起泡、直接插入排序、 简单选择排序、快速排序、希尔排序和堆排序
C++排序讲义
j j
j
j
ji
ij
ij
ij
i
i
i
二趟排序: 13 4 48 38 27 49 55 65 97 76 Ch8_3.c
希尔排序特点
子序列的构成不是简单的“逐段分割”,而是将相隔某个增 量的记录组成一个子序列 希尔排序可提高排序速度,因为 分组后n值减小,n² 更小,而T(n)=O(n² ),所以T(n)从总体 上看是减小了 关键字较小的记录跳跃式前移,在进行最后一趟增量为1 的插入排序时,序列已基本有序 增量序列取法 无除1以外的公因子 最后一个增量值必须为1
j j j j j j 排序结果:(13 27 38 49 65 76 97)
算法评价
时间复杂度 若待排序记录按关键字从小到大排列(正序) 关键字比较次数: n
1 n 1
i 2
记录移动次数:
2 2(n 1)
i 2
n
若待排序记录按关键字从大到小排列(逆序) n (n 2)(n 1) 关键字比较次数: i
§8.2 交换排序
冒泡排序
排序过程
将第一个记录的关键字与第二个记录的关键字进行比较,若 为逆序r[1].key>r[2].key,则交换;然后比较第二个记录与第 三个记录;依次类推,直至第n-1个记录和第n个记录比较为 止——第一趟冒泡排序,结果关键字最大的记录被安置在最 后一个记录上 对前n-1个记录进行第二趟冒泡排序,结果使关键字次大的记 录被安置在第n-1个记录位置 重复上述过程,直到“在一趟排序过程中没有进行过交换记 录的操作”为止
输出:13 27 38 49 50 65
76 97 50 49 38 65 27 13 输出:13 27 38 49 50 65 97 50
排序大全
(共八种排序方法:直接插入排序,折半插入排序,冒泡排序,简单选择排序,希尔排序,快速排序,堆排序,归并排序)一.简单排序1.直接插入排序:a)思想:每次从后面无序表中取出第一个元素,通过循环比较把它插入到前面有序表的合适位置,使前面有序表仍然有序。
b)稳定性:稳定c)时空效率:时间复杂度:O(n^2) 空间复杂度:O(1)d)代码:/******************************************function: InsertSort 直接插入排序paramaters: list[] 形参数组length 数组长度(并非最大下标)******************************************/void InsertSort(int list[],int length){int temp,i,j;for(i=1;i<length;i++){if(list[i]<list[i-1]){temp=list[i];//保存小值list[i]=list[i-1];//大值向后移一位for(j=i-1;j>=1&&temp<list[j-1];j--){list[j]=list[j-1];}list[j]=temp;}}}2.折半插入排序:a) 思想:在插入第i个元素时,对前面的0~i-1元素进行折半,先跟他们中间的那个元素比,如果小,则对前半再进行折半,否则对后半进行折半,直到low>hight,找到插入位置low,然后把low到i-1的所有元素均后移一位,再把第i个元素放在目标位置low上。
b) 稳定性:稳定c) 时空效率:时间复杂度:O(n^2) 空间复杂度:O(1)d) 代码:/******************************************function: BInsertSort 折半插入排序又叫二分法插入排序paramaters: list[] 形参数组length 数组长度(并非最大下标)******************************************/void BInsertSort(int p[],int length){int i,j,low,high,m,temp;for(i=1;i<length;i++){temp=p[i];low=0;high=i-1;while(low<=high){m=(low+high)/2;if(p[i]<p[m])//插入点是high+1,而非m,因为有的循环m变化了,而m与high没有发生关系,//循环就结束了,他们的关系还保留在上一层,因此插入点应该用high来保存{high=m-1;}else low=m+1;}// 其实用low更方便点,不用再对low做任何改变/*for(j=i-1;j>=high+1;j--){p[j+1]=p[j];}p[high+1]=temp;*/for(j=i-1;j>=low;j--){p[j+1]=p[j];}p[low]=temp;}}3.冒泡排序:a) 思想:依次比较相邻的两个数,将小数放在前面,大数放在后面。
数据结构实验(6)查找和排序
计算机系数据结构实验报告(x)姓名:陈科健学号:6100113017 专业班级:电子商务131 实验名称:查找和排序实验目的:深入了解各种内部排序方法及效率分析。
问题描述:各种内部排序算法的时间复杂度分析,试通过随机数据比较算法的关键字比较次数和关键字移动次数。
