 则1lim sin 0x x x →∞=, ∴原式=303+=.(7)利用其它方法求极限① 利用导数定义求极限(见第二章) 利用导数定义=')(0x f 00)()(limx x x f x f x x --→可以将某些求极限问题转化为求导数;② 利用罗必达法则(详见第三章); ③ 利用微分中值定理(详见第三章); 【例1.61】 设()()00,0f f '=存在,求()limx f x x→. 解 因为()()00,0f f '=存在,所以()0limx f x x →()()()00lim 0x f x f f x→-'== *【例1.62】 求lim x→+∞解 令()f t =,显然当0x >时,()f t 在[,1]x x +上满足拉格朗日中值定理,所以有,()()()()f b f a f b a ξ'-=⋅-.所以,原式=cos ξ 其中1x x ξ≤≤+故lim lim cos 0x ξξ→+∞→+∞==4.函数的连续性(1)函数的连续性与间断点的讨论【例1.63】 设()2,0sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在点0x =处连续,求常数a b 与的关系.解 ()00sin sin lim lim lim x x x bx bx f x b b x bx+++→→→==⋅= ()()200lim lim x x f x a bx a --→→=+=. 因为函数在点0x =连续,所以()0lim x f x +→b =()0lim x f x a -→==,故a b =. *【例1.64】 设()2122lim 1n n n x ax bxf x x +→∞++=+,当,a b 取何值时,()f x 在(),-∞+∞处连续.解 ()2,1,11,121,12a bx x x x ab f x x a b x ⎧+ <⎪>⎪⎪--=⎨=-⎪⎪++⎪=⎩,由于()f x 在()()(),1,1,1,1-∞--+∞上为初等函数,所以是连续的,只要选取适当的,a b ,使()f x 在1x =±处连续即可. 即11lim ()lim ()(1)x x f x f x f -+→→==; ()()()11lim lim 1x x f x f x f -+→-→-==-. 得 1011a b a a b b +==⎧⎧⇒⎨⎨-=-=⎩⎩. 【例1.65】 研究函数(),111,11x x f x x x -≤≤⎧=⎨<->⎩或的连续性,并画出函数的图形.解 ()f x 在(),1-∞-与()1,-+∞内连续, 在1x =-处间断,但右连续,因为在1x =-处,()()11lim lim 11x x f x x f ++→-→-==-=-,但()11lim lim 11x x f x --→-→-==,即()()11lim lim x x f x f x +-→-→-≠.【例1.66】 指出函数22132x y x x -=-+的间断点,说明这些间断点的类型.解 ()22132x f x x x -=-+在1x =、2x =点没有定义,故1x =、2x =是函数的间断点.因为 ()()()()2211111lim lim3212x x x x x x x x x →→-+-=-+--11lim 22x x x →+==--,所以1x =为第一类可去间断点.因为2lim x y →=∞,所以2x =为第二类无穷间断点.【例1.67】 讨论函数()221lim 1nnn x f x x →∞-=+的连续性,若有间断点,判别其类型.解 ()22 11lim0 1 1 1nnn x x x f x x x x x →∞⎧->⎪-===⎨+⎪<⎩, ()11lim lim 1x x f x x ++→→=-=-,()11lim lim 1x x f x x --→→==,()()11lim lim x x f x f x +-→→≠; ()11lim lim 1x x f x x ++→-→-==-,()11lim lim 1x x f x x --→-→-=-=,()()11lim lim x x f x f x +-→-→-≠.故 1x =±为第一类跳跃间断点.(2)闭区间上连续函数的性质【例1.68】 证明方程3910x x --=恰有三个实根. 证明 令()391f x x x =--,则()f x 在[]3,4-上连续,且()()310,290,f f -=-<-=> ()()010,4270f f =-<=>所以()f x 在()()()3,2,2,0,0,4---各区间内至少有一个零点,即方程3910x x --=至少有三个实根. 又它是一元三次方程,最多有三个实根.证毕【例1.69】 若n 为奇数,证明方程110n n n x a x a -+++=至少有一个实根.证 令()11n n n f x x a x a -=+++,则()1(1)nnn a a f x x xx=+++, 于是 lim (),lim ()x x f x f x →-∞→+∞=-∞=+∞,故存在1,x 使()10f x A =>;存在2,x 使()20f x B =<.所以()f x 在[]12,x x 至少有一个零点,即方程至少有一个实根.【例1.70】 设()f x 在[],a b 上连续,且()(),f a a f b b <>,试证:在(),a b 内至少有一点ξ,使得()fξξ=.证 令()()F x f x x =-,()F x 在[],a b 连续,且()0,()0,F a F b <>由介值定理得在(),a b 内至少存在一点ξ,使得()0F ξ=,即()fξξ=.【例1.71】 设()f x 在[]0,2a ()0a >上连续,且()()02f f a =,求证存在()0,a ξ∈,使()()ff a ξξ=+.证 构造辅助函数()()()g x f x a f x =+-,则()()()00g fa f =-,()()()2g a f a f a =-()()0f a f =--⎡⎤⎣⎦()0g =-,即()0g 与()g a 符号相反,由零点存在定理知存在()0,a ξ∈,使()0g ξ=,即()()ff a ξξ=+.【例1.72】 设()f x 在[],a b 上连续,且a c d b <<<,证明:在[],a b 内至少存在一点ξ,使得()()()()pf c qf d p q f ξ+=+,其中,p q 为任意正常数.证()f x 在[],a b 上连续,∴ ()f x 在[],a b 上有最大值M 和最小值m ,则()m f x M ≤≤.由于,[,]c d a b ∈,且,0p q >,于是有(),()pm pf c pM qm qf d qM ≤≤≤≤.⇒ ()()()()p q m pf c qf d p q M +≤+≤+, ⇒()()pf c qf d m M p q+≤≤+.由介值定理,在[],a b 内至少存在一点ξ,使得()()()pf c qf d f p qξ+=+,即()()()()pf c qf d p q f ξ+=+ 5.综合杂例【例1.73】 已知lim 2003,(1)ab bn n n n →∞=--求常数,a b 的值.解 lim lim lim 11(1)[1(1)](1)1aaa bbb n n n b b b n n n n n n n n-→∞→∞→∞-==------ 1lim lim 1a b a b n n n n bb n--+→∞→∞-==- 为使极限为2003,故10,a b -+=且12003,b =所以12002,.20032003b a ==- 【例1.74】 已知221lim2,sin(1)x x ax bx →++=-求常数,a b 的值. 解 由221lim 2,sin(1)x x ax bx →++=-则分子的极限必为0,即21lim()0x x ax b →++=, 从而 10a b ++=;另一方面,当1x →时,22sin(1)1x x --,因此2222221111lim lim 10lim sin(1)11x x x x ax b x ax b x ax a a b x x x →→→+++++--=++=--- 1(1)(1)lim2(1)(1)x x x a x x →-++==-+,从而11211a ++=+,即2,a =又10a b ++=, 得 3.b =【例1.75】已知lim ())0,x ax b →+∞+=求常数,a b 的值.解lim ())lim ())0,x x bax b x a x→+∞→+∞-+=+=而lim ,x x →+∞=∞要使原式极限为0,则lim()0,x ba x→+∞-+=所以 1.a =1lim )lim )lim.2x x x b ax x →+∞→+∞=-===【例1.76】 若 30sin 6()lim 0,x x xf x x →+=求206()lim .x f x x→+ 解 因为30sin 6()lim0,x x xf x x→+=由极限存在与无穷小的关系,得 3sin 6()0,x xf x x α+=+其中0lim 0.x α→=从而 2236()6sin 6,f x xx x x α+=-+ 所以 32233300006()6sin 66sin 6(6)lim lim()lim lim 366x x x x f x x x x x x x x x xα→→→→+-=-+=== 【例1.77】 已知0()lim4,1cos x f x x →=-求10()lim 1.xx f x x →⎛⎫+ ⎪⎝⎭解 因为200()2()limlim 4,1cos x x f x f x x x→→==-则20()lim 2x f x x →=.从而 221()()lim()200()()lim 1lim 1x x f x f x xf x x x x x f x f x e e x x →⋅→→⎛⎫⎛⎫+=+== ⎪ ⎪⎝⎭⎝⎭注 此题也可用极限存在与无穷小的关系求解.【例1.78】 当0x →x 的几阶无穷小量. 解3255x-=则203limx xx→→==∴x 的23阶无穷小.三、综合测试题。

