2矩阵典型习题解析
矩阵理论习题与答案
矩阵理论习题与答案矩阵理论习题与答案矩阵理论是线性代数中的重要内容之一,它在数学、工程、计算机科学等领域都有广泛的应用。
为了帮助读者更好地理解和掌握矩阵理论,本文将介绍一些常见的矩阵理论习题,并提供详细的答案解析。
一、基础习题1. 已知矩阵A = [[2, 3], [4, 5]],求A的转置矩阵。
答案:矩阵的转置是将其行和列互换得到的新矩阵。
所以A的转置矩阵为A^T = [[2, 4], [3, 5]]。
2. 已知矩阵B = [[1, 2, 3], [4, 5, 6]],求B的逆矩阵。
答案:逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。
由于B是一个2×3的矩阵,不是方阵,所以不存在逆矩阵。
3. 已知矩阵C = [[1, 2], [3, 4]],求C的特征值和特征向量。
答案:特征值是矩阵C的特征多项式的根,特征向量是对应于每个特征值的线性方程组的解。
计算特征值和特征向量的步骤如下:首先,计算特征多项式:det(C - λI) = 0,其中I是单位矩阵,λ是特征值。
解特征多项式得到特征值λ1 = 5,λ2 = -1。
然后,将特征值代入线性方程组 (C - λI)x = 0,求解得到特征向量:对于λ1 = 5,解得特征向量v1 = [1, -2]。
对于λ2 = -1,解得特征向量v2 = [1, -1]。
所以C的特征值为λ1 = 5,λ2 = -1,对应的特征向量为v1 = [1, -2],v2 = [1, -1]。
二、进阶习题1. 已知矩阵D = [[1, 2], [3, 4]],求D的奇异值分解。
答案:奇异值分解是将矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,一个是对角矩阵。
计算奇异值分解的步骤如下:首先,计算D的转置矩阵D^T。
然后,计算D和D^T的乘积DD^T,得到一个对称矩阵。
接下来,求解对称矩阵的特征值和特征向量。
将特征值构成对角矩阵Σ,特征向量构成正交矩阵U。
最后,计算D^T和U的乘积D^TU,得到正交矩阵V。
矩阵与行列式练习题及解析
矩阵与行列式练习题及解析矩阵与行列式是线性代数的重要内容之一,对于理解和运用线性代数的基本概念和方法具有重要作用。
本文将为读者提供一些矩阵与行列式的练习题,并对其解析过程进行详细讲解,帮助读者掌握相关知识。
练习题一:已知矩阵A=⎡⎣⎢123456⎤⎦⎥,求A的转置矩阵AT。
解析:矩阵的转置是指将矩阵的行与列进行对调。
根据定义,矩阵AT的第i行第j列元素等于矩阵A的第j行第i列元素。
因此,可以得到矩阵A的转置矩阵AT=⎡⎣⎢143256⎤⎦⎥。
练习题二:已知矩阵B=⎡⎣⎢112233⎤⎦⎥,求B的逆矩阵B-1。
解析:矩阵的逆是指与之相乘得到单位矩阵的矩阵。
对于2×2的矩阵而言,可以通过下面的公式求得逆矩阵:B-1 = 1/(ad-bc) * ⎡⎣⎢dd-bb-cc-aa⎤⎦⎥,其中a、b、c、d分别代表B的对应元素。
根据此公式,可以得到矩阵B的逆矩阵B-1=⎡⎣⎢-1/3-2/30.5-1⎤⎦⎥。
练习题三:已知矩阵C=⎡⎣⎢100010001⎤⎦⎥,求C的行列式|C|。
解析:行列式是用来表征矩阵性质的量,对于3×3的矩阵而言,行列式的计算公式如下:|C| = a(ei-hf) - b(di-hg) + c(dg-ge),其中a、b、c、d、e、f、g、h、i分别代表矩阵C的对应元素。
带入矩阵C的值,可以得到|C|=0。
练习题四:已知矩阵D=⎡⎣⎢123456789⎤⎦⎥,求D的特征值和特征向量。
解析:特征值和特征向量是矩阵在线性变换过程中的重要指标,特征值是矩阵对应特征向量的线性变换因子。
首先,求解特征值需要解特征方程Det(D-λI)=0,其中λ为特征值,I为单位矩阵。
通过计算得到特征值λ1=0,λ2=15,λ3=-15。
然后,根据特征值求解对应的特征向量,即求解方程组(D-λI)X=0,其中X为特征向量。
求解过程中,可以得到特征向量X1=⎡⎢⎣-1-101⎤⎥⎦,X2=⎡⎢⎣111⎤⎥⎦,X3=⎡⎢⎣100-11⎤⎥⎦。
《线性代数》第二章矩阵及其运算精选习题及解答
An
=
⎜⎜⎝⎛
0 C
⎜⎛ 1
B 0
⎟⎟⎠⎞
,
其中
C = (n) ,
B
=
⎜ ⎜ ⎜⎜⎝
0 M 0
0 L 0 ⎟⎞
2 M 0
L L
n
0
M −
⎟ ⎟ 1⎟⎟⎠
,
故 C −1 = ( 1 ) , n
⎜⎛1 0 L
0 ⎟⎞
B −1
=
⎜0
⎜ ⎜⎜⎝
M 0
12 M 0
L L
1
0⎟ (nM− 1) ⎟⎟⎟⎠
,
根据分块矩阵的逆矩阵公式
⎜⎛ 2 ⎜0
0 4
2⎟⎞ 0⎟
⎜⎝ 4 3 2⎟⎠
例 2.12 设 X(E − B −1 A)T BT = E , 求 X . 其中
⎜⎛1 −1 0 0 ⎟⎞
⎜⎛ 2 1 3 4⎟⎞
A
=
⎜ ⎜ ⎜⎜⎝
0 0 0
1 0 0
−1 1 0
0⎟ −11⎟⎟⎟⎠ ,
B
=
⎜ ⎜ ⎜⎜⎝
0 0 0
2 0 0
1 2 0
0⎟
0 8
⎟ ⎟⎟⎠
,
求B,
使 ABA −1
=
BA −1
+ 3E
.
解 根据 ABA −1 = BA−1 + 3E , 得到 (A − E )BA−1 = 3E
故 A − E, A 皆是可逆的, 并且
( ) [ ] B = 3(A − E )−1 A = 3(A − E )−1 A−1 −1 = 3 (A−1 )(A − E) −1 = 3(E − A−1 )−1
第二章 矩阵及其运算
2矩阵典型习题解析
2矩阵矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。
其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙! 于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单!2.1知识要点解析2.1.1矩阵的概念1.矩阵的定义由in Xu个数«y(z = 1,2, ■■-./«; _/ = L2,--,n)组成的m行n列的矩形数表a\2…67In\°加1 °加2 Q肿丿称为mxn矩阵,记为A = (u/j)mxrt2.特殊矩阵(1)方阵:行数与列数相等的矩阵;(2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵;(3)对角阵:主对角线以外的元素全为零的方阵;(4)数量矩阵:主对角线上元素相同的对角阵;(5)单位矩阵:主对角线上元素全是1的对角阵,记为E;(6)零矩阵:元素全为零的矩阵。
3.矩阵的相等设 A = 5); B = (bjj)mn若Uy = b i}(/ = 1,2,…,j = 1,2,),则称 A 与 B 相等,记为A=B。
2.1.2矩阵的运算1.加法(])定乂:设A = (Ajj );nn, B = (by )mn ,则C = A + B = (ay + by) ,nn (2)运算规律®A+B=B+A;②(A+B) +C=A+ (B+C)③A+O二A ④A+ (-A) =0, -A是A的负矩阵2.数与矩阵的乘法(1)定义:设A = (a ij)mn,k为常数,则如(阿)亦(2)运算规律① K(A+B)二KA+KB,②(K+L)A=KA+LA,3( KL)A=K(LA)3.矩阵的乘法(1)定义:设A = («,;),……, B = (by )up.则= C 旷其中C厂士认A-1(2)运算规律®(AB)C = A(BC); @A(B + C) = /\B + AC@(B + C)A = BA + GA(3)方阵的幕①定义:人=(佝)”,贝ljA k=A - A②运算规律:A m-A n=A m+n; (A m)n=A mn(4)矩阵乘法与幕运算与数的运算不同之处。
矩阵分析第2章习题解