实验要求:1、对起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序这六种常用排序算法进行分析。
2、用代码实现上述算法中任意两种排序算法。
3、设计待排序表的表长不超过100(其中数据最好用伪随机数产生程序产生,也可以自己设计一组待排序数据)。
4、要对实验结果做简单分析。
算法分析:实验内容和过程:#include<stdio.h>#include<stdlib.h>typedef struct{int key;}Key;typedef struct{Key r[6];}SqList;void BubbleSort(int *a,int n){int i, j,t;for (i = 0; i < n - 1; i++){for (j = 0; j <n-i-1;j++){if (a[j]>a[j+1]){t = a[j];a[j] = a[j+1];a[j+1] = t;}}}for (i = 0; i < n ; i++){printf("%5d", a[i]);}}int Partition(SqList &L, int low, int high){int pivotkey;L.r[0] = L.r[low];pivotkey = L.r[low].key;while (low < high){while (low < high && L.r[high].key >= pivotkey) --high;L.r[low] = L.r[high];while (low < high && L.r[high].key <= pivotkey) ++low;L.r[high] = L.r[low];}L.r[low] = L.r[0];return low;}void QSort(SqList &L, int low, int high){int pivotloc;if (low < high){pivotloc = Partition(L, low, high);QSort(L, low, pivotloc-1);QSort(L, pivotloc + 1, high);}}void QuickSort(SqList &L){int i;QSort(L,0,5);for (i = 0; i < 6; i++){printf("%5d", L.r[i].key);}}int main(){int i, a[6]; SqList L;printf(" ** 起泡排序**\n\n");printf("请输入6个数:\n");for (i = 0; i < 6; i++){scanf_s("%d", &a[i]);}printf("排序后:\n");BubbleSort(a, 6);printf("\n\n ** 快速排序**\n\n");printf("请输入6个数:\n");for (i = 0; i < 6; i++){scanf_s("%d", &L.r[i].key);}printf("排序后:\n");QuickSort(L);system("pause");}实验结果:总结和感想:起泡还好做。
专升本数据结构考试题1(还有很多哦,大家进我的账号下载)
大纲一、考试性质本考试是为在计算机专科生中招收本科生而实施的具有选拔功能的水平考试,其指导思想是既要有利于国家对高层次人材的选拔,又要有利于促进高等学校各类课程教学质量的提高,考试对象为2003年参加专升本考试的考生。
二、考试的基本要求要求学生比较系统地理解数据结构的基本概念和基本知识,掌握表、栈、队列、树和图等数据结构的基本特征和在计算机上实现的方法,要求考生具有抽象思维能力、逻辑推理能力、综合运用所学的知识分析问题和解决问题的能力,以及软件设计和编程能力。
三、考试方法和考试时间考试方法为闭卷笔试,考试时间为120分钟。
四、考试内容和要求1、绪论考试内容:数据结构基本概念和术语,算法、算法的描述和算法分析。
考试要求(1)了解非数值问题的数学模型不是数学方程,而是表、树和图之类的数据结构。
(2)理解数据、数据元素、数据对象、数据结构和数据类型等的定义。
(3)掌握数据的逻辑结构和存储结构及其种类;算法的重要特征等。
(4)会根据语句的最大频度计算算法的时间复杂度的方法。
2、线性表考试内容:线性表的定义、线性表的逻辑结构、线性表的顺序存储结构和链式存储结构,单向链表、循环链表和双向链表,一元多项式的表示及相加。
考试要求(1)了解线性表的定义和线性结构的特点。
(2)理解线性表的顺序存储和链式存储,理解数组与单链表表示表的优缺点。
(3)掌握线性顺序表中数据元素的存储位置的计算,顺序表、单向链表、循环链表和双向链表的插入、删除等有关操作。
(4)会用单链表编写插入、删除等有关算法。
(5)能够从时间和空间复杂度的角度综合比较两存储结构的特点及适用场合。
3、栈和队列考试内容:栈的定义、栈的表示和实现;队列的定义、队列的表示和实现,链队列、循环队列。
考试要求(1)了解栈和队列的定义。
(2)理解线性表、栈和队列特点及区别,栈对实现递归过程的作用。
(3)掌握顺序栈、链栈的入栈和出栈操作,顺序队列、链队列的入队和出队操作,循环队列的队空和队满的判断。