函数的极限计算与极限存在性判断

函数的极限计算与极限存在性判断

函数的极限计算与极限存在性判断函数的极限是微积分中的重要概念,它描述了函数在某一点处的趋势和变化情况。

计算函数的极限以及判断其是否存在是解决微积分问题的基础,本文将介绍函数极限的计算方法和极限存在性的判断原则。

一、函数极限的计算方法1. 代入法代入法是计算函数极限最常用的方法之一。

当要计算函数在某一点a处的极限时,我们可以直接将a代入函数表达式,然后求出函数在该点处的函数值作为极限。

例如,要计算函数f(x)=2x+1在x=3处的极限,我们可以将3代入函数表达式,得到f(3)=2(3)+1=7,因此f(x)在x=3处的极限为7。

2. 分式归零法对于函数f(x)=g(x)/h(x),其中g(x)和h(x)分别表示两个函数,当g(x)和h(x)在某一点a处的极限存在且h(a)≠0时,可以使用分式归零法计算极限。

具体步骤如下:(1) 计算g(x)和h(x)在x=a处的极限,记为lim[g(x)]和lim[h(x)]。

(2) 如果lim[h(x)]≠0,则函数f(x)在x=a处的极限为lim[g(x)]/lim[h(x)]。

例如,要计算函数f(x)=(x^2-1)/(x-1)在x=1处的极限,我们可以先计算g(x)=x^2-1和h(x)=x-1在x=1处的极限,分别为lim[g(x)]=0和lim[h(x)]=0。

然后,由于lim[h(x)]=0,我们可以使用分式归零法,得到函数f(x)在x=1处的极限为0/0=0。

3. 无穷小量法无穷小量法适用于计算函数在无穷远点处的极限。

当函数f(x)满足lim[x→±∞]f(x)=0时,可以使用无穷小量法计算其极限。

具体步骤如下:(1) 将函数f(x)变形,使其成为一个关于无穷小量的表达式。

例如,可以化简分式、展开函数等操作。

(2) 对于变形后的函数,找出最高次项,这个最高次项必须是关于x 的正整数次幂。

(3) 以该最高次项作为分子,无穷远点作为分母,得到一个无穷小量,记作ε。

判断函数极限是否存在的方法

判断函数极限是否存在的方法

判断函数极限是否存在的方法判断函数极限是否存在是微积分中的重要概念之一。

在实际问题中,判断函数极限的存在性可以帮助我们更好地理解函数的行为,进行数学建模和预测。

在本文中,我们将介绍判断函数极限存在的方法,并详细讨论极限的定义、性质和计算方法。

我们将首先介绍极限的定义,然后讨论函数极限的性质和计算方法。

最后,我们将通过一些例题对判断函数极限存在性的方法进行详细说明。

1.极限的定义在微积分中,我们用极限来描述函数在某一点处的“接近性”。

当自变量x趋于某个值a时,函数f(x)的极限存在,表示当x足够接近a时,f(x)的取值也足够接近一个确定的数L。

这个数L即是函数f(x)当x趋于a时的极限,记作lim(x→a) f(x) = L。

根据这个定义,我们可以得到极限存在的三个要素:自变量x趋于某个值a、函数f(x)在a的邻域内有定义、函数f(x)的取值趋于一个确定的数L。

因此,要判断函数极限是否存在,我们需要根据这三个要素来进行分析和判断。

2.函数极限的性质函数极限存在的性质主要包括唯一性、局部有界性、局部保号性和局部保序性。

唯一性:如果函数f(x)在某一点a的邻域内有极限L,则它的极限值是唯一的。

局部有界性:如果函数f(x)在某一点a的邻域内有极限L,则它在该邻域内有界。

局部保号性:如果函数f(x)在某一点a的邻域内有极限L(L>0),则在该邻域内,函数的取值大于0。

局部保序性:如果函数f(x)在某一点a的邻域内有极限L,则在该邻域内,函数的取值的大小顺序与自变量的大小顺序一致。

这些性质为判断函数极限的存在性提供了重要依据。

在实际问题中,我们可以根据这些性质来判断函数极限是否存在,并进一步进行相关的分析和计算。

3.函数极限的计算方法判断函数极限的存在性和计算实际上是相辅相成的。

只有在判断函数极限存在的前提下,我们才能进行具体的计算。

函数极限的计算方法主要包括极限的四则运算法则、极限的夹逼定理、极限的连续性定理和极限的分部求极限法等。

函数极限存在的条件(精)

函数极限存在的条件(精)

f (x) 存在.
三、单调有界定理 数列极限的单调有界定理: 在实数系中,有界的单调数列必有极限.
函数单侧极限的单调有界定理:
定理3.10
设f在
U
0
(
x0
)
单调有界, 则
证:
不妨设f在
U
0
(
x0
)
单调递增.
lim
x x0
f (x) 存在.
对任何含于
U
0
(
x0
)
且以
x0 为极限的递增数列{xn},
§3 函数极限存在的条件
教 学 要求
1.领会归结原则(海涅定理)、函数单侧极限的单调有界定理与柯西准则 的实质以及证明过程,掌握运用归结原则与柯西准则判定某些函数极 限的存在性。
2.掌握函数极限与数列极限的联系。 3.初步掌握用归结原则、柯西准则证明函数极限不存在的技巧。
§3 函数极限存在的条件
一、lim f (x) A 的 0 定义 xx0
x0
),

lim
n
f
(xn ) 不存在,
则lim xx0
f
(x)
不存在.

lim
n
xn'
x0 ,
lim
n
xn"
x0 ,

lim
n
f
(xn' )
lim
n
f
(xn" ),

lim f (x) 不存在.
xx0
例2
证明极限 limsin 1 不存在.
x0 x
y sin 1 x
例2 证明极限 limsin 1 不存在. x0 x

函数极限存在的条件

函数极限存在的条件
0 0
0 A + ε > f ( x) ≥ f ( x1 ) > A − ε . 可见, 当 x ∈ U − ( x0 , δ ) 时, f ( x1 ) − A < ε ,
f ( x) 存在且 f ( x0 − 0) = sup 因此 lim −
x → x0
f ( x) f ( x)
0 x∈U − ( x0 )
n→∞ n→∞
下证 A = B . 考虑数列 {z n } : x1 , y1 , x 2 , y 2 , L x n , y n , L ,易见 {z n } ⊂ U ( x 0 ) ,且 lim z n = x0 , 则由题
0
n →∞
设 lim f ( z n ) 存在,于是作为 { f ( z n )} 的两个子列, { f ( x n )} 与 { f ( y n )} 必有相同的极限,因
x → −∞
ε ,总存在某一正数 M ,使得对任何 x ′ < − M , x ′′ < − M ,都有 f ( x ′) − f ( x ′′) < ε
1
(2)设 f ( x) 为定义在 (−∞, a ] 上的函数,若存在正数 ε 0 ,对任给正数 M ,总存在 x1 、 x 2 , 尽管 x1 < − M , x 2 < − M ,而 f ( x1 ) − f ( x 2 ) ≥ ε 0 ,则称 lim f ( x) 不存在.
0
(2)
f ( xn ) − A ≥ ε 0
,
n = 1,2,3,L , 由 于
n →∞
0 x0 ∈ U + ( x0 , δ n )
,