第二章习题1、 用初等变换把下列矩阵化为标准型 (1)322253λλλλλλ⎛⎫- ⎪+⎝⎭ (2)23100(1)λλ⎛⎫- ⎪-⎝⎭ (3)22211λλλλλλλλλ⎛⎫- ⎪- ⎪ ⎪+⎝⎭(4)2(1)0000(1)λλλλ+⎛⎫⎪ ⎪ ⎪+⎝⎭解: (1)322253λλλλλλ⎛⎫- ⎪+⎝⎭2122()23233235351102033r r λλλλλλλλλλλλλ-⎛⎫+⎛⎫+ ⎪ ⎪⎪--- ⎪⎝⎭⎝⎭32103λλλλ⎛⎫ ⎪--⎝⎭(2)231(1)λλ⎛⎫-⎪-⎝⎭212222(3)32211110331(3)(1)4(1)r r λλλλλλλλλλλ--⎛⎫⎛⎫---- ⎪ ⎪-+-----⎝⎭⎝⎭[因为32331λλλ-+-除以21λ-商为3λ-余式为4(1)λ-]222222114(1)(3)(1)(3)(1)4(1)11λλλλλλλλλλ⎛⎫⎛⎫------ ⎪ ⎪------⎝⎭⎝⎭211(3)(1)42224(1)011(1)(3)(1)(1)4c c λλλλλλλλ+-+-⎛⎫⎪ ⎪--+-+-⎝⎭31(1)(1)λλλ-⎛⎫⎪+-⎝⎭(3)22211λλλλλλλλλ⎛⎫- ⎪- ⎪ ⎪+⎝⎭222101λλλλλλλλ⎛⎫⎪- ⎪ ⎪++⎝⎭222221001(1)(1)λλλλλλλλλλλλ⎛⎫⎪-⎪ ⎪++-++-++⎝⎭43321000λλλλλλ⎛⎫ ⎪- ⎪ ⎪----⎝⎭ 43210002λλλλ⎛⎫⎪ ⎪ ⎪---⎝⎭ 221(1)λλλ⎛⎫⎪⎪ ⎪+⎝⎭(4)2(1)000000(1)λλλλ+⎛⎫⎪ ⎪ ⎪+⎝⎭ 2(1)00021λλλλλλ+⎛⎫⎪⎪⎪++⎝⎭32(2)(1)000(2)1r r λλλλλλλ-++⎛⎫⎪ ⎪ ⎪-+⎝⎭1(2)0000(1)λλλλλλ-+⎛⎫⎪⎪⎪+⎝⎭21(2)00(2)000(1)λλλλλλλ-+⎛⎫ ⎪++ ⎪ ⎪+⎝⎭ 210(1)000(1)λλλλ⎛⎫⎪+⎪⎪+⎝⎭2100(1)000(1)λλλλ⎛⎫⎪+ ⎪ ⎪+⎝⎭2、试证:Jordan 块 10()0100J αααα⎛⎫⎪= ⎪ ⎪⎝⎭相似于0000αεαεα⎛⎫⎪⎪ ⎪⎝⎭,这里0ε≠是任意实数。
矩阵分析课后习题解答(整理版)
第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。
1.10.证明同1.9。
1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。
若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。
矩阵练习题及答案
矩阵练习题及答案矩阵练习题及答案矩阵是线性代数中的重要概念,也是许多数学问题的基础。
通过练习矩阵题目,我们可以加深对矩阵的理解,提高解决问题的能力。
下面,我将为大家提供一些矩阵练习题及其答案,希望对大家的学习有所帮助。
一、基础练习题1. 计算以下矩阵的和:A = [2 4][1 3]B = [3 1][2 2]答案:A + B = [5 5][3 5]2. 计算以下矩阵的乘积:A = [2 3][4 1]B = [1 2][3 2]答案:A * B = [11 10][7 10]3. 计算以下矩阵的转置:A = [1 2 3][4 5 6]答案:A^T = [1 4][2 5][3 6]二、进阶练习题1. 已知矩阵 A = [2 1][3 4]求矩阵 A 的逆矩阵。
答案:A 的逆矩阵为 A^-1 = [4/5 -1/5] [-3/5 2/5]2. 已知矩阵 A = [1 2][3 4]求矩阵 A 的特征值和特征向量。
答案:A 的特征值为λ1 = 5,λ2 = -1对应的特征向量为 v1 = [1][1]v2 = [-2][1]3. 已知矩阵 A = [2 1][3 4]求矩阵 A 的奇异值分解。
答案:A 的奇异值分解为A = U * Σ * V^T其中,U = [-0.576 -0.817][-0.817 0.576]Σ = [5.464 0][0 0.365]V^T = [-0.404 -0.914][0.914 -0.404]三、实际应用题1. 一家工厂生产 A、B、C 三种产品,其销售量分别为 x1、x2、x3。
已知每天销售的总量为 100 个,且销售收入满足以下关系:2x1 + 3x2 + 4x3 = 3003x1 + 2x2 + 5x3 = 3204x1 + 3x2 + 6x3 = 380求解方程组,得到每种产品的销售量。
答案:解方程组得到 x1 = 30,x2 = 20,x3 = 50。
矩阵的运算与线性方程组练习题及解析
矩阵的运算与线性方程组练习题及解析在线性代数中,矩阵的运算是十分重要的一部分,同时也与线性方程组密切相关。
本文将为大家带来一些关于矩阵的运算和线性方程组的练习题,并给出详细的解析。
1. 矩阵的加法和减法题目:已知矩阵A = [1 2 3; 4 5 6],B = [7 8 9; 10 11 12],计算A +B和A - B。
解析:矩阵的加法和减法的计算规则是对应元素相加或相减。
根据给定的矩阵A和B,我们可以得到如下结果:A +B = [1+7 2+8 3+9; 4+10 5+11 6+12] = [8 10 12; 14 16 18]A -B = [1-7 2-8 3-9; 4-10 5-11 6-12] = [-6 -6 -6; -6 -6 -6]2. 矩阵的乘法题目:已知矩阵A = [1 2; 3 4],B = [5 6; 7 8],计算A * B和B * A。
解析:矩阵的乘法的计算规则是将第一个矩阵A的每一行与第二个矩阵B的每一列对应元素相乘,然后将结果相加。
根据给定的矩阵A和B,我们可以得到如下结果:A *B = [1*5+2*7 1*6+2*8; 3*5+4*7 3*6+4*8] = [19 22; 43 50]B * A = [5*1+6*3 5*2+6*4; 7*1+8*3 7*2+8*4] = [23 34; 31 46]3. 矩阵的转置题目:已知矩阵A = [1 2 3; 4 5 6],求矩阵A的转置。
解析:矩阵的转置是将矩阵的行和列交换得到的新矩阵。
根据给定的矩阵A,我们可以得到如下结果:A的转置 = [1 4; 2 5; 3 6]4. 线性方程组的求解题目:已知线性方程组:2x + y = 8x - y = 2解析:我们可以使用矩阵的方法来求解线性方程组。
将方程组的系数构成系数矩阵A,将方程组的常数构成常数矩阵B。
则方程组可以表示为AX = B的形式。
根据给出的方程组,我们可以得到如下结果:A = [2 1; 1 -1]B = [8; 2]为了求解方程组,我们可以使用矩阵的逆来计算X。
矩阵习题带答案
矩阵习题带答案矩阵习题带答案矩阵是线性代数中的重要概念,广泛应用于各个领域。
掌握矩阵的运算和性质对于学习线性代数和解决实际问题都具有重要意义。
在这篇文章中,我们将提供一些矩阵习题,并附上详细的解答,帮助读者更好地理解和掌握矩阵的相关知识。
1. 习题一已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的转置矩阵AT。
解答:矩阵A的转置矩阵AT即将A的行变为列,列变为行。
因此,矩阵A的转置矩阵为:AT = [1 4 7; 2 5 8; 3 6 9]2. 习题二已知矩阵B = [2 4; 1 3],求矩阵B的逆矩阵B-1。
解答:对于一个二阶矩阵B,如果其行列式不为零,即|B| ≠ 0,那么矩阵B存在逆矩阵B-1,且B-1 = (1/|B|) * [d -b; -c a],其中a、b、c、d分别为矩阵B的元素。
计算矩阵B的行列式:|B| = ad - bc = (2*3) - (4*1) = 6 - 4 = 2因此,矩阵B的逆矩阵为:B-1 = (1/2) * [3 -4; -1 2]3. 习题三已知矩阵C = [1 2 3; 4 5 6],求矩阵C的秩rank(C)。
解答:矩阵的秩是指矩阵中非零行的最大个数,也可以理解为矩阵的行向量或列向量的最大线性无关组的向量个数。
对于矩阵C,我们可以通过高斯消元法将其化为行简化阶梯形矩阵:[1 2 3; 0 -3 -6]可以看出,矩阵C中非零行的最大个数为1,因此矩阵C的秩为1。
4. 习题四已知矩阵D = [2 1; -1 3],求矩阵D的特征值和特征向量。
解答:对于一个n阶矩阵D,如果存在一个非零向量X,使得D*X = λ*X,其中λ为常数,则称λ为矩阵D的特征值,X为对应的特征向量。
首先,我们需要求解矩阵D的特征值,即求解方程|D - λI| = 0,其中I为n阶单位矩阵。
计算矩阵D - λI:[D - λI] = [2-λ 1; -1 3-λ]设置行列式等于零,得到特征值的方程式:(2-λ)(3-λ) - (1)(-1) = 0λ^2 - 5λ + 7 = 0解特征值的方程,得到两个特征值:λ1 = (5 + √(-11))/2λ2 = (5 - √(-11))/2由于特征值的计算涉及到虚数,这里不再继续计算特征向量。
(完整版)矩阵练习(带答案详解)
6.设A二、判断题(每小题 2分,共12分)kk k1.设A 、B 均为n 阶方阵,则 (AB) A B (k 为正整数)。
..........................(x )2•设 A,B,C 为 n 阶方阵,若 ABC I ,则 C 1 B 1A 1。