链表排序(冒泡、选择、插入、快排、归并、希尔、堆排序)
链表排序(冒泡、选择、插⼊、快排、归并、希尔、堆排序)这篇⽂章分析⼀下链表的各种排序⽅法。
以下排序算法的正确性都可以在LeetCode的这⼀题检测。
本⽂⽤到的链表结构如下(排序算法都是传⼊链表头指针作为参数,返回排序后的头指针)struct ListNode {int val;ListNode *next;ListNode(int x) : val(x), next(NULL) {}};插⼊排序(算法中是直接交换节点,时间复杂度O(n^2),空间复杂度O(1))class Solution {public:ListNode *insertionSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.if(head == NULL || head->next == NULL)return head;ListNode *p = head->next, *pstart = new ListNode(0), *pend = head;pstart->next = head; //为了操作⽅便,添加⼀个头结点while(p != NULL){ListNode *tmp = pstart->next, *pre = pstart;while(tmp != p && p->val >= tmp->val) //找到插⼊位置{tmp = tmp->next; pre = pre->next;}if(tmp == p)pend = p;else{pend->next = p->next;p->next = tmp;pre->next = p;}p = pend->next;}head = pstart->next;delete pstart;return head;}};选择排序(算法中只是交换节点的val值,时间复杂度O(n^2),空间复杂度O(1))class Solution {public:ListNode *selectSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.//选择排序if(head == NULL || head->next == NULL)return head;ListNode *pstart = new ListNode(0);pstart->next = head; //为了操作⽅便,添加⼀个头结点ListNode*sortedTail = pstart;//指向已排好序的部分的尾部while(sortedTail->next != NULL){ListNode*minNode = sortedTail->next, *p = sortedTail->next->next;//寻找未排序部分的最⼩节点while(p != NULL){if(p->val < minNode->val)minNode = p;p = p->next;}swap(minNode->val, sortedTail->next->val);sortedTail = sortedTail->next;}head = pstart->next;delete pstart;return head;}};快速排序1(算法只交换节点的val值,平均时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1))这⾥的partition我们参考(选取第⼀个元素作为枢纽元的版本,因为链表选择最后⼀元素需要遍历⼀遍),具体可以参考这⾥我们还需要注意的⼀点是数组的partition两个参数分别代表数组的起始位置,两边都是闭区间,这样在排序的主函数中:void quicksort(vector<int>&arr, int low, int high){if(low < high){int middle = mypartition(arr, low, high);quicksort(arr, low, middle-1);quicksort(arr, middle+1, high);}}对左边⼦数组排序时,⼦数组右边界是middle-1,如果链表也按这种两边都是闭区间的话,找到分割后枢纽元middle,找到middle-1还得再次遍历数组,因此链表的partition采⽤前闭后开的区间(这样排序主函数也需要前闭后开区间),这样就可以避免上述问题class Solution {public:ListNode *quickSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.