0 < x n − x0 < δ n ≤

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧《数学分析》是以函数为研究对象,以极限理论和极限方法为基本方法,以微积分学为主要内容的一门学科.极限理论和极限方法在这门课程中占有极其重要的地位.灵活、快捷、准确地求出所给函数的极限,除了对于函数极限的本质有较清楚地认识外,还要注意归纳总结求函数极限的方法,本文对技巧性强、方法灵活的例题进行研究,进一步完善求函数极限的方法与技巧,有利于微积分以及后继课程的学习.1基本方法1.1利用定义法求极限从定义出发验证极限,是极限问题的一个难点.做这类题目的关键是对任意给定的正数ε,如何找出定义中所说的δ.一般地,证明0lim ()x x f x A →=的方法为:0ε∀>,放大不等式0()f x A x x αε-<<-<(α为某一个常数)解出,0αε<-x x 取αεδ=. 例[1](45)1P 证明32121lim 221=---→x x x x .证 0ε∀>,若221112122132133213x x x x x x x x ε---+-=-=<<--++. (限制x :011x <-<,则211)x +>,取=min{3,1}δε,则当01x δ<-<时,便有221123321x x x x ε---<<--. 定义中的正数δ依赖于ε,但不是由ε所唯一确定.一般来说,ε愈小,δ也愈小.用定义证明极限存在,有一先决条件,即事先要猜测极限值A ,然后再证明,这一般不太容易,所以对于其它方法的研究是十分必要的.1.2 利用左、右极限求极限lim ()lim ()lim ()x x x x x x f x A f x f x A +-→→→=⇔==. 例2 设tan 3,0()3cos ,0xx f x x x x ⎧<⎪=⎨⎪>⎩ 求0lim ()x f x →.解 因为00tan 3tan 3lim ()lim lim 333x x x x xf x x x---→→→==⋅=,00lim ()lim 3cos 3x x f x x ++→→==. 得到0lim ()lim ()3x x f x f x -+→→==,所以0lim ()3x f x →=. 例3 求函数1()11x f x x +=++在1x =-处的左右极限,并说明在1x =-处是否有极限.解 111lim ()lim (1)21x x x f x x ++→-→-+=+=+,11(1)lim ()lim (1)01x x x f x x --→-→--+=+=+.因为11lim ()lim ()x x f x f x +-→-→-≠,所以)(x f 在1x =处的极限不存在.例4 若,0(),0xax b x f x e x +>⎧=⎨<⎩,求分段点0处的极限. 解 因为0lim ()lim()x x f x ax b b ++→→=+=,00lim ()lim 1xx x f x e --→→==.所以当1b =时,0lim ()1x f x →=;当1b ≠时,0lim ()x f x →不存在.可见,利用左右极限是证明分段函数在其分段点处是否有极限的主要方法.1.3 利用函数的连续性求极限 初等函数在其定义的区间I 内都连续.若I x ∈0,初等函数()f x 当0x x →时的极限就等于其在0x x =时的函数值,即0lim ()()x x f x f x →=.特别地,若[()]f x ϕ是复合函数,又0lim ()x x x a ϕ→=,且()f u 在u a =处连续,则lim [()][lim ()]()x x x x f x f x f a ϕϕ→→==.例5 求21cos 2arcsin 0lim xx x e -→.解 由于201cos 1lim2arcsin 4x x x →-=及函数ue uf =)(在14u =处连续, 所以2201cos 1cos 1lim2arcsin 2arcsin 4lim x xxx x x e e e →--→==.例[]()21196P 求4x →解4443lim4x x x x →→→==-413x →=== 在4x =连续).例[1](84)7P 求0ln(1)limx x x→+.分析 由1ln(1)ln(1)xx x x+=+,设ln y u =,1(1)x u x =+.因为10lim(1)x x x e →+=,且ln y u =在e u =点连续,故可利用函数的连续性求此极限.解 11000ln(1)limlimln(1)ln[lim(1)]ln 1xx x x x x x x e x→→→+=+=+==. 1.4 利用函数极限的四则运算法则求极限 若lim ()f x ,lim ()g x 存在,则有:(1)lim[()()]lim ()lim ()cf x bg x c f x b g x ±=±(,c b 为任意常数); (2)lim[()()]lim ()lim ()f x g x f x g x ⋅=⋅;(3)()lim ()lim[]()lim ()f x f xg x g x =(其中lim ()0)g x ≠; (4)lim[()][lim ()]nnf x f x =;(5)若lim ()f x A =,对正整数n ==.注 以上每个等式中的“lim ”均指x 的同一趋向.例8 1225lim(2)1x x x x→∞+-. 分析 该函数可以看作是两个函数的和.而对于函数2251x x -是分式函数,分子、分母都是多项式函数,并且当自变量x →∞时,归于前面介绍的第四种类型.对于函数12x,当x →∞时,01→x,故121x→.因此,只须再利用和的运算法则即可求得此极限.解 11222255lim(2)lim lim 251411x x x x x x xx x →∞→∞→∞+=+=-+=---. 1.5 利用重要极限求极限 1.5.1 0sin lim1x x x→=可推出0lim 1sin x x x →=,2000tan arctan 1cos 1lim 1,lim 1,lim 2x x x x x x x x x →→→-===.推广:0sin ()lim1()x x x φφ→=或0()lim 1sin ()x x x φφ→= 0(lim ()0)x x φ→=利用此重要极限公式求函数的极限,通常需要利用恒等变换将函数的某一组成部分变成形如sin ()()x x φφ或()sin ()x x φφ的形式.特别注意的是sin ()x φ这个复合函数的内函数()x φ要和分母或分子的函数相同,并且保证()0x φ→ (0)x →,则此部分的极限就为1.例9 求0sin 3limsin 2x xx→.分析 设sin 3()sin 2xf x x=,当0x →时,30x →,20x →故可利用恒等变换将()f x 化为sin 3()sin 2x f x x =sin 3233sin 22x x x x =⋅⋅,利用此重要极限公式即可求得.解 0000sin 3sin 323sin 3233lim lim lim lim sin 23sin 223sin 222x x x x x x x x x x x x x x →→→→=⋅⋅=⋅⋅=.1.5.2 1lim(1)xx e x→∞+=或10lim(1)x x x e →+=推广:1lim(1)x x e x φφ→∞+=()() (lim ())x x φ→∞=∞或0lim 1x e φφ→+=1(x)((x)) 0(lim ()0)x x φ→= 对于函数1()(1)x f x x φφ=+()()或()1f x φφ=+1(x)((x)),由于函数的底数和指数位置均含有变量,因此称为幂指函数.此重要极限公式解决的是1∞型幂指函数的极限问题,对于给定的函数,一般情况下也需要利用恒等变形后方可利用此公式.例10 求3lim(1)xx x→∞+.分析 设函数3()(1)xf x x=+是幂指函数,当x 趋于无穷大时,底3(1)1x+→,指数x →∞,是1∞型幂指函数,需利用此重要极限公式推广形式,将函数变形为3331()(1)((1))3xx f x x x=+=+,其中()3x x φ=,且当x →∞时,3x→∞,故有31lim(1)3x x e x →∞+=.解 3333311lim(1)lim(1)lim((1))33x xx x x x e x x x→∞→∞→∞+=+=+=.1.6 利用洛必达法则求极限在解决未定式的极限时,最简单的方法是约去分子、分母中趋于零的公因子.洛必达法则正是以求导的方法解决了这个问题.洛必达法则: 设)(),(x g x f 满足①在点0x 的领域内(点0x 可以除外)有定义,且0lim ()0x x f x →=,lim ()0x x g x →=.②在该领域内可导,且0)(≠'x g .③A x g x f x x =''→)()(lim 0. (A 可为实数,也可为∞±或∞)则A x g x f x g x f x x x x =''=→→)()(lim )()(lim00.如果()()f x g x ''在0x x →时,仍为00或∞∞型,且这时()f x '与()g x '仍满足定理中的条件,则可继续使用洛必达法则.例11 求22230sin cos lim sin x x x x x x→-.解 2223400sin cos (sin cos )(sin cos )lim lim sin x x x x x x x x x x x x x x→→-+-= 320000sin cos sin cos cos cos sin 2sin 2limlim 2lim lim 333x x x x x x x x x x x x x x x x x x x →→→→+--+=⋅===. 1.7 利用无穷小求极限1.7.1 利用无穷小量的性质求函数的极限 性质1 有限个无穷小量的代数和是无穷小量. 性质2 有限个无穷小量之积是无穷小量. 性质3 任一常数与无穷小量之积是无穷小量. 性质4 无穷小量与有界变量之积是无穷小量. 例12 求1lim()cosx x x πππ→--. 解 0)(lim =-→ππx x ,而1cos1x π≤-,所以1lim()cos 0x x x πππ→-=-.1.7.2 利用等价无穷小量替换求函数的极限 若11()~(),()~()x x x x ααββ且11()lim()x x αβ存在,则()lim ()x x αβ也存在,并且11()()limlim ()()x x x x ααββ= 注 1. 常用的几对等价无穷小量.(当0x →时)2sin ~,tan ~,ln(1)~,1~,1cos ~2xx x x x x x x e x x +--.2. 等价无穷小量替换,来源于分数的约分,只能对乘除式里的因子进行代换,在分子(分母)多项式里的单项式通常不可作等价代换.例13求0lim x +→.分析函数经过变形可化为00lim lim x x ++→→0x +→时,利用21cos ~,1~22x xx --等价无穷小来计算极限.解原式00lim lim x x ++→→==2000112lim lim lim222x x x x x x +++→→→==⋅=⋅. 例14 求0ln(1sin )lim x x x α+→-(α是实数).解 当0x →时,ln(1sin )~sin ~x x x --- 1000,1ln(1sin )lim lim()1,1,1x x x x x ααααα++-→→<⎧-⎪=-=-=⎨⎪-∞>⎩. 1.8 利用降幂法求极限 1.8.1 分子分母为有理式()lim()x P x Q x →∞,其中()P x ,()Q x 均为多项式函数方法:将分子、分母同除以x 的最高次幂.例15 求2256lim 2x x x x x →∞+++-.分析 该函数是分式函数,分子2()56P x x x =++,分母2()2Q x x x =+-均为二次多项式函数,且自变量x 趋近于∞时均趋近于∞,故采取将分子、分母同除以最高次幂2x ,即消去2x ,有22562x x x x +++-22561121x x x x++=+-而1lim 0x x →∞=,21lim 0x x →∞=,再利用极限的运算法则,即可求出函数的极限. 解 222256156100lim lim 11221001x x x x x x x x x x→∞→∞++++++===+-+-+-. 一般地,对于()lim()x P x Q x →∞(其中()P x ,()Q x 均为多项式函数),当分子的次数高于分母次数,该函数极限不存在; 当分子的次数等于分母次数,该函数极限等于分子、分母的最高次项的系数之比;当分子的次数低于分母次数,该函数极限为0.即11101110lim 0nmn n n n m m x m m a n m b a x a x a x a n m b x b xb x b n m---→∞-⎧=⎪⎪++++⎪=∞>⎨++++⎪<⎪⎪⎩ .1.8.2 分子分母为无理式(1)当x →∞时,将分子、分母同除以x 的最高方次. 例16求limlimx x →+∞.解lim lim lim 1x x x ===. limlim 021x x x x→+∞→+∞==++. (2)当0x x →时,若 1) 0()0Q x ≠,则000()()lim()()x x P x P x Q x Q x →=;2) 00()0,()0Q x P x =≠,则0()lim()x x P x Q x →=∞;3) 00()()0Q x P x ==可利用有理化分子(或分母)的方法求极限. 例17求2x → 分析 该函数是分式函数,并且含有根式,当0x →时,分子、分母均趋近于0,故将分子、22221)x x ==1而当0x →12→,故可求得此极限.解220x x →→=22001)lim 12x x x x→→+==+=. 1.9 利用中值定理求极限例18 求xx e e x x x sin lim sin 0--→.