........................... ( x ) 3. 设A 、B 为n 阶方阵,若 AB 不可逆,贝U A, B 都不可逆。
................. (x ) 4. 设A 、B 为n 阶方阵,且AB 0,其中A 0,则B 0。
............................ ( x ) 5•设 A 、B 、C 都是 n 阶矩阵,且 AB I ,CA I ,贝U B C 。
...................................... ( V )、填空题:1.若A , B 为同阶方阵,则 (A B)(A B) A 2 B 2的 充分必要条件2. 3. 4. 5.AB BA 。
若n 阶方阵A , B , C 满足ABC 设A = B 都是n 阶可逆矩阵,若 为n 阶单位矩阵,B ,则CAB 。
2B7.设矩阵-1,B, A T 为A 的转置, 1则 A T B =28. A 3B 为秩等于2 的三阶方阵,贝U AB 的秩等于_26. 若A是n阶对角矩阵,B为n阶矩阵,且AB AC,贝U B也是n阶对角矩阵。
••• ( x )7. 两个矩阵A与B,如果秩(A)等于秩(B),那么A与B等价。
.................... (x )8. 矩阵A的秩与它的转置矩阵A T的秩相等。
................................. (V )三、选择题(每小题3分,共12分)1. 设A为3 x 4矩阵,若矩阵A的秩为2,则矩阵3A T的秩等于(B )(A) 1 (B) 2 (C) 3 (D) 42. 假定A、B、C为n阶方阵,关于矩阵乘法,下述哪一个是错误的(C )(A) ABC A(BC) (B) kAB A( kB)(C)AB BA (D) C(A B) CA CB3.已知A、B为n阶方阵,则下列性质不正确的是( A )(A) AB BA (B) (AB)C A(BC)(C) (A B)C AC BC (D) C(A B) CA CB4.设PAQ I ,其中P、Q、A都是n阶方阵,则(D )(A) A 1P 1Q 1(B) A 1Q 1P 1(C) A 1PQ (D) A 1QP5. 设n阶方阵A,如果与所有的n阶方阵B都可以交换,即AB BA,那么A必定是(B )(A)可逆矩阵(B)数量矩阵(C)单位矩阵(D)反对称矩阵6. 两个n阶初等矩阵的乘积为( C )(A)初等矩阵(B)单位矩阵(C)可逆矩阵(D)不可逆矩阵7. 有矩阵A3 2 , B2 3 , C3 3,下列哪一个运算不可行(A )(A) AC (B) BC(C) ABC (D) AB C8.设A与B为矩阵且AC CB ,C为m n的矩阵,则A与B分别是什么矩阵(D )(A) n m m n (B) m n n m(C) n n mm (D) m m n n9. 设A 为n 阶可逆矩阵,则下列不正确的是 (B)2A 可逆(A ) A 0或 B 0(B) 代B 都不可逆13. 若A,B 都是n 阶方阵,且A,B 都可逆,则下述错误的是(14. A, B 为可逆矩阵,则下述不一定可逆的是(B ) A B(D ) BAB(A ) AB B (B ) AB BA(C )AA I(D )A 1 I16.设A,B 都是n 阶方阵,则下列结论正确的是(D )(A) 若A 和B 都是对称矩阵,则 AB 也是对称矩阵 (B) 若 A 0 且 B 0 ,则 AB 0(C) 若AB 是奇异矩阵,则 A 和B 都是奇异矩阵 (D) 若AB 是可逆矩阵,则 A 和B 都是可逆矩阵 17. 若A 与B 均为n 阶非零矩阵,且 AB 0,则(A )(A) A 1可逆 (B)I A 可逆10. A,B 均n 阶为方阵, F 面等式成立的是(A ) AB BA (B ) (A B)T A T B T(C ) (A B) 1A 1B 11(D ) (AB) A1B 111.设A,B 都是n 阶矩阵,且AB 0,则下列一定成立的是((C )代B 中至少有一个不可逆 (D ) A12.设A,B 是两个n 阶可逆方阵,则 AB T1等于T 1 T 1(A) A T B T(B) B T 1 A T 1(C ) B 1 T (A 1)T(D )A T 1(A ) A B 也可逆 (B ) AB 也可逆(C ) B 1也可逆(D )1B 1也可逆(C) 2A 可逆(D)(A) AB (C ) BA 15•设A, B 均为n 阶方阵,下列情况下能推出A 是单位矩阵的是实用标准文档(A) R(A) n(C ) R(A) 0(B ) R(A) n(D) R( B) 0四、解答题:1 1 11 2 31.给定矩阵A2 13 ,B2 2 1求B T A 及A 13443 4 3解:1 23 1 1 14 95B T A2 2 4 2 13 6 12 8 ............................ ..(53 133444 8 6分)1 0 1 解:1100 1 111 0 1 1 1 0 0 1 140 111 1 1 A- — — 2 2 2 5 1 12221 0 1 1 2.求解矩阵方程1 1 0 X 40 1 111 3 32 2 5(5分)1 1 1 1 1 1 3.求解矩阵方程XA B,其中A 02 2 , B 1 1 01 1 02 1 1解:因为 A 6 所以A 可逆(4分)0 10 1 0 0 1 4 34.求解下F 面矩f 阵方程中 卞的矩i 阵 X : 10 0 X 0 0 1 2 0 10 10 1 01 2 0解:0 11 0 01 4 3令A1 0 0 ,B0 0 1 7 C2 0 1,则 A,B 均可逆,且0 010 1 0120 1 01 0 0A 11 0 0 , B 10 0 10 0 10 1 02 1 1所以XA 1 CB 11 3 41 024 2 35.设矩 阵A1 1 0 ,求矩阵 B : ,使其满足矩阵方程 AB A 2B.1 12 3解: ABA 2B 即(A2I )B A........ 2分21231 4 3而(A 12I )1 1 0 1 53 .......3分12 11 64.(2 分)1-34-313 5-6••(41 4 3 42 3所以B (A 2I ) 1A 1 5 3 1 1 01 6 4 12 33 8 6=2 9 6 . ....3分2 12 9五、证明题1.若A是反对称阵,证明A是对称阵。
矩阵分析所有习题及标准答案
习题3-22设A,B均是正规矩阵,试证:A 与B相似的充要条件是A与B酉相似
证:因为A,B是正规矩阵,所以存在U,VUnn 使得 A=Udiag(1,…,n)U*, B=Vdiag(1,…,n)V*, 其中1,…, n,,1,…,n分别是A,B的特征值集 合的任意排列. 必要性:若A与B相似,则i=i,i=1…,n,于是 B=VU*AUV*=W*AW, W=UV*Unn 即得证A与B酉相似. 充分性:显然,因为,酉相似必然相似.
习题 3-3(1) 0 8 3
V*AV=
子矩阵A1的特征值仍是-1,对应的单位特征向量 是1=(-2/5,1/5)T,作2阶酉矩阵 1 10 T * W1=(1,2),2=(1/5,2/5) ,则W1 A1W1= 0 1 作3阶酉矩阵W=diag(1,W1),U=VW,则 U*AU= 为上三角矩阵.
解,得证AA*与A*A有相同的非零特征值.
习题3-28设A为正规矩阵.试证:①若 Ar=0,则A=0.②若A2=A,则A*=A.
证:因为A是正规矩阵,所以存在UUnn 使得 A=Udiag(1,…,n)U*, 其中1,…, n是A的特征值.于是, Ar=Udiag(1r,…,nr)U*=0 蕴涵ir=0,i=1,…,n.后者又蕴涵 1=…=n=0. ∴ A=Udiag(0,…,0)U*=0. 若 A2=A, 则i2=i,i=1,…,n. 后者又蕴涵i=0 或1, i=1,…,n,(即正规矩阵A的特征值全为 实数). ∴ A*=Udiag(1,…,n)U*=A.
习题3-30
#3-30:若ACnn,则A可唯一地写为 A=B+C,其中BHnn,CSHnn.
证:存在性 取 B=(1/2)(A+A*),C=(1/2)(A-A*), 则显然B,C分别是Hermite矩阵和反Hermite矩阵, 并且满足A=B+C. 唯一性 若 A=B+C,其中BHnn,CSHnn,则 A*=(B+C)*=B*+C*=B-C. 于是 B=(1/2)(A+A*),C=(1/2)(A-A*). 证毕 注:令T=-iC,则T*=iC*=i(-C)=T,即THnn.由此推 出:A可唯一地写为A=B+iT,其中B,THnn.