//链表快速排序if(head == NULL || head->next == NULL)return head;qsortList(head, NULL);return head;}void qsortList(ListNode*head, ListNode*tail){//链表范围是[low, high)if(head != tail && head->next != tail){ListNode* mid = partitionList(head, tail);qsortList(head, mid);qsortList(mid->next, tail);}}ListNode* partitionList(ListNode*low, ListNode*high){//链表范围是[low, high)int key = low->val;ListNode* loc = low;for(ListNode*i = low->next; i != high; i = i->next)if(i->val < key){loc = loc->next;swap(i->val, loc->val);}swap(loc->val, low->val);return loc;}};快速排序2(算法交换链表节点,平均时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1))这⾥的partition,我们选取第⼀个节点作为枢纽元,然后把⼩于枢纽的节点放到⼀个链中,把不⼩于枢纽的及节点放到另⼀个链中,最后把两条链以及枢纽连接成⼀条链。
数据结构(C语言版)实验报告 (内部排序算法比较)
《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。
试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。
基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。
(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。
(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。
数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。
VBA排序之(冒泡排序、选择排序、插入排序、快速排序、希尔排序)
VBA排序之(冒泡排序、选择排序、插⼊排序、快速排序、希尔排序)主程序:Sub mymain()Dim MainArr, tApplication.ScreenUpdating = Falset = timerWith ThisWorkbook.Worksheets("排序")MainArr = .Range("a2: a" & Cells(Rows.Count, "a").End(xlUp).Row)InsertionSort arr:=MainArr.Range("c2").Resize(UBound(MainArr), 1) = MainArrEnd WithMsgBox Format(timer - t, "0.00s")Application.ScreenUpdating = TrueEnd Sub'1、冒泡排序运作⽅式:1.1、⽐较相邻的两个元素,按所需顺序决定是否交换。
1.2、对每⼀对相邻元素进⾏同样的⼯作,从第⼀对⾄最后⼀对。
结束后,最后⼀个元素应该是所需顺序的最值(如所需顺序为由⼩⾄⼤,则为最⼤值)。
1.3、对所有元素重复上述步骤,除了最后⼀个。
1.4、重复前述步骤,称前部分需要对⽐的为⽆序区,后部分不需要对⽐的为有序区,直到⽆序区仅剩⼀个元素。
Sub BubbleSort(ByRef arr)Dim i&, j&, vSwapFor i = UBound(arr) To2Step -1For j = 1To i - 1If arr(j, 1) > arr(j + 1, 1) ThenvSwap = arr(j, 1)arr(j, 1) = arr(j + 1, 1)arr(j + 1, 1) = vSwapEnd IfNextNextEnd Sub2、选择排序运作⽅式:2.1、对(⽆序区)全部元素由前⾄后扫描,找出最值。
DS第8章 排序
第8章 排序
考纲分析
归并排序算法思想比较简单,但非递归实现比较难,重 点掌握一次归并的实现和归并排序的性能分析。基数排 序不是基于比较的排序方法,在考试中出现的概率比较 低,只要求掌握基数排序的分配和收集过程。 通过本章学习,需要深刻领会各种排序的思想、各种初 始排列(正序、逆序、随机)下算法的执行特点、算法 的性能分析(时间性能、空间性能、稳定性),以及算 法的设计过程,能够在深刻理解各种排序方法的基础上 对各种排序方法进行综合比较。各种排序方法不但要求 会写出来,重要的是理解算法以及算法的执行过程,因 此,复习时要手工运行算法,掌握算法运行过程中的某 些规律。
第8章 排序
8.2 排序的基本概念 1. 考核知识点 5) 排序的分类 根据在排序过程中待排序的所有记录是否全部被 放置在内存中,可将排序方法分为内排序和外排 序两大类。内排序是指在排序的整个过程中,待 排序的所有记录全部被放置在内存;外排序是指 由于待排序的记录个数太多,不能同时放置在内 存,而需要将一部分记录放置在内存,另一部分 记录放置在外存,整个排序过程需要在内外存之 间多次交换数据才能得到排序的结果。
教材P.235.