解 设xe xf =)(,对它的应用微分中值定理得:[]sin ()(sin )(sin )sin (sin )(01)x x e e f x f x x x f x x x θθ'-=-=-+-<< ,即sin [sin (sin )](01).sin x xe ef x x x x xθθ-'=+-<<- 因为 ()x f x e '=连续,所以0lim [sin (sin )](0) 1.x f x x x f e θ→''+-===从而有 sin 0lim1sin x xx e e x x→-=-. 例19 设函数()f x 在0x =处连续,又设函数102()11sin 02x x x x x xϕ⎧+≤⎪⎪=⎨⎪>⎪⎩ , 求220()()cos lim()xx xf x x t dtx x ϕϕ→+⎰.解 利用积分中值定理有,2220cos 2cos 02xt dt x x ξξ=<<⎰,因为001lim 0lim ()2x x x ξϕ→→==,,,所以2220()()cos ()()2cos limlim ()()xx x xf x x t dtxf x x x x x x x ϕϕξϕϕ→→++⋅=⎰ 200()()2cos lim lim 2(0)2()()x x xf x x x f x x x x ϕξϕϕ→→⋅=+=+. 1.10 利用泰勒公式求极限若一个函数的表达式比较复杂时,我们可以将它展成泰勒公式,使其化成一个多项式和一个无穷小量的和,而多项式的计算是比较简单的,从而此方法能简化求极限的运算.例20 计算0()sin(sin )limsin x tg tgx x tgx x→--.分析 此题虽是型,但使用洛必达法则求极限太复杂.而分母无穷小的最低阶数为3,故写出诸函数三阶泰勒公式,便可求得结果.解 33sin ()3!x x x x ο=-+ 331()()3tgx x x x ο=++. 3333111sin ()()()33!2tgx x x x x x οο-=++=+.又33333331sin(sin )sin(())(()())3!3!3!3!x x x x x x x x x x οοο=-+=---++ 333331()()3!3!3x x x x x x x οο=--+=-+. 333331111()(())(())3333tg tgx tg x x x x x x x x οο=++=++++ 3333312()()33x x x x x x x οο=+++=++.所以33()sin(sin )()tg tgx x x x ο-=+.330033()sin(sin )()lim lim 21sin ()2x x tg tgx x x x tgx x x x οο→→-+==-+. 例21 求21lim(cos sin )x x x x x →+.解 应用cos ,sin ,ln(1)x x x +的泰勒展式有2232311cos sin 1()1()22x x x x x x x x οο+=-++=++23331ln(cos sin )ln(1())()22x x x x x x x οο+=++=+因此,232200111lim ln(cos sin )lim [()]22x x x x x x x x x ο→→+=+=于是,原式211ln(cos sin )20lim x x x xx e e +→==. 例22 设()f x 在点0x =处二阶可导,且320sin 3()lim[]0x x f x x x→+=,求(0),(0),(0)f f f '''并计算极限2203()lim()x f x x x→+. 解 由已知条件,并利用麦克劳林公式,有320sin 3()0lim[]x x f x x x →=+33223201(0)3(3)()(0)(0)()3!2lim[]x f x x x f f x x x x x οο→'''-++++=+ 233301(0)9lim [(3(0))(0)()()]22x f f x f x x x x ο→'''=+++-+. 得(0)3,(0)0,(0)9f f f '''=-==. 于是2203()lim[]x f x x x →+222011lim [3(0)(0)(0)()]2x f f x f x x x ο→'''=++++ 2220199lim [33()]22x x x x ο→=-++=. 2 典型方法2.1 重要极限的再推广定理 设lim ()1,lim ()f x g x ==∞,则()lim[(()1)()]lim[()]g x f x g x f x e -=证明 1(()1)()()()1lim[()]lim[1(()1)]f xg x g x f x f x f x --=+-1lim(()1)()lim[(()1)()]()1{lim[1(()1)]}f xg x f x g x f x f x e ---=+-=例1 求211lim(1)xx x x→∞++解 这是1∞型极限,2211111()1,(),(()1)()()1f x g x x f x g x x x x x x x=++=-=+=+, 所以2111lim [(11)]lim (1)211lim(1)x x x x x x xx ee e x x→∞→∞++-⋅+→∞++==. 另解 对211lim(1)x x x x →∞++令211(1)x y x x =++取对数得211ln ln(1)y x x x=++于是有211ln(1)lim ln lim1x x x x y x→∞→∞++= (00型,可洛必达法则)232221212211lim lim 11121x x x x x x x x x x →∞→∞--+++===-++ 所以1212lim lim(1)x x x y e e x x→∞→∞=++==显然这样解要复杂的多.例2 求21lim(cos 2)x x x →.解 21()cos 2,()f x x g x x ==因为2001limcos 21,lim x x x x →→==∞所以是1∞型极限, 有2222112sin limlim (cos21)20lim(cos 2)x x x x x x x x x e e e →→---→===.例3 求1222234lim()238x x x x x x -→+--+. 解 1222234lim()238x x x x x x -→+--+222341exp{lim(1)}2382x x x x x x →+-=-⋅-+- 425222241216exp(lim )exp(lim )2382238x x x x x e x x x x x →→+-+=⋅==-+--+.2.2 洛必达法则的应用例4 计算极限2[(1)]lim(1cos )xx x arctg t dt dx x x →+-⎰⎰.分析 对0,0∞∞等未定式的极限,常可用洛必达法则来计算. 解 原式22000(1)(1)2lim lim(1cos )sin 2sin cos x x x arctg t dtarctg x xx x x x x x→→++⋅==-+⋅+⋅⎰222042(1)1lim 3cos sin 6x x arctg x x x x x π→+++==-⋅. 3 一题多解举例每一个题目并非只能用一种方法进行求解,通常可采用多种途经去解决它. 例1 求1lim(12)xx x →-.[解法一] 利用重要极限10lim(1)xx x e →+=112220lim(12)lim[(12)]xx x x x x e ---→→-=-=.[解法二] 用取对数法 令1(12)xy x =-,两边取对数,得1ln ln(12)y x x=- 由0002112limln lim[ln(12)]lim 21x x x x y x x →→→--=-==-,所以1200lim lim(12)x x x y x e -→→=-=.[解法三] 用换元法 令2x t -=,则12x t-=所以112200lim(12)lim[(1)]xt x x x t e --→→-=+=.[解法四] 利用对数式的性质001112ln(12)lim ln(12)lim2120lim(12)lim x x x x x xxx x x x eeee →→-----→→-====.例2 求22201cos lim sin x x x x →-.[解法一] 用洛必达法则和重要极限0sin lim1x xx→=原式2222222222200022sin 2sin sin 1lim lim lim sin 2sin 2cos sin cos 2cos x x x x x x x x x x x x x x x x x x x →→→====+⋅++.[解法二] 三角函数公式及洛必达法则原式2222222220002232(sin )sin cos222lim lim lim 2sin cos cos 2cos sin22222x x x x x x x x x x x xx x x x →→→===- 22202cos12lim 22cos sin22x x x x x →==-. [解法三] 三角函数恒等变换和重要极限0sin lim1x xx→= 原式2222222220022(sin )sin sin11222lim lim sin sin 2222x x x x x x x x x x x →→==⋅⋅=⋅. [解法四] 分子分母同除以4x 用重要极限和洛必达法则原式222440224002201cos 1cos lim 1cos lim lim sin sin lim x x x x x x x x x x x x x x →→→→---===2232002sin 1sin 1lim lim 224x x x x x x x →→==⋅=. [解法五] 分子分母同乘21cos x +原式2222222222222000(1cos )(1cos )sin sin lim lim lim sin (1cos )sin (1cos )(1cos )x x x x x x x x x x x x x x x →→→-+===+++22200sin 11lim lim 1cos 2x x x x x →→==+. [解法六] 变换替换后用洛必达法则令2u x = 原式0001cos sin cos 1limlim lim sin sin cos 2cos sin 2u u u u u u u u u u u u u u →→→-====+-又00sin 11lim sin cos 2lim(1cos )sin u u u uu u u u u→→==++⋅. [解法七] 用等价无穷小来代替原式222242222400012sin 2()1222lim lim lim 2sin x x x x x xx x x x x →→→⋅====⋅. 原式22430001cos 2sin 21lim lim lim 424x x x x x x x x x x→→→-====. [解法八] 级数解法因为462cos 12!4!x x x =-+- 622sin 3!x x x =-+所以4682822048()1cos 12!4!lim sin 2()3!x x x x x x x x x x οο→-+-==-+. [解法九] 连续使用两次洛必达法则原式22222222002sin sin lim lim 2cos 2sin cos sin x x x x x x x x x x x x x →→==⋅++222222222002cos cos 1lim lim 2cos 2sin 2cos 2cos sin 2x x x x x x x x x x x x x x x →→===-⋅+-. 例3[]()728P 设()x ϕ连续,0()lim2sin t t t t t ϕ→=-,求0()lim sin t t xt t tϕ→-.[解法一] 从0()lim2sin t t t t t ϕ→=- 可得0()lim 2sin 1t t ttϕ→=-所以0lim ()0t t ϕ→=.又()x ϕ连续,因此(0)0ϕ=这样可以得到:当0x =时,00()(0)lim lim 0sin sin t t t xt t t t t tϕϕ→→==--;当0x ≠时,作变量代换xt u =,有000()()()lim lim lim sin sin sin t u u uu t xt u u x u u ut t u x x x xϕϕϕ→→→==--- 00()sin lim limsin sinu u u u u u uu u u x xϕ→→-=⋅--以下利用已知极限,以及两次洛必达法则,即可求出极限为22x , 所以,原式22,00,0x x x ⎧≠=⎨=⎩.[解法二] 利用等价无穷小求解,注意到31sin ~(0)6t t t t -→这样,从0()limsin t t t t t ϕ→- 03()lim 216t t t tϕ→==可知21()~(0)3t t t ϕ→于是220031()()3lim lim 2(0)1sin 6t t t xt t xt x x t t t ϕ→→⋅==≠-;当0x =时,根据法一可得结果.综上所述,原式22,00,0x x x ⎧≠=⎨=⎩.例4 求2lim lnx x ax x a→∞++. [解法一] 原式221()(2)12ln2()lim lim 11x x x a x a x a x a x a x a x a x x→∞→∞+⋅+-+⋅+⋅+++==-222limlim 12()(2)(1)(1)x x ax ax x a a a ax a x a x x→∞→∞===⋅=++++. [解法二] 因为(2)lnln(1)()x a a x a x a +=+++ 又所以x →∞时,0ax a→+,所以ln(1)~a a x a x a +++则2lim ln lim lim 1x x x x a a a x x a a x a x a x→∞→∞→∞+⋅=⋅==+++.总之,极限的解题方法很多,这就要求我们多做练习,学会总结归纳,学会举一反三.这对拓展我们的思维,进一步学好数学是有帮助的。