高中矩阵练习题及讲解详细解析
高中矩阵练习题及讲解详细解析### 高中矩阵练习题及详细解析#### 练习题一:矩阵的基本运算题目:给定两个2x2矩阵 A 和 B:\[ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B= \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \]求矩阵 A 和 B 的加法和乘法结果。
解析:首先进行矩阵加法,即对应元素相加:\[ A + B = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8\end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \]接下来进行矩阵乘法,根据矩阵乘法的定义:\[ A \times B = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix} \]#### 练习题二:矩阵的行列式和逆矩阵题目:已知矩阵 C:\[ C = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \]求矩阵 C 的行列式和逆矩阵。
解析:首先计算矩阵 C 的行列式,使用公式:\[ \text{det}(C) = 2\cdot3 - 1\cdot4 = 6 - 4 = 2 \]接着计算逆矩阵,使用公式:\[ C^{-1} = \frac{1}{\text{det}(C)} \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1.5 & -0.5 \\ -2 & 1 \end{bmatrix} \]#### 练习题三:矩阵的特征值和特征向量题目:给定矩阵 D:\[ D = \begin{bmatrix} 4 & -1 \\ 1 & 3 \end{bmatrix} \]求矩阵 D 的特征值和对应的特征向量。
矩阵运算练习题及
矩阵运算练习题及解答矩阵运算练习题及解答矩阵运算是线性代数中的重要内容之一,它在各个领域都有广泛的应用。
通过对矩阵的加法、乘法等基本运算进行练习,可以帮助我们更好地理解和掌握矩阵运算的相关概念和性质。
本文将为大家提供一些矩阵运算的练习题及其详细解答,以便读者巩固相关知识。
1. 矩阵加法设矩阵A、B分别为:A = [2 3 -1],B = [1 4 2]求矩阵A和B的和。
解答:两个矩阵的和等于对应元素相加。
根据题目给出的矩阵A和B,可以直接进行相加。
A +B = [2+1 3+4 -1+2] = [3 7 1]因此,矩阵A和B的和为[3 7 1]。
2. 矩阵乘法设矩阵A、B分别为:A = [1 2 3],B = [4 5 6]求矩阵A和B的乘积。
解答:两个矩阵相乘的结果可通过将矩阵A的每一行与矩阵B的每一列进行对应元素相乘并相加得到。
A ×B = [(1×4 + 2×5 + 3×6)] = [32]因此,矩阵A和B的乘积为[32]。
3. 转置矩阵设矩阵A为:A = [1 2 3; 4 5 6; 7 8 9]求矩阵A的转置。
解答:转置矩阵是将原矩阵的行变为列,并将列变为行得到的新矩阵。
根据题目给出的矩阵A,可以进行转置操作。
A的转置记为AT,且AT的第i行第j列元素等于A的第j行第i 列元素。
A的转置为:AT = [1 4 7; 2 5 8; 3 6 9]因此,矩阵A的转置为:[1 4 7; 2 5 8; 3 6 9]4. 矩阵的数量积设矩阵A、B分别为:A = [1 2 3],B = [4; 5; 6]求矩阵A和B的数量积。
解答:矩阵的数量积等于矩阵A的行向量与矩阵B的列向量的数量积,即矩阵A与矩阵B的乘积。
A ×B = [(1×4 + 2×5 + 3×6)] = [32]因此,矩阵A和B的数量积为[32]。
5. 矩阵的逆设矩阵A为:A = [1 2; 3 4]求矩阵A的逆。
第二章:矩阵
矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.本章核心内容如下:(1)矩阵的幂运算:①秩为1的矩阵:1)(=A r ,可以分解为列矩阵(向量)×行矩阵(向量)的形式,再采用结合律;②型如,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000000c b a A 或⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000c b a ,或⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡k c k b a k 000,利用二项式展开;③利用特征值和相似对角化:∧=−AP P 1;④分块矩阵:⎥⎦⎤⎢⎣⎡=C B A 00.(2)伴随矩阵重要公式及求法:①伴随的秩序:⎪⎩⎪⎨⎧−<−===1)(01)(1)()(*n A r n A r n A r nA r ;②伴随得特征值:*1*(,)A AA AX X A A A X X λλλ− == ⇒ =;(※※)③伴随的重要公式:1*−=n AA ***)(AB AB =A AA n 2**)(−=(3≥n)1*−=A A A /AA A *1=−,*1*)(A k kA n −=,AAA A ==−−*11*)()(,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛***B A OO A B B O O A ,⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛O A B B A O O B A O mn***)1((m m A ×n n B ×)(3)逆矩阵:①求1−A 的方法:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛==⇒=−−−−−−−−.43,21111111*1*1O A B O O B A O B O O A B O O A A A A A A A B A E B A A n n )分块矩阵法:(;为三阶、四阶数值型)()初等行(列)变换法(;为二阶、三阶数值型)法()();为抽象矩阵:)定义法((②逆的重要公式:()111−−−=A B AB T T A A )()(11−−=()*11*)(−−=A A ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−111B A B A ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−111A B B A ⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B O CB A A B O C A ⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B CA B O A BC O A (4)初等矩阵变换:①初等变换(3)方法:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎯⎯⎯⎯⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎯⎯⎯⎯⎯⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=+100010041)3(100030001)2(100001010)1(1000100012141232列)行(至第列)倍乘行(第行(列)倍乘第行(列)变换(交换)A ②初等变换的求逆(3)公式:⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛1000010101000010101-,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛10000103101000030101-,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛51000100015000100011-(5)矩阵方程:①B AX =⇒B A X 1−=;②B XA =⇒1−=BA X ;③C AXB =⇒11−−=CB A X .(系数矩阵一般可逆)(6)矩阵的秩:①)()()(T T AA r A r A r ==;②)()(kA r A r =(0≠k);③)()()(B r A r B A r +≤±;④)}(),(min{)(B r A r AB r ≤⇔)()(A r AB r ≤,)()(B r AB r ≤;⑤0=××s n n m B A n B r A r ≤+⇒)()(;⑥⎪⎩⎪⎨⎧−<−===1)(01)(1)()(*n A r n A r nA r n A r ;⑦B A ~)()(B r A r =⇒.本章重点是伴随矩阵、可逆矩阵、初等变换、矩阵的秩,在这一章中必有一道小题4分.从历年真题考题来看,初等变换、矩阵的秩尤其重要.一、选择题:1、设B A ,均为n 阶矩阵(2≥n ),E 为单位矩阵,则有()(A)2222)(B AB A B A ++=+(C)22))((B A B A B A −=+−(C)))((2E A E A E A +−=−(D)222)(B A AB =2、设C B A ,,均为n 阶矩阵,且A 可逆,下列命题正确的是()(A)若BC BA =,则C A =(B)若CB AB =,则C A =(C)若0=AB ,则0=B (D)若0=BC ,则0=C 3、设B A ,均为n 阶方阵,满足等式0=AB ,则必有()(A)0=A 或0=B (B)=+B A (C)0=A 或0=B (D)0=+B A 4、设B A ,为n 阶对称矩阵,且B 可逆,则下列矩阵中为对称矩阵的是()(A)AB AB 11−−−(B)A B AB 11−−+(C)11−−AB B(D)2)(AB 5、设矩阵33)(×=ij a A 满足T A A =*,其中*A 为A 的伴随矩阵,T A 为A 的转置矩阵,若13111,,a a a 2为三个相等的正数,则11a 为()(A)33(B)3(C)31(D)36、设n 阶矩阵A 非奇异(2≥n ),*A 是A 的伴随矩阵,则()(A)A A A n 1**)(−=(B)A A An 1**)(+=(C)AAA n 2**)(+=(D)AAAn 2**)(+=7、设A 是任一n 阶方阵(3≥n ),*A 是A 的伴随矩阵,又k 为常数,且10±≠,k ,则必有=*)(kA ()(A)*kA(B)*1A k n −(C)*A kn(D)*1A k−8、设B A ,为n 阶矩阵,**,B A 分别为B A ,的伴随矩阵,分块矩阵⎥⎦⎤⎢⎣⎡=B O O A C ,则C 的伴随矩阵=*C ()(A)⎥⎦⎤⎢⎣⎡**B B O O A A (B)⎥⎦⎤⎢⎣⎡**A A O OB B (C)⎥⎦⎤⎢⎣⎡**A B OO B A (D)⎥⎦⎤⎢⎣⎡**B A OO A B 9、设n 阶方阵C B A ,,满足关系式E ABC =,其中E 是n 阶单位阵,则下式未必有()(A)EBCA =(B)EA B CT T T=(C)ECAB=(D)EACB =10、设C B A ,,为n 阶方阵,且E CA BC AB ===,则=++222C B A ()(A)0(B)E(C)E2(D)E311、设)21,0,...,0,21(=a ,矩阵a a E A T −=,a a E B T 2+=,其中E 是n 阶单位阵,则AB 等于()(A)0(B)E −(C)E (D)aa E T +12、设C B A ,,均为n 阶矩阵,E 是n 阶单位阵,若AB E B +=,CA A C +=,则C B −为()(A)E (B)E−(C)A (D)A−13、设11,,,−−++B A B A B A 均为n 阶可逆矩阵,则111)(−−−+B A 等于()(A)11−−+B A (B)BA +(C)B B A A 1)(−+(D)1)(−+B A 14、设A 为3阶矩阵,将A 的第2行加到第1行得到B ,再将B 的第1列的)1(−倍加到第2列得到C ,记⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100010011P ,则:()(A)AP P C1−=(B)1−=PAP C (C)AP P C T =(D)TPAP C =15、设P A ,均为3阶矩阵,TP 为P 的转置,且,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=200010001AP P T 若),,(321ααα=P ,),,(3221αααα+=Q ,则:AQ Q T 等于()(A)⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛200011012(B)⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛200021011(C)⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛200010002(D)⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛20002000116、设A 为3阶矩阵,将A 的第2列加到第1列,得到B ,再交换B 的第2行与第3行得到E ,记,,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=01010000110001100121P P 则:=A ()(A)21P P (B)211P P −(C)12P P (D)112−P P 17、设B A ,为非零矩阵,且O AB =,则A 和B 的秩()(A)必有一个等于零(B)都小于n (C)一个小于n(D)一个等于n二、填空题:18、计算下列行列式乘积:①=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛231343452161.