注意比较次数 比树高少1
8.2 排序的基本概念 典型题解析
选择题2:一个待排序的n个记录可分为n/k组,每组包 含k个记录,且任一组内的各记录分别大于前一组内的 所有记录且小于后一组内的所有记录,若采用基于比较 的排序方法,其时间下界为( )。 A. O(klog2k) B. O(klog2n) C. O(nlog2k) D. O(nlog2n) 解答: C 分析:由题意,只需对每一组记录序列单独排序。对于 具有k个记录的序列进行基于比较的排序,其时间下界 为O(klog2k) ,共n/k组,因此,总的时间下界为 O(n/k*klog2k)= O(nlog2k) 。
数据结构课后习题答案第八章
第八章排序(参考答案)本章所用数据结构#define N 待排序记录的个数typedef struct{ int key;ElemType other;}rectype;rectype r[n+1]; // r为结构体数组8.2稳定排序有:直接插入排序、起泡排序、归并排序、基数排序不稳定排序有:希尔排序、直接选择排序、堆排序希尔排序例:49,38,49,90,70,25直接选择排序例:2,2,1堆排序例:1,2,28.3void StlinkedInsertSort(s , n);// 对静态链表s[1..n]进行表插入排序,并调整结果,使表物理上排序{ #define MAXINT 机器最大整数typedef struct{ int key;int next;}rec;rec s[n+1]; // s为结构体数组s[0].key=maxint; s[1].next=0; //头结点和第一个记录组成循环链表i=2; //从第2个元素开始,依次插入有序链表中while (i<=n){q=0; p=s[0].next; // p指向当前最小元素,q是p的前驱while (p!=0 && s[p].key<s[i].key) // 查找插入位置{ q=p; p=s[p].next; }s[i].next=p; s[q].next=i; // 将第个元素链入i++;} // while(i<=n) 静态链表的插入// 以下是重排静态链表,使之物理有序i=1; p=s[0].next;while (i<=n){WHILE (p<i) p=s[p].next;q=s[p].next;if (i!=p){ s[i] s[p]; s[i].next=p;p=q;i++;}}}//算法结束8.4void TwoWayBubbleSort( rectype r[n+1]; int n)// 对r[1..n]进行双向冒泡排序。
C语言排序算法大全综合排序
C语言排序算法大全综合排序利用随机函数产生N个随机整数(20000以上),对这些数进行多种方法进行排序。
基本要求:(1) 至少采用三种方法实现上述问题求解(提示,可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序)。
并把排序后的结果保存在不同的文件中。
(2) 统计每一种排序方法的性能(以上机运行程序所花费的时间为准进行对比),找出其中两种较快的方法。
问题补充:要纯C语言版,不含C++语言/*================================================================相关知识介绍(所有定义只为帮助理解相关概念,并非严格定义):1、稳定排序和非稳定排序简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。
反之,就是非稳定的。
比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。
假如变成a1,a4,a2,a3,a5就不是稳定的了。
2、内排序和外排序在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。
3、算法的时间复杂度和空间复杂度所谓算法的时间复杂度,是指执行算法所需要的计算工作量。
一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。
==================================================================*/ /*================================================================== 功能:选择排序输入:数组名称(也就是数组首地址)、数组中元素个数==================================================================*/ /*================================================================== 算法思想简单描述:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
c语言常见排序算法
常见的C语言排序算法有以下几种:
1. 冒泡排序(Bubble Sort):比较相邻的元素,如果前一个元素大于后一个元素,则交换它们的位置,重复这个过程直到整个序列有序。
2. 插入排序(Insertion Sort):将未排序的元素逐个插入到已排序序列中的正确位置,直到整个序列有序。
3. 选择排序(Selection Sort):每次从未排序的元素中选择最小的元素,将其放到已排序序列的末尾,重复这个过程直到整个序列有序。
4. 快速排序(Quick Sort):选择一个基准元素,将序列分成两部分,一部分小于等于基准元素,一部分大于基准元素,然后对两部分递归地进行快速排序。
5. 归并排序(Merge Sort):将序列分成两部分,分别对两部分进行归并排序,然后将两个有序的子序列合并成一个有序的序列。
6. 堆排序(Heap Sort):将序列构建成一个最大堆,然后将堆顶元素与堆末尾元素交换,重复这个过程直到整个序列有序。
7. 希尔排序(Shell Sort):将序列按照一定的间隔分成若干个子序列,对每个子序列进行插入排序,然后逐渐减小间隔直到间隔为1,最后对整个序列进行插入排序。
8. 计数排序(Counting Sort):统计序列中每个元素出现的次数,然后按照元素的大小顺序将它们放入一个新的序列中。
9. 基数排序(Radix Sort):按照元素的个位、十位、百位等依次进行排序,直到所有位数都排完为止。
以上是常见的C语言排序算法,每种算法都有其特点和适用场景,选择合适的排序算法可以提高排序效率。
数组各种排序算法和复杂度分析
数组各种排序算法和复杂度分析Java排序算法1)分类:插⼊排序(直接插⼊排序、希尔排序)交换排序(冒泡排序、快速排序)选择排序(直接选择排序、堆排序)归并排序分配排序(箱排序、基数排序)所需辅助空间最多:归并排序所需辅助空间最少:堆排序平均速度最快:快速排序不稳定:快速排序,希尔排序,堆排序。
2)选择排序算法的时候要考虑数据的规模、数据的类型、数据已有的顺序。
⼀般来说,当数据规模较⼩时,应选择直接插⼊排序或冒泡排序。
任何排序算法在数据量⼩时基本体现不出来差距。
考虑数据的类型,⽐如如果全部是正整数,那么考虑使⽤桶排序为最优。
考虑数据已有顺序,快排是⼀种不稳定的排序(当然可以改进),对于⼤部分排好的数据,快排会浪费⼤量不必要的步骤。
数据量极⼩,⽽起已经基本排好序,冒泡是最佳选择。
我们说快排好,是指⼤量随机数据下,快排效果最理想。
⽽不是所有情况。
3)总结:——按平均的时间性能来分:时间复杂度为O(nlogn)的⽅法有:快速排序、堆排序和归并排序,其中以快速排序为最好;时间复杂度为O(n2)的有:直接插⼊排序、起泡排序和简单选择排序,其中以直接插⼊为最好,特别是对那些对关键字近似有序的记录序列尤为如此;时间复杂度为O(n)的排序⽅法只有,基数排序。
当待排记录序列按关键字顺序有序时,直接插⼊排序和起泡排序能达到O(n)的时间复杂度;⽽对于快速排序⽽⾔,这是最不好的情况,此时的时间性能蜕化为O(n2),因此是应该尽量避免的情况。
简单选择排序、堆排序和归并排序的时间性能不随记录序列中关键字的分布⽽改变。
——按平均的空间性能来分(指的是排序过程中所需的辅助空间⼤⼩):所有的简单排序⽅法(包括:直接插⼊、起泡和简单选择)和堆排序的空间复杂度为O(1);快速排序为O(logn ),为栈所需的辅助空间;归并排序所需辅助空间最多,其空间复杂度为O(n );链式基数排序需附设队列⾸尾指针,则空间复杂度为O(rd )。
——排序⽅法的稳定性能:稳定的排序⽅法指的是,对于两个关键字相等的记录,它们在序列中的相对位置,在排序之前和经过排序之后,没有改变。
各种排序方法的比较与讨论
各种排序方法的比较与讨论现在流行的排序有:选择排序、直接插入排序、冒泡排序、希尔排序、快速排序、堆排序、归并排序、基数排序。
一、选择排序1.基本思想:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
2. 排序过程:【示例】:初始关键字[49 38 65 97 76 13 27 49]第一趟排序后13 [38 65 97 76 49 27 49]第二趟排序后13 27 [65 97 76 49 38 49]第三趟排序后13 27 38 [97 76 49 65 49]第四趟排序后13 27 38 49 [49 97 65 76]第五趟排序后13 27 38 49 49 [97 97 76]第六趟排序后13 27 38 49 49 76 [76 97]第七趟排序后13 27 38 49 49 76 76 [ 97]最后排序结果13 27 38 49 49 76 76 973.void selectionSort(Type* arr,long len){long i=0,j=0;/*iterator value*/long maxPos;assertF(arr!=NULL,"In InsertSort sort,arr is NULL\n");for(i=len-1;i>=1;i--){maxPos=i;for(j=0;jif(arr[maxPos]if(maxPos!=i)swapArrData(arr,maxPos,i);}}选择排序法的第一层循环从起始元素开始选到倒数第二个元素,主要是在每次进入的第二层循环之前,将外层循环的下标赋值给临时变量,接下来的第二层循环中,如果发现有比这个最小位置处的元素更小的元素,则将那个更小的元素的下标赋给临时变量,最后,在二层循环退出后,如果临时变量改变,则说明,有比当前外层循环位置更小的元素,需要将这两个元素交换.二.直接插入排序插入排序(Insertion Sort)的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子文件中的适当位置,直到全部记录插入完成为止。