1-3 高等数学—函数极限的概念与性质

1-3 高等数学—函数极限的概念与性质

二、用函数极限的定义 证明: 1 4x2 1、 lim1 2 x 2 2 x 1 sin x 2、 lim 0 x x
三、试证 : 函数 f ( x ) 当 x x 0 时极限存在的充分 必要条件是左极限、右极限各自存在并且相等 . x 四、讨论:函数 ( x ) 在 x 0 时的极限是否 x 存在?
通过上面演示实验的观察: sin x 当 x 无限增大时, f ( x ) 无限接近于 0. x 问题: 如何用数学语言刻划函数“无限接近”.
f ( x ) A 表示 f ( x ) A 任意小; x X 表示x 的过程.
1、定义:
定义 1 如果对于任意给定的正数 (不论它多么小), 总存在着正数 X ,使得对于适合不等式 x X 的一切
2

函数在点x=1处没有定义.
任给 0,
x2 1 f ( x) A 2 x 1 x 1
要使 f ( x ) A ,
只要取 ,
x 1 lim 2. x 1 x 1
2
x2 1 当0 x x 0 时, 就有 2 , x 1
3.单侧极限:
1 x, 设 f ( x) 2 x 1, 证明 lim f ( x ) 1.
x0
例如,
x0 x0
y y 1 x
y x2 1
1
o
x
分x 0和x 0两种情况分别讨论
x从左侧无限趋近x 0 , 记作x x 0 0; x从右侧无限趋近x 0 , 记作x x 0 0;
左右极限存在但不相等, lim f ( x ) 不存在.
x 0
二、函数极限的性质

极限定义证明

极限定义证明

极限定义证明
极限定义证明是证明极限存在的依据。

极限定义证明的过程主要包括
三个步骤:设定条件、声明结论和证明结论。

首先,需要用一个式子表示出极限的定义,即在这个式子的右边的值(x→a)趋近于某一特定的值(L),这就是极限的定义。

其次,在声明结论的部分,需要证明右边的值(x→a)与特定值(L)的值相等,即需要证明极限存在,即˙lim x → a f (x) = L ,就是极
限定义证明的结论。

最后,在证明结论部分,要根据定义或定理,通过正确的推理和计算
证明右边的值(x→a)与特定值(L)的值相等,最终证明极限存在。

总之,极限定义证明的主要过程是:设定定义、声明结论、证明结论,最终确保极限存在。

函数极限存在的条件(精)

函数极限存在的条件(精)

(2) 1
2
n2
3) 将函数极限的理论研究,转为数列极限的研究.(见后柯西准则的证明)
单侧极限的归结原则:
定理3.9
设f在
U
0
(
x0
)
有定义.
lim
xx0
f (x) A
对任何含于
U
0
(
x0
)
且以 x0 为极限的单调递减数列{xn}, 都有
lim
n
f
( xn
)
A.
定理3.9-1 设f在
U
0
lim f (x) A 的 定义:
xx0
若 0, 0, 当 0 | x x0 | 时,有 | f (x) A| .
lim f (x) A 的 0 定义:
xx0
若 0 0, 0, x1,
尽管0 | x1 x0 | , 但
| f (x1) A | 0.
用 0
定义证明 lim xx0
1
0
事实上,在 0 | x 0 | 内,一定可以取到x1, 使得 sin x1 0,
进而有
sin
1 x1
1
1
1 2
0.
证:

0
1. 2
0,

n1
1
1,
1
x1 n1 ,

0 |
x1
0 |
1
n1
1 n1
,

sin
1 x1
1
|
sin
n1
1| 1
1 2
0,
所以 limsin 1 1. x0 x
0 | xn x0 | , 进而有 | f (xn ) A | , 即

实变函数的极限存在性及连续性证明

实变函数的极限存在性及连续性证明

实变函数的极限存在性及连续性证明实变函数是数学分析中的重要概念,极限存在性和连续性是研究实变函数性质的基本要素。

在本文中,我们将详细讨论实变函数的极限存在性及连续性的证明。

首先,我们来探讨实变函数的极限存在性。

为了证明实变函数在某一点的极限存在,我们需要证明函数在该点的左极限和右极限存在且相等。

设实变函数f(x)在点a周围定义,我们定义函数的左极限为lim_(x→a-)f(x),右极限为lim_(x→a+)f(x)。

要证明极限的存在性,我们需要满足以下条件:1. 函数在点a的左邻域内存在,即存在一个区间(a-h, a),其中h>0,并且该区间内函数有定义。

2. 函数在点a的右邻域内存在,即存在一个区间(a, a+h'),其中h'>0,并且该区间内函数有定义。

3. 函数在点a的左邻域内的极限存在且等于函数在点a的右邻域内的极限。

对于实变函数f(x),我们可以采用ε-δ定义来证明其极限存在性。

根据ε-δ定义,对于任意给定的ε>0,存在一个δ>0,使得当0<|x-a|<δ时,有|f(x)-L|<ε,其中L为极限值。

换句话说,当距离x足够接近a时,函数值f(x)将足够接近极限值L。

接下来,让我们来证明实变函数的连续性。

一个实变函数在某点连续,意味着函数在该点的极限存在且等于函数在该点的函数值。

也就是说,lim_(x→a)f(x)=f(a)。

为了证明连续性,我们需要满足以下条件:1. 函数在点a处有定义。

2. 函数在点a的极限存在。

对于实变函数f(x),我们可以通过将极限存在性和函数值相等的条件相结合来证明其连续性。

首先,我们证明lim_(x→a)f(x)=f(a)。

然后,我们证明lim_(x→a)f(x)存在。

最后,我们将两个条件相结合,得出函数f(x)在点a连续的结论。

在证明连续性时,我们还可以运用基本的极限性质,如极限的四则运算和复合函数的极限,来简化证明的过程。

函数极限的证明(精选多篇)