②()=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛312321.③()=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛321312.④()=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321332313232212131211321x x x a a a a a a a a a x x x .19、设E A 23=,证明:E A 2+可逆,并求=+−1)2(E A .20、设T a)1,0,1(−=,矩阵T aa A =,n 为正整数,则=−n A aE .21、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101020101A ,而2≥n 为正整数,则=−−12n n A A .22、设3阶矩阵B A ,满足E B A AB =−−,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=102020101A ,则=B .23、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=543022001A ,*A 是A 的伴随矩阵,则=−1*)(A .24、设4阶方阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−=1100210000120025A ,则=−1A .25、设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=−000000000000121⋯⋯⋮⋮⋮⋮⋯⋯nn a a a a A ,其中n i a i ,...,2,1,0=≠,则.1=−A 26、设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−=7600054000320001A ,E 为4阶单位矩阵,且)()(1A E A EB −+=−,则:=+−1)(B E .27、设矩阵A 满足042=−+E AE A ,其中E 为单位矩阵,则=−−1)(E A .28、设矩阵⎥⎦⎤⎢⎣⎡−=3211A ,E A A B 232+−=,则=−1B .29、设B A ,均为3阶矩阵,E 是3阶单位矩阵.已知B A AB +=2,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=202040202B ,则=−−1)(E A .30、计算:=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2013201200101010054343232101010100.31、矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0111001100010000A ,则=)(3A r .32、已知A 是非零矩阵,且O A =2,则=)(*A r .33、设B A ,均为n 阶矩阵,且1−=B ABA ,E 为单位矩阵,则=++−)()(AB E r AB E r .三、解答题:34、已知实矩阵33)(×=ij a A 满足以下条件:(1)ij ij A a =(3,2,1,=j i ),其中ij A 是ij a 的代数余子式;(2)011≠a .计算行列式A .35、设0=k A (k 为正整数),证明:121...−−++++=−k A A A E A E )(.36、设方阵A 满足:O E A A =−−22,证明:A 及E A 2+都可逆,并求1−A 及1)2(−+E A .37、设B A ,为n 阶方阵,若B A AB +=.(1)证明:E A −可逆且BA AB =;(2)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=200012031B ,求矩阵A .38、已知B A ,为3阶矩阵,且满足E B B A 421−=−,其中E 是3阶单位矩阵.(1)证明:矩阵E A 2−可逆;(2)若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=200021021B ,求矩阵A .39、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=321011330A ,且满足B A AB 2+=,求矩阵B .40、设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−=390013000003000013000013A ,求n A .一、选择题:1、答案:(C).【考点】考查矩阵运算.解:矩阵运算,一般没有BA AB ≠.例,()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛936624312312321,()13332112321312=×+×+×=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛BA AB ≠⇒;例,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛341201104321⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛214343210110BA AB ≠⇒;222332)(×××=AB B A ,333223)(×××=BA A B BA AB ≠⇒;333113)(×××=AB B A (左行右列),111331)(×××=BA A B (左行右列)BA AB ≠⇒.特别地,22))((B BA AB A B A B A −+−=−+,222)(B BA AB A B A +++=+但:E A E A E A −=−+2))((,EA A E A ++=+2)(22))((23E A A E A E A ++−=−))((23E A A E A E A +−+=+【注】:尤其要注意kE A =3的情形.))((23E A A E A E A ++−=−))((23E A A E A E A +−+=+2、答案:(C).【考点】考查矩阵运算.解:对于(A),C A A BC BA =⇒′≠⎭⎬⎫=可逆,但C A B BC BA =⇒⎭⎬⎫=可逆.例:⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛993312516321,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛993311116321⇒C A ≠.故(A)错误.对于(B),C A A CB AB =≠⇒⎭⎬⎫=可逆,但C A B CB AB =⇒⎭⎬⎫=可逆.例:⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−993362311521,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛993362311111⇒C A ≠.故(B)错误.对于(C),则对0=AB ,左乘1−A ,01=−AB A ,则0=B .故(C)正确.对于(D),0=AB ≠0=⇒A 或者0=B .例:O =⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛000021-4-24221,()01-11321=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛.故(D)错误.3、答案:(C).【考点】考查矩阵运算.解:对0=AB ,用行列式乘法公式:0==AB B A .则0=A 或0=B .4、答案:(B).【考点】考查矩阵(对称、反对称)运算.解:对于(A),TT T T T T T B A A B A B AB A B AB)()()()()(111111−−−−−−−=−=−1111)()(−−−−−=−=AB A B B A A B T T T T ,所以(A)不对.对于(B),TT T T T T T B A A B A B AB A B AB)()()()()()()(111111−−−−−−+=+=+A B AB AB A B B A A B T T T T 111111)()()()(−−−−−−+=+=+=,所以(B)不对.对于(C),1111)()()()()(−−−−===BAB B A B B A B AB BT T T T T T T ,所以(C)不对.对于(D),2222)()(])[(])[(BA A B AB AB T T T T===,所以(D)不对.5、答案:(A).【考点】考查矩阵(ij ijA a =或T A A =*)的运算.解:由于T A A =*,即:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡332313322212312111332313322212312111a a a a a a a a a A A A A A AA A A ,因此ij ij A a =,所以03211222111313121211111312>=++=++=a a a a A a A a A a A ,又T A A =*,两边取行列式,则:A A AA T ===−13*,即A A =2,则有1=A ,因此,13211=a ,3311=a .6、答案:(C).【考点】考查矩阵伴随.解:根据伴随矩阵的关系:E A A A AA ==**.现将*A 视为关系式中的A ,则有:E A A A A A *******)()(==,由1*−=n AA 及AA A=−1*)(可得:A A AA AA A An n 211****)()(−−−===.7、答案:(B).【考点】考查矩阵伴随.解:当A 可逆时,由1*−=A A A 有:*111*1)()(A k A kA k kA kA kA n n −−−=⋅==.8、答案:(D).【考点】考查矩阵伴随(分块矩阵).解:⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛==−−−−1111*B O O A B A B O O A B O O A C C C ⎥⎦⎤⎢⎣⎡=**B A O O A B .9、答案:(D).【考点】考查矩阵(定义)的逆.解:由C B A ,,都是n 阶方阵,且E ABC =知:①E BC A =)(,即A 与BC 互为逆矩阵,则有:E BCA =,故(A)正确.②T T T T T A B C ABC E E ===)(,故(B)正确;③E C AB =)(,即AB 与C 互为逆矩阵,则有:E CAB =,故(C)正确.10、答案:(D).【考点】考查矩阵(定义)的逆.解:由C B A ,,为n 阶方阵,且E CA BC AB ===,我们取C B A ,,为n 阶单位阵.故E C B A 3222=++.11、答案:(C).【考点】考查矩阵乘法.解:a aa a a a E a a a a a a E a a E a a E AB T T T T T T T T )(2))((2)2)((+−=+−=+−=E a a a a E T T =+−=.12、答案:(A).【考点】考查矩阵逆运算.解:由AB E B +=⇒E B A E =−)(⇒1)(−−=A E B ;由CA A C+=⇒A A E C =−)(⇒1)(−−=A E A C ;所以E A E A E A E A A E C B =−−=−−−=−−−−111))(()()(.13、答案:(C).【考点】考查矩阵(定义)的逆.解:利用矩阵逆的运算法则:AA B B B A B A AB E A B A 1111111111)(])([)]([)(−−−−−−−−−−+=+=+=+或者1111))(()()(−−−−++=++=B A B A B A B B A A E,则:B A B B A A +=+−−])(11,⇒=+−−−111)(B A B B A A 1)(−+.14、答案:(B).【考点】考查矩阵初等变换.解:按照已知条件,用初等变换描述有:AB ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=100010011B C 因此A C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000100111100010011−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−PAP .15、答案:(A).【考点】考查初等变换.解:因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+100011001),,(),,(3213221ααααααα,即:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100011001P Q ,于是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100011001)(100010011100011001100011001AP P P A P AQ Q T TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011012100011001200010001100010011.16、答案:(D).