C语言常见排序算法.ppt
1.1.2 快速排序
算法实例:
始关键字
pivotkey 21 25 low
49 25* 16 08 high
一次交换
21
二次交换
三次交换
high-1 完成一趟排序
08 25 low
49 25* 16
high
08
49 25* 16 25
low
high
08 16 49 25*
25
low
08 16
low
常见排序算法
1.1 常见的排序算法
冒泡排序 快速排序 直接插入排序 希尔排序 选择排序 堆排序 归并排序
1.1.1 冒泡排序
算法描述
设待排序记录序列中的记录个数为n 一般地,第i趟起泡排序从1到n-i+1 依次比较相邻两个记录的关键字,如果发生逆序,则交换之 其结果是这n-i+1个记录中,关键字最大的记录被交换到第n-i+1的位 置上,最多作n-1趟。
08 16
21
high 25* 49 25
high 25* 49 25
low high
1.1.2 快速排序
算法实例:
完成一趟排序
08 16
21 25* 49 25
分别进行快速排序 有序序列
08 16
21 25* 25 49
08 16
21 25* 25 49
11
1.1.2 快速排序
算法分析:
快速排序是一个递归过程; 利用序列第一个记录作为基准,将整个序列划分为左右两个子序列。只要 是关键字小于基准记录关键字的记录都移到序列左侧; 快速排序的趟数取决于递归树的高度。 如果每次划分对一个记录定位后, 该记录的左侧子序列与右侧子序列的长 度相同, 则下一步将是对两个长度减半的子序列进行排序, 这是最理想的情 况
第9章 内部排序
内排序与外排序: 内排序是指在排序期间数据 对象全部存放在内存的排序;外排序是指在排 序期间全部对象个数太多,不能同时存放在内 存,必须根据排序过程的要求,不断在内、外 存之间移动的排序。 排序的时间开销: 排序的时间开销是衡量算法 好坏的最重要的标志。排序的时间开销可用算 法执行中的数据比较次数与数据移动次数来衡 量。各节给出算法运行时间代价的大略估算一 般都按平均情况进行估算。对于那些受对象关 键字序列初始排列及对象个数影响较大的,需 要按最好情况和最坏情况进行估算。
最坏情况下,第 i 趟时第 i 个对象必须与前面 i 个对 象都做关键字比较,并且每做 1 次比较就要做 1 次 数据移动。则总的关键字比较次数KCN和对象移动 次数RMN分别为
KCN i n(n 1) / 2 n 2 / 2,
i 1 n 1
RMN (i 2) (n 4)( n 1) / 2 n 2 / 2
i 1
n 1
若待排序对象序列中出现各种可能排列的概率相同, 则可取上述最好情况和最坏情况的平均情况。在平 均情况下的关键字比较次数和对象移动次数约为 n2/4。因此,直接插入排序的时间复杂度为 o(n2)。
直接插入排序是一种稳定的排序方法。
9.2.2折半插入排序 (Binary Insertsort)
1 KCN (n i ) n( n 1) 2 i 1 3 RMN 3 (n i ) n( n 1) 2 i 1
n 1
n 1
起泡排序需要一个附加对象以实现对象值的对换。 起泡排序是一个稳定的排序方法。
Knuth利用大量的实验统计资料得出,当 n 很大 时,关键字平均比较次数和对象平均移动次数大 约在 n1.25 到 1.6n1.25 的范围内。这是在利用直接 插入排序作为子序列排序方法的情况下得到的。
数据结构课程的内容
空间效率: O(1) 稳定性:稳定
23
折半插入排序算法
void BiInsertSort(SqList *L)
{ int i,j, low,high,m;
for(i=2;i<=L->length;i++)
{ L->r[0]=L->r[i]; low=1; high=i-1;
(KCN)和对象移动次数(RMN)分别为:
比较次数:n i = (n +2)(n -1)
i=2
2
移动次数:n(i +1)= (n +4)(n -1)
i=2
2
时间复杂度为O(n2)。
54 32 1 44 5 3 2 1 33 4 5 2 1 22 3 4 5 1 11 2 3 4 5
比较i次(依次与前面的i-1个记录进行比较,并和哨兵比较1次),移动i+1次(前面的i-1个记录依次向后移动,另外开始 19
13
*表示后一个25
例2:关键字序列T= (21,25,49,25*,16,08),
请写出直接插入排序的具体实现过程。 解:假设该序列已存入一维数组V[7]中,将V[0]作为缓冲或
暂存单元(Temp)。则程序执行过程为:
初态:
完成!