函数极限的证明(精选多篇)

函数极限的证明(精选多篇)第一篇:函数极限的证明函数极限的证明(一)时函数的极限:以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=为使需有为使需有于是,倘限制,就有例7验证例8验证(类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有=§2函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性(不等式性质):th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)註:若在th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:6.四则运算性质:(只证“+”和“”)(二)利用极限性质求极限:已证明过以下几个极限:(于正无穷。

把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,m>1;那么存在n1,当x>n1,有a/mn2时,0ni时,0那么当x>n,有(a/m)第三篇:二元函数极限证明二元函数极限证明设p=f(x,y),p0=(a,b),当p→p0时f(x,y)的极限是x,y 同时趋向于a,b时所得到的称为二重极限。

用定义证明函数极限方法总结[1]

用定义证明函数极限方法总结[1]

用定义证明函数极限方法总结:用定义来证明函数极限式lim ()x af x c →=,方法与用定义证明数列极限式类似,只是细节不同。

方法1:从不等式()f x c ε-<中直接解出(或找出其充分条件)()x a h ε-<,从而得()h δε=。

方法2:将()f x c -放大成()x a ϕ-,解()x a ϕε-<,得()x a h ε-<,从而得()h δε=。

部分放大法:当()f x c -不易放大时,限定10x a δ<-<,得()()f x c x a ϕ-≤-,解()x a ϕε-<,得:()x a h ε-<,取{}1min ,()h δδε=。

用定义来证明函数极限式lim ()x f x c →∞=,方法:方法1:从不等式()f x c ε-<中直接解出(或找出其充分条件)()x h ε>,从而得()A h ε=。

方法2:将()f x c -放大成()x a ϕ-,解()x a ϕε-<,得()x h ε>,从而得()A h ε=。

部分放大法:当()f x c -不易放大时,限定1x A >,得()()f x c x a ϕ-≤-,解()x a ϕε-<,得:()x h ε>,取{}1max ,()A A h ε=。

平行地,可以写出证明其它四种形式的极限的方法。

例1 证明:2lim(23)7x x →+=。

证明:0ε∀>,要使:(23)722x x ε+-=-<,只要 22x ε-<,即022x ε<-<,取2εδ=,即可。

例2 证明:22112lim 213x x x x →-=--。

分析:因为,2211212213213321x x x x x x x --+-=-=--++放大时,只有限制011x <-<,即02x <<,才容易放大。

函数极限存在的证明与求法

函数极限存在的证明与求法

f A n s f A n 1 s f A n 1 s
f A n s f A n 1 s f A n 1 s f A n 2 s
f A 1 s f A s f A s
x
由(1)得, lim
g ( x) f ( x) 0, 即 lim l. x x x x
x
例8 设f ( x)在a, 上有连续导数, 且 lim f ( x) f ( x) 0,
求证 lim f ( x) 0.
x
证明 lim f ( x) f ( x) 0, 则对 0, A 0, x A, 有
例5 设函数f ( x)在(0,)上满足f (2 x) f ( x), lim f ( x) A,
x
证明
f ( x) A, x 0,.
证明 任意取定x 0,, 有
f ( x) f ( 2 x) f ( 2 2 x) f ( 2 n x)
b 2
再由lim f ( x) b , 则
xa
b2 0, 2 0, x : 0 x a 2 f ( x) b 2
取 min 1 , 2 , 则x : 0 x a 时, 有
f ( x) b f ( x) b 1 1 2 f ( x) b f ( x) b b 2
x 1
用 语言证明
x 2x 1 0. lim
x 3 ( x 1) 2 2 x 1 1
于是有
x 2x 1
x3

x 2 x 1 x3
2 x 1

高一数学课程教案函数的极限的定义与基本性质的推导

高一数学课程教案函数的极限的定义与基本性质的推导

高一数学课程教案函数的极限的定义与基本性质的推导高一数学课程教案:函数的极限的定义与基本性质的推导介绍:函数的极限是数学中非常重要的概念,它在解决实际问题和理论证明中有着广泛的应用。

本课程教案将介绍函数的极限的定义及其基本性质的推导过程,帮助学生深入理解这一概念。

一、函数的极限的定义(Limit of a Function)函数的极限表示当自变量趋于某个值时,函数的值将趋于的稳定值。

具体来说,对于函数f(x),当x无限接近某个值a时,f(x)会无限接近于L,记作:lim(x→a) f(x) = L。

二、函数的极限的基本性质的推导1. 极限的唯一性推导过程:假设当x趋于a时,函数f(x)的极限既可以是L1,又可以是L2(L1≠L2)。

即:lim(x→a) f(x) = L1,lim(x→a) f(x) = L2。

根据函数极限的定义,当x无限接近a时,f(x)会无限接近L1和L2,但根据L1≠L2,这与函数极限的定义相违背。

因此,函数的极限是唯一的。

2. 极限的有界性推导过程:假设lim(x→a) f(x) = L,且存在一个实数M,使得对于x在某个去心邻域[a-r, a+r]中,满足|f(x)| ≤ M。

即:∃M > 0,∃r > 0,对于所有的x ∈ (a-r, a) ∪ (a, a+r),有|f(x)| ≤ M。

根据函数极限的定义,当x无限接近a时,f(x)会无限接近L。

假设存在一个无界函数,即在[a-r, a+r]中可以找到一个点x1,使得|f(x1)| > M。

根据函数极限的定义,当x无限接近a时,f(x)会无限接近L。

但这与|f(x)| ≤ M相矛盾。

因此,函数的极限是有界的。

3. 极限的保号性推导过程:假设当x趋于a时,函数f(x)的极限为L,且L > 0。

即lim(x→a) f(x) = L,且L > 0。

根据函数极限的定义,当x无限接近a时,f(x)会无限接近L。

函数极限的证明(精选多篇最新)

函数极限的证明(精选多篇最新)

第一篇:函数极限的证明函数极限的证明(一)时函数的极限:以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=为使需有为使需有于是,倘限制,就有例7验证例8验证(类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有=§2函数极限的性质(3学时)目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性(不等式性质):th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)註:若在th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:6.四则运算性质:(只证“+”和“”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)例2例3註:关于的有理分式当时的极限.例4例5例6例7第二篇:函数极限证明函数极限证明记g(x)=lim^(1/n),n趋于正无穷;下面证明limg(x)=max{a1,...am},x趋于正无穷。

极限的定义证明

极限的定义证明

极限的定义证明
就是用极限的定义证明极限存在。

函数极限定义:
设函数f(x)在x0处的某一去心邻域内有定义,若存在常数a,对于任意ε>0,总存回在正数答δ,使得当
|x-xo|<δ时,|f(x)-a|<ε成立,那么称a是函数f(x)在x0处的极限。

极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)。

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

5、利用等价无穷小替换求极限,可以将原式化简计算。

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

函数极限存在的条件教案

函数极限存在的条件教案

§3 函数极限存在的条件重点难点1. 归结原则也称为海涅定理, 它的意义在于把函数极限归结为数列极限问题来处理, 从而我们可以利用归结原则和数列极限的有关性质来证明上一节中所述的函数极限所有性质.2. 单调有界定理是判定极限是否存在的一个重要原则, 同时也是求极限的一个有用的方法. 一般情形, 运用单调有界定理研究变量极限时, 需要首先利用单调收敛定理判定极限的存在性, 然后在运用运算法则求这个极限.3. 柯西准则是函数极限存在的充要条件. 函数极限的柯西准则是以数列的柯西准则为基础的. 该准则在数列极限、极限和广义积分理论中, 占据了重要的地位.因此应当认真理解柯西准则, 并能用柯西准则讨论某些比较简单的问题.基本内容在讨论数列极限存在条件时,我们曾向大家介绍过判别数列极限存在的“单调有界定理”和“柯西收敛准则”. 我们说数列是特殊的函数,那么对于函数是否也有类似的结果呢?或者说能否从函数值的变化趋势来判断其极限的存在性呢?本节的结论只对0x x →这种类型的函数极限进行论述,但其结论对其它类型的函数极限也是成立的。