【考点】考查初等变换.解:依题意,B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100011001,E B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010100001,即:B Ap =1,E B P =2⇒E Ap p =)(12,所以11121112−−−−==P P EP P A .17、答案:(B).【考点】考查矩阵O AB =的秩.解:由矩阵B A ,非零⇒1)(≥A r 1)(≥B r 又O AB =⇒nB r A r ≤+)()(因此,矩阵B A ,的秩都小于n .二、填空题:18、答案:①⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=+−=×+−×+×−=+−=×+−×+×−=+−=×+−×+×=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛35153612323)3(4135815224)3(51215218121)3(611231343452161;②()()12)12642232221(312321==++=×+×+×=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛;③()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛963321642321312;④()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡33322311332322211231321211132132332313232212131211321x a x a x a x a x a x a x a x a x a x x x x x a a a a a a a a a x x x 233332231313322322221212311321122111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++=121231132112233322222111222x x a x x a x x a x a x a x a +++++=.【考点】考查行列式计算.【注】:s m s n n m C B A ×××=.19、答案:10)42(2E A A +−.【考点】考查矩阵的逆运算.解:由E A 23=变形为:E E A A E A 10)42)(2(2=+−+,于是:E E A A E A =+−+10)42()2(2,故10)42()2(21E A A E A +−=+−.20、答案:)2(2n a a−.【考点】考查1)(=Taa r 的有关行列式运算.解:因⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−==101000101)101(101T aa A ,而2101)101(=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−==a a A T ,所以A A n n 12−=,)2(202002022211111n n n n n n n a a a a a A aE A aE −=−−=−=−−−−−−.21、答案:O .【考点】考查矩阵运算.解:由于11)2(2−−−=−n n n A E A A A ,而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=−1010001012E A ,又O A E A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=−101020101101000101)2(,所以O A A n n =−−12.22、答案:21.【考点】考查矩阵的逆及行列式值.解:由E B A AB =−−,即:E A B E A E A +=−+))((.因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=+202030102E A ,知E A +可逆,故1)(−−=E A B .而2002010100=−=−E A .又因AA 11=−,故21)(1=−=E A B .23、答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡543022001101.【考点】考查伴随运算.解:由EA AA =*知:E A AA =*,故AA A =−1*)(,又10543022001==A ,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=−543022001101)(1*A .24、答案:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−3131003231000520021.【考点】考查分块矩阵求逆.解:由⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=−−−1110000C B C B A ,设⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡=−−5221122511B ,⎥⎦⎤⎢⎣⎡−=⎥⎦⎤⎢⎣⎡−=−−112131112111C ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−=−313100323100005200211102100001200251-1A .【注】在今后考研中一定还要注意⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=−−−−O BC O O C B O A 1111这种题型.25、答案:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=−−01000010000110001211n n a a a a A ⋯⋮⋮⋮⋮⋯⋯⋯.【考点】考查分块矩阵求逆.解:由⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=−−−−O BC O O C B O A 1111,又⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=−21111a a C ⋱,所以,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=−−01000010000110001211n n a a a a A ⋯⋮⋮⋮⋮⋯⋯⋯.26、答案:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−4300032000210001【考点】考查矩阵的逆运算.解:若先求出1)(−+A E,再作矩阵乘法求出B ,最后通过求逆得到1)(−+B E .因此要求我们利用单位矩阵恒等变形:1`11)(2)]()[()()()(−−−+=++−+=+−+=+A E A E A E A E E A E A E E B .所以)(21])(2[)(11`1A E A E E B +=+=+−−−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−=4300032000210001或者,由)()(1A E A E E B −+=+−,左乘A E +得:A E EB A E −=++))((⇒EA E A E A EB A E 2)()(=++−=+++即有:E B E A E 2))((=++.以下同解.27、答案:2)2(E A +.【考点】考查抽象矩阵定义法求可逆矩阵.解:由042=−+E AE A ⇒EE A E A 2)2)((=+−即:E E A E A =+−2)2()(2)2()(1E A E A +=−−.28、答案:⎥⎥⎦⎤⎢⎢⎣⎡−−11210.【考点】考查矩阵逆运算.解:因为))(2(232E A E A E A A B−−=+−=,所以1111)2()()])(2[(−−−−−−=−−=E A E A E A E A B 又⎥⎦⎤⎢⎣⎡−=⎥⎦⎤⎢⎣⎡−=−−−021*******)(11E A ,⎥⎦⎤⎢⎣⎡−=⎥⎦⎤⎢⎣⎡−−=−−−12111211)2(11E A .所以,=−1B ⎥⎦⎤⎢⎣⎡−021221=⎥⎦⎤⎢⎣⎡−1211⎥⎥⎦⎤⎢⎢⎣⎡−−11210.29、答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.【考点】考查矩阵的逆运算.解:由B A AB +=2⇒E E B E A 2)2)((=−−,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=−=−−001010100)2(21)(1E B E A .30、答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡345234123.【考点】考查初等行变换.解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡3452341230010101005434323210101010020132012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡34523412331、答案:1)(3=Ar .【考点】考查矩阵的幂运算.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00120001000000002A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0010000000000003A ,所以1)(3=A r .32、答案:0.【考点】考查伴随矩阵的秩.解:由O A =2知,5)()(≤+A r A r ,所以4)(<A r ,故0)(=A r .33、答案:n .【考点】考查矩阵的秩.解:由1−=B ABA 知,E ABAB =,所以OE AB E AB =−+))((则n E AB r E AB r ≤−++)()(.又E E AB AB E 2)()(=++−,所以nE r E AB r AB E r =≥++−)2()()(因此,n E AB r E AB r =−++)()(.三、解答题:34、答案:1.【考点】考查行列式(矩阵)计算:T A A =*或ij ij a A =.(与选择题第5题同解)解:由于T A A =*,即:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡332313322212312111332313322212312111a a a a a a a a a A A A A A AA A A ,因此ij ij A a =,所以03211222111313121211111312>=++=++=a a a a A a A a A a A ,又T A A =*,两边取行列式,则:A A AA T ===−13*,即A A =2,则有1=A .35、答案:原命题成立.【考点】考查0=k A 的相关运算.解:由0=k A 知:)...(21E A A A E A E A E k k k ++++−=−=−−−)(所以,)...(121−−++++−=−k A A A E E A )(,故命题成立.36、答案:)(1E A A −=−;)3(41)2(1E A E A −−=+−.【考点】考查抽象矩阵的逆.(定义法)解:①由EA A O22−−=⇒)(2E A A E −=,故)(1E A A −=−;②由EA A O 22−−=⇒E E A E A 4)3)(2(−=−+,故)3(41)2(1E A E A −−=+−.37、答案:(1)1)(−−+=⇒E B E A ;(2)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=2000131-0211A .【考点】考查矩阵的逆运算.解:(1):由AB B A =+知:=+−−E B A AB E E B E A =−−)()(.所以E A −可逆,且E A E B −=−−1)(1)(−−+=⇒E B E A .EE A E B =−−)()(即:0=−−A B BA ⇒BAB A =+又AB B A =+所以BA AB =.(2)由于11100002030)(−−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=−E B ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1000031-0210,故⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=2000131-0211A .38、答案:)4(8121-E B E A −=−)(;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=200011020A .【考点】考查矩阵的逆运算.解:(1)由EB B A421−=−左乘A 知:042=−−AB AB .