22410暂存59685*
021816
21516
2425951*
2459*
定义:
设有记录序列:{ R1、R2………Rn } 其相应的 关键字序列为: { K1、K2………Kn }; 若存在一种 确定的关系:Kx<=Ky<=…<= Kz则将记录序列 { R1、 R2……….Rn}排成按该关键字有序的序列: { Rx、 Ry……….Rz}的操作,称之为排序。
常用的内部排序方法
常用的内部排序方法有:交换排序(冒泡排序、快速排序)、选择排序(简单选择排序、堆排序)、插入排序(直接插入排序、希尔排序)、归并排序、基数排序(一关键字、多关键字)。
一、冒泡排序:1.基本思想:两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止。
2.排序过程:设想被排序的数组R[1..N]垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上"漂浮",如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。
【示例】:49 13 13 13 13 13 13 1338 49 27 27 27 27 27 2765 38 49 38 38 38 38 3897 65 38 49 49 49 49 4976 97 65 49 49 49 49 4913 76 97 65 65 65 65 6527 27 76 97 76 76 76 7649 49 49 76 97 97 97 97二、快速排序(Quick Sort)1.基本思想:在当前无序区R[1..H]中任取一个数据元素作为比较的"基准"(不妨记为X),用此基准将当前无序区划分为左右两个较小的无序区:R[1..I-1]和R[I+1..H],且左边的无序子区中数据元素均小于等于基准元素,右边的无序子区中数据元素均大于等于基准元素,而基准X 则位于最终排序的位置上,即R[1..I-1]≤X.Key≤R[I+1..H](1≤I≤H),当R[1..I-1]和R[I+1..H]均非空时,分别对它们进行上述的划分过程,直至所有无序子区中的数据元素均已排序为止。
2.排序过程:【示例】:初始关键字[49 38 65 97 76 13 27 49]第一次交换后[27 38 65 97 76 13 49 49]第二次交换后[27 38 49 97 76 13 65 49]J向左扫描,位置不变,第三次交换后[27 38 13 97 76 49 65 49]I向右扫描,位置不变,第四次交换后[27 38 13 49 76 97 65 49]J向左扫描[27 38 13 49 76 97 65 49](一次划分过程)初始关键字[49 38 65 97 76 13 27 49]一趟排序之后[27 38 13]49 [76 97 65 49]二趟排序之后[13]27 [38]49 [49 65]76 [97]三趟排序之后13 27 38 49 49 [65]76 97最后的排序结果13 27 38 49 49 65 76 97三、简单选择排序1.基本思想:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验八: 排序的基础实验
完成起泡、直接插入排序、简单选择排序、快速排序、希尔排序和堆排序中的三种排序方法,写成函数的形式
程序代码如下:
#include"stdafx.h"
#include<stdio.h>
#include<malloc.h>
#include <stdlib.h>
typedef struct
{
int elem;
}num;
void print(num *L,int n)
{
int i;
for(i=1;i<=n;i++)
printf("%6d",L[i].elem);
printf("\n");
}
void binsertsort(num *L,int n)//插入排序
{
int i,m,j,low,high;
for(i=2;i<=n;i++)
{
L[0]=L[i];
low=1;
high=i-1;
while(low<=high)
{
m=(low+high)/2;
if(L[0].elem<L[m].elem)
high=m-1;
else
low=m+1;
}
for(j=i-1;j>=high+1;j--)
L[j+1]=L[j];
L[high+1]=L[0];
}
}
void bubble(num *L,int n)//起泡排序{
int i,j,t;
for(i=1;i<n;i++)
{
for(j=2;j<=n-i+1;j++)
{
if(L[j].elem<L[j-1].elem)
{
t=L[j].elem;
L[j].elem=L[j-1].elem;
L[j-1].elem=t;
}
}
}
}
void selectsort(num *L,int n)//选择排序{
int i,j,t;
for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++)
{
if(L[i].elem>L[j].elem)
{
t=L[i].elem;
L[i].elem=L[j].elem;
L[j].elem=t;
}
}
}
}
void main()
{
int i,t,n,m;
num *list,*sqlist;
printf("========================= =========欢迎使用================================= ====\n");
printf("\n\n*************************** *****排序演示系统***********************************\n ");
printf("请输入数字个数:");
scanf("%d",&n);
list=(num *)malloc((n+1)*sizeof(num)); printf("输入的数据为:");
for(i=1;i<=n;i++)
{
scanf("%d",&t);
list[i].elem=t;
}
printf("插入排序的结果为:"); binsertsort(list,n);
print(list,n);
printf("起泡排序的结果为:");
bubble(list,n);
print(list,n);
printf("选择排序的结果为:"); selectsort(list,n);
print(list,n);
}
程序结果如下:。