首先介绍一个很主要的结果——海涅(Heine)定理(归结原则)。

一、归结原则定理 3.8(归结原则) 设f 在()δ';00x U 内有定义. ()x f x x 0lim→存在的充要条件是: 对任何含于()δ';00x U且以0x 为极限的数列{}n x , 极限()n n x f ∞→lim 都存在且相等.分析 充分性的证法:只须证明,若对任意数列{}n x ,且0lim x x n n =∞→,0x x n ≠,有()A x f n n =∞→lim ,则()A x f x x =→0lim .因为在已知条件中,具有这种性质的数列{}n x 是任意的(当然有无限多个),所以从已知条件出发直接证明其结论是困难的.这时可以考虑应用反证法.也就是否定结论,假设()A x f x x ≠→0lim ,根据极限定义的否定叙述,只要能构造某一个数列}{n x ,0lim x x n n =∞→,0x x n ≠,但是()A x f n n ≠∞→lim ,与已知条件相矛盾.于是充分性得到证明.注1 归结原则也可简述为()⇔=→A x f x x 0lim 对任何()∞→→n x x n 0有().lim A x f n n =∞→注 2 虽然数列极限与函数极限是分别独立定义的,但是两者是有联系的.海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系, 从而给数列极限与函数极限之间架起了一座可以互相沟通的桥梁.它指出函数极限可化为数列极限,反之亦然.在极限论中海涅定理处于重要地位.有了海涅定理之后,有关函数极限的定理都可借助已知相应的数列极限的定理予以证明.例如若)0()(lim ,)(lim 0≠==→→B B x g A x f x x x x , 则)(lim )(lim )()(limx g x f x g x f x x x x x x →→→=.证 已知B x g A x f x x x x ==→→)(lim )(lim 0与,根据海涅定理的必要性,对任意数列{}n x ,且0lim x x n n =∞→,0x x n ≠,有()A x f n n =∞→lim ,()B x g n n =∞→lim .由数列极限的四则运算,对任意数列{}n x ,且0lim x x n n =∞→,0x x n ≠,有BA x g x f n n n =∞→)()(lim.再根据海涅定理的充分性,由)(lim )(lim )()(lim)()(limx g x f BA x g x f x g x f x x x x n n n x x →→∞→→===.注3 海涅定理除上述重要的理论意义外, 它还为证明某些函数极限不存在提供了行之有效的方法:若可找到一个以0x 为极限的数列{}n x ,使()n n x f ∞→lim 不存在,或找到两个都以0x 为极限的数列{}nx '与{}n x '',使)'(lim n n x f ∞→与)(lim n n x f ''∞→都存在而不相等,则)(lim 0x f x x →不存在.例1 证明极限xx 1sinlim 0→不存在.函数xy 1sin=的图象如图3-4所示,由图象可见,当0→x 时,其函数值无限次地在-1与1的范围内振荡,而不趋于任何确定的数.对于+∞→→→-+x x x x x ,,00和-∞→x 为四种类型的单侧极限,相应的归结原则可表示为更强的形式.现以+→0x x 这种类型为例阐述如下:定理 3.9 设函数f 在点0x 的某空心右邻域)(00x U +有定义.A x f x x =+→)(lim 0的充要条件是:对任何以0x 为极限的递减数列{})(0x U x n+⊂,有A x f n n =∞→)(lim .注5 定理3.9充分性的证明可参照第二章第三节例3及定理3.8的证明.例如可取},min{01x x nn n-=-δδ,以保证所找到的数列{}n x 能递减的趋于0x .二、单调有界定理相应于数列极限的单调有界定理,关于上述四类单侧极限也有相应的定理.现以+→0x x 这种类型为例叙述如下:定理3.10 设f 为定义在)(00x U +上的单调有界函数,则右极限)(lim 0x f x x +→存在.注6 (1)设f 为定义在)(00x U +上的有界函数.若f 递增,则)(inf )0()(000x f x f x U x +∈=+;若f 递减,则)(sup)0()(000x f x f x U x +∈=+.(2) 设f 为定义在)(00x U 上的递增函数,则)(sup)0()(000x f x f x U x -∈=-, )(inf )0()(000x f x f x U x +∈=+.三 函数极限的柯西收敛准则定理3.11(柯西准则) 设函数f 在)';(0δx U 内有定义.)(lim 0x f x x →存在的充要条件是:任给0>ε,存在正数)'(δδ<,使得对任何);(,'0δx U x x ∈''有ε<''-)()'(x f x f . [分析] 充分性的证明可以利用数列极限的柯西准则和函数极限与数列极限的桥梁——海涅定理来证.分两步:1)对任何以0x 为极限的数列{});(0δx U x n⊂, 数列{})(n x f 的极限都存在; 2)证明对任何以0x 为极限的数列{});(0δx U x n⊂,数列{})(n x f 的极限都相等.注7 可以利用柯西准则证明函数极限)(lim 0x f x x →的不存在:设函数f 在)';(0δx U内有定义.)(lim 0x f x x → 不存在的充要条件是:存在 00>ε,对任意正数)'(δδ<,存在);(,'0δx U x x∈'', 有0)()'(ε≥''-x f x f .如在例1中我们可取210=ε,对任何0>δ,设正整数δ1>n ,令21,1'πππ+=''=n x n x ,则有);0(,'δU x x ∈'',而011sin'1sin ε>=''-x x 于是按柯西准则,极限xx 1sinlim 0→不存在.小结1. 证明函数极限存在或求函数极限的方法.(1) 用定义证明函数极限的方法且A x f =)(lim ,尤其是分段函数的分段点. (2) 用柯西收敛准则证明函数极限存在.(3) 用迫敛性证明函数极限存在并求得极限值. (4) 用海涅归结原理证明函数极限存在并求得极限值. (5) 用四则运算法则及一些熟悉的极限求值.(6) 对于单侧极限,单调有界定理可证得极限存在. 2. 证明函数极限不存在的主要方法:(1) 利用函数极限的定义证明函数极限不存在,(2) 利用函数极限与单侧极限的关系证明函数在某点不存在极限.特别对分段函数在分段点处的极限.(3) 利用海涅归结原理证明函数极限不存在.(4) 利用柯西收敛准则证明函数极限不存在.§4 两个重要的极限重点难点利用两个重要极限, 可推出一些基本结果:1tan lim0=→xx x 1arctan lim0=→xxx 21cos 1lim2=-→xxx()e x x x =+→11lim 1)1ln(lim=+→xx x )0(ln 1lim>=-→a a xa x x又可利用复合函数极限的方法, 可得(1) 若0)(lim 0=→t t t ϕ, 且当0t t ≠时0)(≠t ϕ, 则1)()(sin lim=→t t t t ϕϕ.(2) 若∞=→)(lim 0t t t ϕ, 则e t t t t =+→)())(11(lim 0ϕϕ.基本内容一 为什么称为“两个重要极限”?导数运算是数学分析中最基本最重要的运算, 而导数运算的基础是基本初等函数的导数公式.其中求三角函数x y sin =的导数公式必须使用极限1sin lim=→xx x ,求对数函数x y a log =的导数公式必须使用极限e y xyy x x =+=+→∞→1)1(lim )11(lim .因为这两个极限在求这两个初等超越函数的导数时是不能缺少的,所以通常把这两个极限称为重要极限.二 1sin lim=→xx x 的证明 函数xx y sin =的图象如图3-5所示.三 1sin lim=→xx x 的应用例1 试求下列极限 1) xxx -→ππsin lim , 2) 2cos 1limxxx -→ , 3) xx x 1sinlim 0→注1 注意变量的趋向是非常重要的. 四 证明 e xxx =+→∞)11(lim以后还常用到e 的另一种极限形式:()e =+→ααα11lim .问题: 为什么在推导过程中不直接利用不等式)1(,11111111+<≤⎪⎭⎫ ⎝⎛+≤⎪⎭⎫ ⎝⎛+<⎪⎭⎫ ⎝⎛+++n x n n x n n x n ,其中令∞→n , 由 =⎪⎭⎫ ⎝⎛++∞→nn n 111lim e n n n =⎪⎭⎫ ⎝⎛++∞→111lim 得到e xxx =++∞→)11(lim ?五 e xxx =+→∞)11(lim 的应用例2 求 ()x x x 121lim +→例3 求 ()x x x 11lim -→结合海涅归结原则以及重要极限,我们可以求一些比较复杂的数列极限.例4 求下列数列极限: 1) nn n n ⎪⎭⎫ ⎝⎛-+∞→2111lim , 2) n n n 1sin lim ∞→.§5 无穷小量与无穷大量重点难点1.比较两个无穷小量的阶, 就是比较它们趋于零的速度, 无穷小量的阶越高,说明它趋于零的速度就越快.2.利用等价无穷小量是一种计算极限非常有效且简便的方法, 应该熟记常用等价代换公式.3.若)()(limx g x f x x →不存在, 则不能比较f 与g 的阶.基本内容一 无穷小量、无穷大量、有界量 1. 无穷小量定义1 设f 在某)(0x U 内有定义,若0)(lim 0=→x f x x ,则称f 为当0x x →时的无穷小量.类似地定义当-∞→+∞→→→-+x x x x x x ,,,00以及∞→x 时的无穷小量.