从而E E B E A 8)4(2=−−)(,即E E B E A =−⋅−)4(812)(.则E A 2−可逆,且)4(8121-E B E A −=−)(.(2)由(1)知1)4(82−−+=E B E A .而112-0002-102-3-4−−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=−)(E B ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=21-00083-81-04141-故⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=200011020A .【注意】如果只要证明E A 2−可逆,那么由042=−−A B AB A B E A 42=−⇒)(.因为A 可逆,知.0443≠=A A 故02≠⋅−B E A ,就可证出E A 2−可逆.39、答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−011321330.【考点】考查矩阵运算.解:B A AB 2+=⇒A B E A =−)2(,而021210113322≠=−−−=−E A ,故A E A B 1)2(−−=,由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=−100010001121011332)2(⋮⋮E E A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→2112123121232321100010001⋮所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=−21212123212123321)2(1-E A 因此,A E A B 1)2(−−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=212121232121232321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−321011330=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−011321330.【注】此题还可以用伴随矩阵来求逆,不妨试一试,但要注意计算准确.40、答案:见解析.【考点】考查矩阵的幂运算.解:将矩阵A 分块,⎥⎦⎤⎢⎣⎡=n nn C OO B A ,D E B +=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=30001000101000100013300130013,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000100010D ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0000001002D ,O D D n ===...3,所以,22211333)3(D C D C D E B n n n n n n n −−++=+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=−−−000000300000300030300030003221111n n n n n n n n nC C C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=−−−n n n n n n n n n C C C 300330333112211()13313913−⎟⎟⎠⎞⎜⎜⎝⎛−=⎥⎦⎤⎢⎣⎡−−=C ,所以,()()()133113311331−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−=⋯n C ()⎥⎦⎤⎢⎣⎡⋅⋅−⋅−⋅=⎥⎦⎤⎢⎣⎡−−=−⎟⎟⎠⎞⎜⎜⎝⎛−=1-1-1-1-1-1-636961633913613316n n n n n n 所以⎥⎦⎤⎢⎣⎡=n nn C OO B A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅−⋅−⋅=−−−−−−−11111122116369000663000003000033000333n n n n n n n n n n n n nC C C .。
矩阵论课后参考答案(第一二三四
;
则 TE 11 E 11ca
b d
a11E 11
a21E 12
a31E 21
a41E 22
即
a0
b 0
a11 a 31
a a
21 41
所以
a 11
a ,a 21
b,a31
0,a 41
0
同理可得: a12 c,a22 d ,a32 0,a42 0
x k11 k22 l11 l22
则
k1 k2 2l1 l2 0
kk212k1kl12k273lll221
l2 0
0
0
,故有
kk12
l2 4l2
l1 3l2
即 x k11 k22 l2 (42 1) l2 (5,2,3,4)
1 1 3 C 1 2 5
1 3 6
17.证明:秩为 1 的 n(n>1)阶阵 A 的最小多项式是 2 (trA) 。
证明:由题知 n 阶矩阵 A 的秩为 1,则说明 A 有 n-1 重 0 特征根
与一个特征根 0 。又因存在 特征多项式可写为
n
i tr(A) ,故可知 0 tr( A) ,故 A 的
且对角元全为 0,则其维数为
dim(V ) (n 1) (n 2) 1 (n 1)((n 1) 1) n(n 1)
2
2
其基为 n(n 1) 个 n n 阶的矩阵,故基可写为
2
0 1 0 0 0 0 1 0
1 0
0 0
2矩阵典型习题解析.docx
2矩阵矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解 是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵 所表示的内涵模糊的缘故。
其实当我们把矩阵与我们的实际生产经济活动相联系 的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙! 于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单!2.1知识要点解析2.1.1矩阵的概念1. 矩阵的定义由m ×n 个数a ij(i =1,2,…,m; j =1,2,…,n)组成的m 行n 列的矩形数表a11 a12八’ a 1n._ a 21 a 22a2nA i —V amI am2amn J称为m ×n 矩阵,记为A =(a j )mn 2. 特殊矩阵(1) 方阵:行数与列数相等的矩阵;(2) 上 (T)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵;(3) 对角阵:主对角线以外的元素全为零的方阵; (4) 数量矩阵:主对角线上元素相同的对角阵;(5) 单位矩阵:主对角线上元素全是 1的对角阵,记为E ; (6) 零矩阵:元素全为零的矩阵。
3. 矩阵的相等设 A =(引)"; B =(b j )mn若 a j =b j (i=1,2,…,m; j =1,2T ,n),则称 A 与 B 相等,记为 A=B2.1.2矩阵的运算1 •加法(1)定义:设A=(A j)mn,B=(b j)mn ,则C=A EQmn(2)运算规律①A+B=B+A ; ②(A+B) +C=A+ ( B+C)③A+O=A ④A+ (-A) =0, -A是A的负矩阵2. 数与矩阵的乘法(1)定义:设A=(a j)mn,k 为常数,则kA=(ka j)mn(2)运算规律① K (A+B) =KA+KB ,②(K+L )A=KA+LA,③(KL) A= K (LA)3. 矩阵的乘法(1)定乂:设 A =(a j ) mn , B =(b j ) np •则nAB =C =(C ij) mp,其中C i^=X a ik b kjk z⅛(2)运算规律①(AB)C=A(Be):② A(B C)=AB AC③(B C)A=BA CA(3)方阵的幕①定义:A=(a j)n ,则A k=A…A②运算规律:A m-A^A m n; (A m)^A mn(4)矩阵乘法与幕运算与数的运算不同之处。
矩阵论典型试题解析
习题11.计算下列方阵的幂(1)n cos sin sin cos θθ⎡⎤⎢⎥-θθ⎣⎦; (2)1111n ⎡⎤⎢⎥-⎣⎦; (3)1111na a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 解:(1)由 cos sin sin cos n n n n ⎡⎤⎢⎥-⎣⎦θθθθcos sin sin cos θθ⎡⎤⎢⎥-θθ⎣⎦= cos(1) sin(1)sin(1) cos(1)n n n n ++⎡⎤⎢⎥-++⎣⎦θθθθ,故由归纳法知cos sin sin cos nn n A n n ⎡⎤=⎢⎥-⎣⎦θθθθ。
法2:由矩阵cos sin sin cos A ⎡⎤=⎢⎥-⎣⎦θθθθθ为正交矩阵,且二维平面中任一向量x y ⎛⎫α= ⎪⎝⎭.则向量cos sin x A sin cos y θθθ⎡⎤⎛⎫α= ⎪⎢⎥-θθ⎣⎦⎝⎭相当于将向量x y ⎛⎫α= ⎪⎝⎭顺时针针旋转θ角度,故由此几何意义,有:() cos sin sin cos n n n n A A n n ⎡⎤==⎢⎥-⎣⎦θθθθθθ (2)由11441144cos sin A sin cos ππ⎡⎤⎥⎡⎤==⎥⎢⎥-ππ⎣⎦⎥-⎢⎥⎣⎦,得11441144n n n n cos sin(n n sin cos ππ⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥-ππ⎣⎦⎢⎥-⎢⎥⎣⎦ (3)记J=0 1 0 1 1 0 ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,则由于B J J J E ⋅==⋅,2010010100101001010000J ,J ,,⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 0K J =其中5K ≥112244113311 () n n n n n n n n n n n n n nk k n k n n n n n a C a C a C a a C a C a A aE J C a J a C a a -------⎡⎤⎢⎥⎢⎥⎢⎥=+==⎢⎥⎢⎢⎢⎣⎦40k =⎥⎥⎥∑(规定:0k n C (n k )=<)2. 求平方等于单位阵的所有二阶方阵 。
矩阵练习带答案详解
一、填空题:1.假设A ,B 为同阶方阵,则22))((B A B A B A -=-+的充分必要条件是BAAB =。
2. 假设n 阶方阵A ,B ,C 满足I ABC =,I 为n 阶单位矩阵,则1-C=AB。
3. 设A ,B 都是n 阶可逆矩阵,假设⎪⎪⎭⎫ ⎝⎛=00A B C ,则1-C =⎪⎪⎭⎫ ⎝⎛--0011B A 。
4. 设A =⎪⎪⎭⎫ ⎝⎛--1112,则1-A =⎪⎪⎭⎫⎝⎛2111。
5. 设⎪⎪⎭⎫⎝⎛--=111111A , ⎪⎪⎭⎫⎝⎛--=432211B .则=+B A 2⎪⎪⎭⎫ ⎝⎛--731733。
6.设⎪⎪⎪⎭⎫⎝⎛=300020001A ,则1-A =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛310002100017.设矩阵 1 -1 3 2 0,2 0 10 1A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,T A 为A 的转置,则B A T=⎪⎪⎪⎭⎫⎝⎛-160222.8. ⎪⎪⎪⎭⎫⎝⎛=110213021A ,B 为秩等于2的三阶方阵,则AB 的秩等于 2 .二、判断题〔每题2分,共12分〕1. 设B A 、均为n 阶方阵,则 kk k B A AB =)(〔k 为正整数〕。
……………〔 × 〕2. 设,,A B C 为n 阶方阵,假设ABC I =,则111CB A ---=。
……………………………〔 × 〕3. 设B A 、为n 阶方阵,假设AB 不可逆,则,A B 都不可逆。
……………………… ( × )4. 设B A 、为n 阶方阵,且0AB =,其中0A ≠,则0B =。
……………………… ( × )5. 设C B A 、、都是n 阶矩阵,且I CA I AB ==,,则C B =。
……………………〔 √ 〕6. 假设A 是n 阶对角矩阵,B 为n 阶矩阵,且AC AB =,则B 也是n 阶对角矩阵。
…〔 × 〕7. 两个矩阵A 与B ,如果秩〔A 〕等于秩〔B 〕,则A 与B 等价。
矩阵理论历年试题汇总及答案
矩阵理论历年试题汇总及答案矩阵理论是线性代数中的一个重要分支,它涉及到矩阵的运算、性质以及矩阵在不同领域中的应用。
历年来的矩阵理论试题通常包括矩阵的基本运算、矩阵的特征值和特征向量、矩阵的分解等重要概念。
以下是对矩阵理论历年试题的汇总及答案解析。
矩阵的基本运算试题1:给定两个矩阵 \( A \) 和 \( B \),其中 \( A =\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),\( B =\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \),求 \( A + B \) 和 \( AB \)。
