八年级初二数学第二学期平行四边形单元提高题检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级初二数学第二学期平行四边形单元提高题检测
一、解答题
1.如图,在Rt ABC ∆中,90ABC ∠=︒,30C ∠=︒,12AC cm =,点E 从点A 出发沿AB 以每秒1cm 的速度向点B 运动,同时点D 从点C 出发沿CA 以每秒2cm 的速度向点A 运动,运动时间为t 秒(06t <<),过点D 作DF BC ⊥于点F .
(1)试用含t 的式子表示AE 、AD 、DF 的长;
(2)如图①,连接EF ,求证四边形AEFD 是平行四边形;
(3)如图②,连接DE ,当t 为何值时,四边形EBFD 是矩形?并说明理由.
2.在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于点F (如图1和图2),然后展开铺平,连接BE ,EF . (1)操作发现:
①在矩形ABCD 中,任意折叠所得的△BEF 是一个 三角形;
②当折痕经过点A 时,BE 与AE 的数量关系为 .
(2)深入探究:
在矩形ABCD 中,AB =3,BC =23.
①当△BEF 是等边三角形时,求出BF 的长;
②△BEF 的面积是否存在最大值,若存在,求出此时EF 的长;若不存在,请说明理由.
3.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .
(1)求证:四边形BCEF 是平行四边形;
(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.
4.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .
(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.
(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;
(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:
①请直接写出CF 、BC 、CD 三条线段之间的关系.
②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.
5.如图,在Rt ABC ∆中,90,40,60B AC cm A ∠=︒=∠=︒,点D 从点C 出发沿CA 方向以4/cm 秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm 秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个地点也随之停止运动.设点,D E 运动的时间是t 秒(010t <≤).过点D 作DF BC ⊥于点F ,连接,DE EF .
(1)试问四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;
(2)当t 为何值时,90FDE ∠=︒?请说明理由.
6.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .
()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;
()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;
()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.
7.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .
(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______. (2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.
(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.
(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.
8.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;
(2)求证:CP AE =;
(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.
9.在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,. 提出问题:当点运动时,的度数是否发生改变?
探究问题:
(1)首先考察点的两个特殊位置:
①当点与点重合时,如图1所示,____________ ②当
时,如图2所示,①中的结论是否发生变化?直接写出你的结论:
__________;(填“变化”或“不变化”) (2)然后考察点的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)