例1 当0→x 时, x x sin ,2与x cos 1-都是无穷小量.例2 x -1 是当-→1x 时的无穷小量,21x,xx sin 为∞→x 时的无穷小量.由无穷小量及极限的定义或极限四则运算定理, 可立刻推得如下性质: 1) 两个(相同类型的)无穷小量之和、差、积仍为无穷小量. 问题: 两个(相同类型的)无穷小量之商是否仍为无穷小量? 2) 极限A x f ax =→)(lim 存在⇔A x f -)(是当a x →时的无穷小量.注1 “无穷小量”这个术语, 并不是表达量的大小, 而是表达它的变化状态, 它与“很小的量”或“可以忽略不计”这些术语有本质的区别, 后者皆指一个确定的数值, 而“无穷小量”是一个以零为极限的变量, 因此与自变量的变化过程有关.2. 无穷大量定义 2 设函数f 在某()0x UO内有定义,若对任给的0>G,存在0>δ,使得当()()()0000;x U x Ux ⊂∈δ时有)G x f >, (2)则称函数f 当0x x →时有非正常极限∞,记作 ()∞=→x f x x 0lim .关于函数f 在自变量x 的其它不同趋向的非正常极限的定义,以及数列{}n a 当∞→n 时的非正常极限的定义,都可类似地给出.定义3 对于自变量x 的某种趋向(或∞→n ),所有以∞-+∞∞或,为非正常极限的函数(包括数列),都称为无穷大量.例3 证明+∞=→21limxx .例4 证明:当1>a 时,.lim +∞=+∞→xx a注2 无穷大量不是很大的数,而是具有非正常极限的函数.如由例3知21x是当0→x 时的无穷大量,由例4知)1(>a a x 是当+∞→x 时的无穷大量.根据无穷大量的定义,无穷大量有以下性质: 1) 两个(相同类型的)无穷大量之积仍为无穷大量.问题: 两个(相同类型的)无穷大量之和、差、商是否仍为无穷大量? 3) 若函数)(x f (a x →)是无穷大量, 函数)(x g 在a 的某个去心邻域内有界, 则)()(x g x f +函数为a x →时的无穷大量.3. 有界量定义4 若函数g 在某)(0x U内有界,则称g 为当0x x →时的有界量.例如x sin 是当∞→x 时的有界量,x1sin是当0→x 时的有界量.关于无穷小量、无穷大量、有界量需注意以下几个问题:注3 不论是无穷小量、无穷大量还是有界量, 必须注明自变量x 的变化趋势. 例如, 当0→x 时, x1是无穷大量, 但当∞→x 时却是无穷小量; x sin 是当0→x 时是无穷小量, 当2π→x 时不是无穷小量, 而只能是有界量.注4不论是无穷小量、无穷大量还是有界量, 都不是数, 而是具有某种状态(极限为0,具有非正常极限,有界)的函数.注5 任何无穷小量也必是同一状态下的有界量, 反之不成立. 例如 x x f sgn )(=. 任何无穷大量也必是同一状态下的无界函数, 但无界函数不一定是无穷大量. 例如x x x f sin )(=在)(+∞U 上无界,因对任给的,0>G 取,22ππ+=n x 这里正整数,2πGn >则有G n n n x f >+=++=22)22sin()22()(ππππππ.但,)(lim ∞≠+∞→x f x 因若取数列),,2,1(2 ==n n x n π则),(∞→+∞→n x n 而0)(lim =+∞→n n x f .注6 若函数)(x f (a x →)是无穷小量, 函数)(x g (a x →)为有界量, 则函数)()(x g x f 为a x →时的无穷小量.例如,当0→x 时,2x 是无穷小量,x1sin为有界量,故由性质2即得01sinlim 2=→xx x函数xx y 1sin2=的图象如图3-6所示.注7 无穷大量和无穷小量在一定条件下可以相互转化.(i) 设f 在)(00x U 内有定义且不等于0. 若f 在0x x →时的无穷小量,则f1为0x x →时的无穷大量.(ii) 若g 为0x x →时的无穷大量,则g1为0x x →时的无穷小量.因此, 对无穷大量的研究可归结为对无穷小量的讨论. 二 无穷小量阶的比较我们知道, 当0x →时, 32,,x x x 都是无穷小量, 但它们趋近于零的速度是不同的,为了比较同一变化过程中两个无穷小量趋近于零的速度, 下面给出无穷小量的阶的概念.1. 无穷小量阶的比较设当0x x →时,f 与g 均为无穷小量.1) 若0)()(lim=→x g x f x x , 则称当0x x →时f 为g 的高阶无穷小量, 或称g 为f 的低阶无穷小量,记作 )))((()(0x x x g o x f →=.特别,f 为当0x x →时的无穷小量记作 ))(1()(0x x o x f →=. 例如,当0→x 时,n x x x ,,,2 (n 为正整数)等都是无穷小量,因而有,,2,1),0)(1( =→=k x o xk而且它们中后一个为前一个的高阶无穷小量,即有)0)((1→=+x x o xkk .又如,由于02tanlim sin cos 1lim==-→→x xx x x 故有)0)((sin cos 1→=-x x o x .2) 若存在正数K 和L ,使得在某)(0x U上有 ,)()(L x g x f K ≤≤则称f 与g 为当0x x →时的同阶无穷小量, 特别当 0)()(lim≠=→c x g x f x x时,f 与g 必为同阶无穷小量.特别地, 若无穷小量f 与g 满足关系式()()(),,0x Ux L x g x f o∈≤则记作()()()()0x x x g O x f →=若f 在某()00x U内有界,则记为()()()01x x O x f →=注8 本段中的等式()()()()0x x x g o x f →=与()()()()0x x x g O x f →=等,与通常等式的含义是不同的.这里等式左边是一个函数,右边是一个函数类,而中间的等号的含义是“属于”. 例如,前面已经得到()(),0sin cos 1→=-x x o x (1)其中()(),0sin lim sin 0⎭⎬⎫⎩⎨⎧==→x x f f x o x等式(1)表示函数x cos 1-属于此函数类.3) 若()()1lim=→x g x f x x , 则称f 与g 是当0x x →时的等价无穷小量,记作()()()0~x x x g x f →注9 并不是任何两个无穷小量都可以进行这种阶的比较. 2. 等价无穷小量在求极限问题中的应用. 定理3.12 设函数h g f ,,在()00x U内有定义,且有()()()0~x x x g x f →(i) 若()()A x h x f x x =→0lim ,则()()A x h x g x x =→0lim ;( ii) 若()()B x f x h x x =→0lim, 则()()B x g x h x x =→0lim.例5求 xx x 4sin arctan lim→.例6 利用等价无穷小量代换求极限 3sin sin tan lim xx x x -→.注10 在利用等价无穷小量代换求极限时,应注意:只有对所求极限式中相乘或相除的因式才能用等价无穷小量来替代,而对极限式中的相加或相减部分则不能随意替代.如在例2中,若因有 ()()0~sin ,0~tan →→x x x x x x , 而推出0sin limsin sin tan lim33=-=-→→xx x xx x x x则得到的是错误的结果问题: 讨论无穷小有什么意义?三 曲线的渐近线引例: 由平面解析几何知道,双曲线12222=-by ax 有两条渐近线0=±by ax (图3—7).那么,什么是渐近线呢?它有何特征呢?怎样来求一般曲线的渐近线?一般地,曲线的渐近线定义如下:定义4 若曲线C 上的P 沿着曲线无限地远离原点时,点P 与某定直线L 的距离趋于0,则称直线L 为曲线C 的渐近线(图3—8).曲线()x f y =在什么条件下存在斜渐近线b kx y +=与垂直渐近线0x x =,以及怎样求出渐近线方程.由 ()k xx f x =+∞→lim, ()[]b kx x f x =-+∞→lim确定常数k与b , 则b kx y +=就是曲线()x f y =的斜渐近线.若函数f 满足 ()∞=→x f x x 0lim (或∞=∞=-+→→)(lim ,)(lim 0x f x f x x x x ),则曲线()x f y =有垂直于x 轴的渐近线0x x =,称为垂直渐近线.例7 求曲线32)(23-+=x x xx f 的渐近线.第三章由于自变量的变化趋势不同, 所以函数极限有如下不同的类型.等式性、迫敛性、四则运算法则等.求极限的方法常见的有以下几种: 归结原则、单侧极限的单调有界定理、柯西准则、两个重要极限等. 在实际求极限过程中, 往往是几种方法并用. 当然以后还会有新的求极限方法(如洛必达法则等).在本章中还介绍了两类函数——无穷小量和无穷大量, 熟悉此类函数性质及阶的比较有助于了解计算函数极限.知识结构图:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧=+=⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧→∞→∞→→)()11(lim 1sin lim 00求曲线的渐近线应用等价无穷小量同阶无穷小量高阶无穷小量无穷小量阶的比较定义无穷小量与无穷大量两个重要极限柯西准则单调有界定理单侧极限普通极限归结原则极限存在准则四则运算法则迫敛性保不等式性局部有界性唯一性函数极限的性质单侧极限时当时当函数极限的概念函数极限e x xx x x x x x x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档