答案:首先计算矩阵的加法 \( A + B \),根据矩阵加法的定义,对应元素相加,得到 \( A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \)。
接着计算矩阵乘法 \( AB \),根据矩阵乘法的定义,得到 \( AB = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8\end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50\end{bmatrix} \)。
特征值和特征向量试题2:已知矩阵 \( C = \begin{bmatrix} 4 & -2 \\ 1 & -1\end{bmatrix} \),求 \( C \) 的特征值和对应的特征向量。
答案:首先求特征值,我们需要解方程 \( \det(C - \lambda I) = 0 \),其中 \( I \) 是单位矩阵。
计算得到 \( \det(\begin{bmatrix}4-\lambda & -2 \\ 1 & -1-\lambda \end{bmatrix}) = (4-\lambda)(-1-\lambda) - (-2)(1) = \lambda^2 - 3\lambda - 2 \)。
矩阵的运算与性质练习题及解析
矩阵的运算与性质练习题及解析一、基础概念在矩阵的运算与性质练习题及解析中,首先需要了解矩阵的基本概念。
矩阵是由 m 行 n 列的数构成的一个长方形的数表。
表示为:A = [a_ij]其中,a_ij 表示第 i 行第 j 列的元素。
例如:A = [1 2 3][4 5 6]这是一个 2 行 3 列的矩阵,其中 a_11 = 1, a_12 = 2, a_13 = 3, a_21 = 4, a_22 = 5, a_23 = 6。
二、矩阵的运算1. 矩阵的加法矩阵的加法规则是对应位置的元素相加。
例如:A = [1 2]B = [3 4] A + B = [4 6][5 6] [7 8] [12 14]即 A + B = [a_11 + b_11 a_12 + b_12][a_21 + b_21 a_22 + b_22]2. 矩阵的数乘矩阵的数乘是指将矩阵的每个元素分别乘以一个数。
例如:A = [1 2] 2A = [2 4][3 4] [6 8]即 2A = [2a_11 2a_12][2a_21 2a_22]3. 矩阵的乘法矩阵的乘法是指两个矩阵按一定规则相乘得到一个新的矩阵。
规则是矩阵的行乘以另一个矩阵的列,并将结果相加。
例如:A = [1 2]B = [3 4] AB = [1*3+2*7 1*4+2*8] = [17 22][5 6] [7 8] [5*3+6*7 5*4+6*8] [47 58]即 AB = [a_11b_11+a_12b_21 a_11b_12+a_12b_22][a_21b_11+a_22b_21 a_22b_12+a_22b_22]三、矩阵的性质1. 矩阵的转置矩阵的转置是指将矩阵的行与列互换得到的新矩阵。
例如:A = [1 2 3] A^T = [1 4][4 5 6] [2 5][3 6]2. 矩阵的逆一个矩阵存在逆矩阵的条件是该矩阵为方阵且行列式不为零。
逆矩阵满足以下性质:A * A^(-1) = I,其中 I 是单位矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 矩阵矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。
其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单!知识要点解析2.1.1 矩阵的概念1.矩阵的定义由m×n 个数),,2,1;,,2,1(n j m i a ij 组成的m 行n 列的矩形数表mn m m n n a a a a a a a a a A212222111211称为m×n 矩阵,记为n m ij a A )( 2.特殊矩阵(1)方阵:行数与列数相等的矩阵;(2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵;(3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵;(5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。
3.矩阵的相等 设mn ij mn ij b B a A )(;)(若 ),,2,1;,,2,1(n j m i b a ij ij ,则称A 与B 相等,记为A=B 。
2.1.2 矩阵的运算1.加法(1)定义:设mn ij mn ij b B A A )(,)( ,则mn ij ij b a B A C )( (2)运算规律①A+B=B+A ; ②(A+B )+C =A +(B+C )③A+O=A④A +(-A )=0, –A 是A 的负矩阵2.数与矩阵的乘法(1)定义:设,)(mn ij a A k 为常数,则mn ij ka kA )((2)运算规律 ①K (A+B )=KA+KB , ②(K+L )A =KA+LA , ③(KL )A =K (LA ) 3.矩阵的乘法(1)定义:设.)(,)(np ij mn ij b B a A 则,)(mp ij C C AB 其中nk kjik ij b aC 1(2)运算规律①)()(BC A C AB ;②AC AB C B A )( ③CA BA A C B )( (3)方阵的幂①定义:A n ij a )( ,则Kk A A A②运算规律:n m n m A A A ;mn n m A A )( (4)矩阵乘法与幂运算与数的运算不同之处。
①BA AB②;00,0 B A AB 或不能推出③k k k B A AB )( 4.矩阵的转置(1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A的转置,记为nm a A ji T )( ,(2)运算规律①;)(A A T T ②T T T B A B A )(; ③;)(T T KA kA④T T T A B AB )(。
(3)对称矩阵与反对称矩阵若,A A T 则称A 为对称阵;A A T ,则称A 为反对称阵。
5.逆矩阵(1)定义:设A 为n 阶方阵,若存在一个n 阶方阵B ,使得AB=BA=E ,则称A 为可逆阵,B 为A 的逆矩阵,记作1 A B 。
(2)A 可逆的元素条件:A 可逆0 A(3)可逆阵的性质①若A 可逆,则A -1也可逆,且(A -1)-1=A ; ②若A 可逆,k ≠0,则kA 可逆,且111)(A kkA ; ③若A 可逆,则A T 也可逆,且T T A A )()(11 ; ④若A ,B 均可逆,则AB 也可逆,且111)( A B AB 。
(4)伴随矩阵①定义:T n ij A A )(* ,其中ij A 为ij a 的代数余子式, ②性质:i )E A A A AA **; ii )1* n A A ;iii )A AA n 2**)( ;iv )若A 可逆,则*A 也可逆,且A AA A 1)()(*11* ③用伴随矩阵求逆矩阵公式:*11A AA2.1.3 方阵的行列式1.定义:由n 阶方阵A 的元素构成的n 阶行列式(各元素的位置不变)叫做方阵A 的行列式,记为A 或detA 。
2.性质: (1)A A T , (2)A k kA n , (3)B A AB ,(4)AA 113.特殊矩阵的行列式及逆矩阵(1) 单位阵E :E E E 1;1;(2) 数量矩阵kE :;n k kE 当E kkE k 1)(,01 时 (3)对角阵:;,*2121n n则若021 n ,则n 1112114. 上(下)三角阵设nn nn a a a A a a a A22112211,*则 若0 A ,则1 A 仍为上(下)三角阵2.1.4 矩阵的初等变换与初等矩阵1.矩阵的初等变换 (1)定义:以下三种变换①交换两行(列);②某行(列)乘一个不为零的常数k ;③某行(列)的k 倍加到另一行(列)上去,称为矩阵的初等变换。
2.初等矩阵(1)定义:将n 阶单位阵E 进行一次初等变换得到的矩阵称为初等矩阵;交换i ,j 两行(列),记为E (i, j );第i 行(列)乘以不为零的常数k 记为E(i(k)); 第j 行的k 倍加到第i 行上去,记为E(j(k)i ;(2)初等矩阵的性质初等阵是可逆阵,且逆阵仍为同型的初等阵; 而)1())](([)()]([11k i E k i E ij E ij E] )([)] )(([1i k j E i k j E(3)方阵A 可逆与初等阵的关系若方阵A 可逆,则存在有限个初等阵t P P P ,,,21 ,使t P P P A 21 ,(4)初等阵的行列式1) )((,))((,1)( i k j E k k i E ij E(5)初等阵的作用:对矩阵A 进行一次初等行(列)变换,相当于用相应的初等阵左(右)乘矩阵A ,且A i k j E A k A k i E A A ij E ) )((,))((,)(3.矩阵的等价(1)定义:若矩阵A 经过有限次初等变换变到矩阵B ,则称A 与B 等价, (2)A 与B 等价的三种等价说法,①A 经过一系列初等变换变到B ;②存在一些初等阵t s F F E E ,,,,,11 ,使得B F AF E E t s 11 ③存在可逆阵P ,Q ,使得PAQ=B2.1.5 分块矩阵1.分块矩阵的定义以子块为元素的形式上的矩阵称为分块矩阵。
2.分块矩阵的运算(1)设A ,B 为同型矩阵,采用相同的分法有st s t t st s t t B B B B B B B A A A A A A A12211111221111则),,2,1;,,2,1()(t j s i B A B A ij ij(2)),,2,1;,,2,1()(t j s i kA kA ij(3)设,)(,)(np ij mn ij b B a A 分块成tr t r st s t B B B B B A A A A A11111111 其中it i i A A A ,,,21 的列数分别等于tj j j B B B ,,,21 的行数,则sr ij c C AB )( ,其中tk kj ikij s i B Ac 1)r ,1,2,j ;,,3,2,1(3.准对角阵 (1)定义:形如s A A A A21A i 为n i 阶方阵的矩阵称为准对角阵。
(2)准对角阵的行列式及逆矩阵设s A A A A21,则s A A A A 21 ;若每个A i 可逆,则A 可逆,且112111s A A A A(3)特殊的准对角阵(i )21A A A ,若A 1, A 2可逆,则12111A A A (ii )21AA A ,若A 1, A 2可逆,则11121A A A (iii )C OD BA 是0,0,0 CB AC B 则 且111110C DC B B A (iv )0,0,0C B CD B A ,则111110C DB C B A经典题型解析2.2.1 矩阵的运算1、若11221252121=11231c c c bL L L L L L L 则c = 解:由415a 得a =0, 11c =4 而-1+2b +6=-1得b =-3, 22c =-7从而 c 45=17提示:对于最基本的矩阵的四则运算我们一定要烂熟于心。
2、设A 为三阶矩阵,且4,A 则____.A 21()2解:322111444A A Ag 21()2易错提示:本题是道特别基本的有关矩阵基本性质的类型题,考生易犯的错误就是对矩阵进行行列式计算时,把A 21()2的阶数给忘记计算。
3、设A 为3 3矩阵,B 为4 4,且12A B ,,则___.B A 解: 3218.B A B A g易错题示:本题同上,但还应值得我们注意的是,在计算时3212B A B A g 是我们常犯的错误。
4、设 123111A B L L L L ,,则 ___.kT A B解: ()()()kT T T T T T T T A B A B A B A B A BA BA BA B g11111162116222.3333k kL L L L L L L L易错提示:本题关键是要求我们注意到T A B 是矩阵,但 111123T BAL L ==6却是数,倘若先计算111222333T A BL L L L L L ,然后再求111222333 L L L L L L k,则计算式相当繁琐的。
5、设101010001AL L L L L L ,求 n A .解:方法一:数学归纳法.因为101010001A L L L L L L ,2102010001A A AL L g L L L L ,32103010001A A AL L g L L L L ,一般的,设101010001n AL L L L L L n-1,则110110110010010010001001001n n n A A AL L L L L L g L L L L L L L L L L L L n .所以,有归纳法知10010001n AL L L L L L n 。
方法二:因为A 是初等矩阵,An A E A A A 64748g g 个n,相当于对单位矩阵100010001EL L L L L L =,施行了n 次初等列变换(把第一列加到第三列),故10010001n AL L L L L L n 。
方法三:利用对角矩阵和主对角线上为零的上三角矩阵幂的特点来进行计算。
令 101100001010010000001001000A E BL L L L L L L L L L L L L L L L L L =,其中001000000BL L L L L L ,又因为2001001000000000000000000000BL L L L L L L L L L L L L L L L L L ,所以(2)k B O k 。